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Vaccination is an efficient means of combating infectious disease burden globally.

However, routine vaccines for the world’s major human parasitic diseases do not

yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite

vaccine development, given the proven success of carbohydrate vaccines to combat

bacterial infections. We will review the key components of carbohydrate vaccines that

have remained largely consistent since their inception, and the success of bacterial

carbohydrate vaccines. We will then explore the latest developments for both traditional

and non-traditional carbohydrate vaccine approaches for three of the world’s major

protozoan parasitic diseases—malaria, toxoplasmosis, and leishmaniasis. The traditional

prophylactic carbohydrate vaccine strategy is being explored for malaria. However,

given that parasite disease biology is complex and often arises from host immune

responses to parasite antigens, carbohydrate vaccines against deleterious immune

responses in host-parasite interactions are also being explored. In particular, the highly

abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma,

and Leishmania spp. are considered exploitable antigens for this non-traditional

vaccine approach. Discussion will revolve around the application of these protozoan

carbohydrate antigens for vaccines currently in preclinical development.
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INTRODUCTION

The first vaccine was the smallpox inoculation introduced in 1796 by Jenner that used
whole, attenuated organisms to generate a protective immune response. Our ever-increasing
understanding of the underlying immune response that drives vaccination has led to modern
subunit vaccines that are formulated to exacting standards. These subunit vaccines use defined
protein or carbohydrate antigens implicated in virulence and disease to generate a more directed,
nuanced immune response against the offending pathogen.

Over two centuries of vaccinology has seen significant progress in protection from many viral
and bacterial diseases affecting humans such as polio, Haemophilus influenza type B, Streptococcus
pneumoniae, andNeisseria meningitis, saving millions of lives each year. And yet, it is disheartening
to consider that no vaccine exists for human parasitic infections that continue to cause suffering in
many parts of the world (Nyame et al., 2004; Astronomo and Burton, 2010; Hoffman et al., 2015).

More than a million people die each year from diseases like malaria and leishmaniasis, with
lifelong disability, disfigurement, and suffering for those that are living with disease (Hotez et al.,
2014). As it stands, diseases caused by protozoan parasites are a leading cause of death the world
over yet vaccine strategies for global parasitic diseases such as malaria (John et al., 2008; Seder
et al., 2013; Tinto et al., 2015; Gosling and von Seidlein, 2016; WHO, 2016b) and toxoplasmosis
(Jongert et al., 2009) have been pursued for decades. The failure in developing an effective vaccine
against human parasite infection lies in part to the complexity of parasite biology compared to other
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microbes (Astronomo and Burton, 2010; Hoffman et al., 2015).
Another failure is our relatively poor understanding of the
protein and carbohydrate antigens relevant to parasitic virulence.
Given that parasite disease pathology often arises from complex
host immune responses to parasite antigens, ongoing research to
better understand host-parasite interactions in disease is vital to
parasite vaccine development (Schofield and Grau, 2005).

Carbohydrates are considered compelling, exploitable targets
for vaccination to overcome the challenges that have prevented
the realization of a human parasite vaccine (Nyame et al.,
2004; Rodrigues et al., 2015). They are abundantly present on
the surface of parasites and play a key role in host-parasite
interactions (Rodrigues et al., 2015). Unique carbohydrate
antigens characterize multiple developmental stages and tend to
be immunoreactive for both protozoan and helminth parasites
(Nyame et al., 2004). Adding to the appeal of carbohydrate
antigens is the ongoing, systematic characterization of parasite
glycobiology regarding their structure, function and biosynthesis
(Nyame et al., 2004; Rodrigues et al., 2015). In this review,
we will discuss the advantages and disadvantages of modern,
carbohydrate antigen-based subunit vaccines, and reflect on
the latest developments of carbohydrate vaccines for major
protozoan parasites.

CARBOHYDRATE VACCINE ANATOMY

Carbohydrates Antigens
Carbohydrates are abundant on the surfaces of all cells and
exist as poly- and oligosaccharides attached to proteins and
lipids (Horlacher and Seeberger, 2008). They are involved in
key biological processes such as cell adhesion, modulatory
processes, and structural functions (Varki and Lowe, 2009).
For pathogenic microbes, carbohydrate interactions are utilized
for attachment (Kline et al., 2009) and invasion (de Groot
et al., 2013). In turn, pathogenic microbial carbohydrates can be
recognized by host immune systems to induce the production
of carbohydrate-specific antibodies that can serve protective
functions (Astronomo and Burton, 2010). Carbohydrates have
been exploited for protective vaccination for decades given their
crucial roles in development, growth, and disease (Varki and
Lowe, 2009).

Carbohydrate biosynthesis is not directly template-driven as
is the case for nucleic acid and proteins (Rodrigues et al., 2015).
Instead, their biosynthesis is a complex, multi-enzymatic process
(Delorenzi et al., 2002) forming linear and branched molecules
with varied linkages. The result is a class of biopolymers of
great complexity and diversity. Their heterogeneity means that
access to pure, defined carbohydrates remains a challenge (Liu
et al., 2006; Adibekian et al., 2011; Geissner and Seeberger,
2016). Microbial cell culture can be a readily available biological
source of carbohydrate antigens, however carbohydrate isolation
can be complex and even tedious (Geissner and Seeberger,
2016). Furthermore, isolation is not so straightforward for
carbohydrates of low abundance or when microbial culture is
not possible. This is especially true for parasites, which generally
requiremore complex culturing conditions compared to bacteria.
Fortunately, carbohydrate synthesis technology continues to

advance and is increasingly becoming an alternative to biological
isolation to source carbohydrates (Anish et al., 2014). Moreover,
carbohydrate synthesis allows for pure, completely defined
carbohydrate antigens as a basis for synthetic carbohydrate
vaccines.

Carrier Proteins
Virtually all vaccines rely on antibody production and subsequent
immunological memory against the target antigen for their
protective effect (Zinkernagel, 2003). Accordingly, the immune
response against the antigen is a key consideration when it comes
to vaccine design where strong, long lasting immune responses
are desired. In this regard, proteins and carbohydrates are
generally regarded as thymus dependent or thymus independent
antigens, respectively, which characterizes the type of antibody
immune response they elicit.

Thymus Dependent and Thymus Independent

Antigens
Thymus dependent (TD) antigens, such as proteins, are taken up
by antigen presenting cells (APCs). The endocytosed antigen is
processed through a series of catalytic steps which liberate small
peptide fragments. These peptide fragments form complexes
with MHCII molecules and thereby are able to be displayed
on the MHCII molecules of the APC. T cells specific to the
displayed MHCII-peptide complex are co-stimulated by the
APC (Avci and Kasper, 2010). The activated T cells go on to
“help” the antigen-specific B cells, promoting their proliferation,
affinity maturation, antibody isotype switching and long lasting
immunological memory (Pulendran and Ahmed, 2011).

Carbohydrate antigens are classed as thymus independent
(TI) antigens and are poorly immunogenic compared to
TD antigens (Weintraub, 2003). Carbohydrate antigens are
recognized by APCs through pathogen recognition receptors
(Blander and Sander, 2012), endocytosed, and processed
into oligosaccharide epitopes. These oligosaccharides are not
presented on MHCII molecules, but instead are presented
directly on the APC cell surface to activate carbohydrate antigen-
specific B cells. Due to the lack of T cell activation, B cells
are activated in the absence of affinity maturation and isotype
switching (Mond et al., 1995) which leads to the predominant
production of low affinity IgM antibodies, and only low levels
of IgG (Mond and Kokai-Kun, 2008; Astronomo and Burton,
2010; Berti and Adamo, 2013). The IgM antibodies bind in
the micromolar range, compared to TD antigen-derived IgG
antibodies that bind in the nanomolar range (Broecker et al.,
2016; Geissner et al., 2016). B and T cell memory is often not
achieved and the immune response is short lived (Adams et al.,
2008; Mond and Kokai-Kun, 2008; Hütter and Lepenies, 2015).
Moreover, children less than 2 years of age fail to mount an
antibody immune response to TI antigens (Weintraub, 2003;
Landers et al., 2005).

Glycoconjugates
In the 1920s and 1930s, covalent conjugation of carbohydrate
antigens to protein scaffolds was first explored to investigate the
interaction between the TD antigen properties of proteins with TI
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carbohydrate antigens (Avery, 1931). This early work formed the
basis of the first glycoconjugate carbohydrate vaccines produced
in the 1980s (Schneerson et al., 1980; Beuvery et al., 1982;Wessels
et al., 1993), where bacterial capsular polysaccharides (CPS) were
covalently linked to so-called carrier proteins. Immunization
with these CPS-protein glycoconjugates enabled T cell-mediated
B cell activation against the target carbohydrate antigen, and
induced long term immunememory even in infants (Stein, 1992).

The mechanism whereby TI carbohydrate antigens can
activate the immune system like TD protein antigens via
glycoconjugation remains an open area of research. A long-
standing mechanistic explanation argues that the carbohydrate-
protein conjugate is recognized by carbohydrate-specific B
cells. The protein component of the conjugate is subsequently
endocytosed, processed and presented on MHCII molecules of
the carbohydrate specific B cell. Through the MHCII-peptide
complex a peptide-specific T cell can activate the carbohydrate-
specific B cell, resulting in TD immune responses against the
desired carbohydrate antigen (Figure 1; Lucas et al., 2005). A
more recently proposed second mechanism argues that after
uptake by carbohydrate-specific B cells the glycoconjugate is
processed into glycopeptide fragments. Thus, the peptide portion
of the fragment can form an MHCII-peptide complex, enabling
the simultaneous presentation of the hydrophilic carbohydrate
portion to carbohydrate-specific T cells. The T cell interaction
activates the presenting B cell accordingly (Avci et al., 2011).

Five TD carrier proteins are currently used in licensed
carbohydrate vaccines (Pichichero, 2013). Of these licensed
carrier proteins, a non-toxic mutant of diphtheria toxin
(CRM197) is often used in vaccine development research

for parasitic diseases. Another carrier protein often used in
parasite vaccine development is keyhole limpet haemocyanin
(KLH). Unlike many other carrier proteins KLH is itself highly
glycosylated and is a good promotor of TD and TI responses
(Nyame et al., 2004), however it is not licensed for human use.

The linker conjugating the carrier protein to the carbohydrate
antigen is another key consideration of carbohydrate
vaccines. Synthetic carbohydrates with defined carrier protein
binding sites are advantageous for generating well-defined
glycoconjugates with predictable conjugation sites. To minimize
the immunogenicity of the linker (Buskas et al., 2004; Gotze
et al., 2015) short linkers with no functional groups are best used
to ensure that immune responses against the desired antigen
epitope are not detrimentally affected. The processing of the
linker after uptake by APCs is also an important consideration,
to allow for the release of vaccine oligosaccharide and peptide
moieties for antigenic display.

Adjuvants
Adjuvants are substances that modulate or bolster an effective
immune response against the antigens in the vaccine.
Formulations are typically emulsions and vesicles that can
serve as a delivery vehicle for antigen vaccine components and
allow for the slow release of vaccine antigen components over
time. Adjuvants can assist antigen immunogenicity by increasing
local inflammation and antigen uptake by APCs, and aid in
their migration to lymph nodes (Petrovsky and Aguilar, 2004;
Di Pasquale et al., 2015). Ideally, adjuvants reduce the amount
of antigen or number of immunizations needed for vaccination
(Petrovsky and Aguilar, 2004).

FIGURE 1 | Proposed mechanism for immune activation of T cells by glycoconjugate vaccines. The carbohydrate-protein conjugate is recognized by

carbohydrate-specific B cells. The protein component of the conjugate is subsequently endocytosed, processed and presented on MHCII molecules of the

carbohydrate specific B cell in order to activate a T cell for co-stimulation.
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Aluminum-based mineral (Alum) salts served as the only
adjuvants for human vaccines for decades (Zimmermann and
Lepenies, 2015) and are used for a wide range of vaccines that aim
to predominantly induce antibody-mediated immune responses
(Bhowmick et al., 2014). Despite its worldwide use, research on
its mechanism of action is ongoing (De Gregorio et al., 2008).
Today, alum, virosomes, lipid A derived adjuvants, and squalene
adjuvants are all in use for human licensed vaccines (Astronomo
and Burton, 2010; Di Pasquale et al., 2015; Zimmermann and
Lepenies, 2015) and are commonly used in vaccine research.
Crude Freund’s adjuvant (CFA) is a powerful immunogen often
used as an adjuvant for candidate parasite vaccines, but it is not
approved for licensed human vaccines.

Modern vaccines that use better defined, or even synthetic
antigens, are generally less immunogenic than crude, whole
organism vaccines. Research is ongoing in advancing the
efficacy of adjuvant systems for vaccines (Petrovsky and
Aguilar, 2004). Many of these new adjuvant systems that are
currently being tested in bacterial vaccines are of great interest
for adaption to candidate vaccines of parasite diseases. For
example, an adjuvant used in animal models, α-GalCer, was
covalently attached to S. pneumoniae CPS to act as both
carrier and adjuvant for the carbohydrate antigen (Cavallari
et al., 2014). Endosomal processing by carbohydrate-specific B
cells displays α-GalCer antigens via CD1d, stimulating iNKT
cells (a class of T cells) to promote B cell hypermutation,
class-switching and immunological memory (Cavallari and De
Libero, 2017). Zwitterionic polysaccharides (ZPSs) are another
emerging class of potentially self-adjuvanting carrier isolated
from commensal anaerobic bacteria. ZPSs have the special
property of containing one positive and one negative charge
on adjacent monosaccharides. When they are processed by
APCs this crucially enables their presentation on MHCII
complexes, leading to T cell activation. Thus, they are able to
activate adaptive immune responses for conjugated carbohydrate
antigens in the absence of carrier protein (Berti and Adamo,
2013), leading to the possibility of fully-carbohydrate vaccines
(Nishat and Andreana, 2016).

The Success of Carbohydrate Vaccines
The concept of carbohydrate antigen vaccines started in the
1920s with the first published evidence that “residue antigens”
of Streptococcus pneumoniae were the CPS of the bacterium
(Heidelberger and Avery, 1923, 1924), later demonstrated to
be important for virulence and serotype specificity (Hütter and
Lepenies, 2015). The CPS of S. pneumoniaewas shown to produce
CPS-specific antibodies (Tillett and Francis, 1929) that protected
against the disease symptoms of S. pneumoniae (Hütter and
Lepenies, 2015), leading to the first CPS antigen vaccine against
S. pneumoniae in 1947 (Grabenstein and Klugman, 2012). The
advent of antibiotics at around the same time somewhat stalled
vaccine research, as antibiotics became the preferred method for
bacterial disease prevention (Grabenstein and Klugman, 2012;
Hütter and Lepenies, 2015). The rise of antibiotic resistance
in the following decades (Davies and Davies, 2010) led to
a resurgence in carbohydrate vaccine research (Vliegenthart,
2006).

In the 1970s and 80s, CPS-based vaccines for S. pneumoniae
were licensed and approved in the USA and Europe. Increasing
numbers of strain-specific CPS were added to further itinerations
of the vaccine to increase its efficacy, culminating into a 23-
valent CPS antigen vaccine first licensed in 1983, protecting
vaccinated adults against 87% of S. pneumoniae disease in
the USA (Grabenstein and Klugman, 2012; Cavallari and De
Libero, 2017). Glyconjugate carbohydrate vaccines were later
introduced from the 1990s onward to allow for vaccination
of broader demographics, especially infants. Glycoconjugate
carbohydrate vaccines against disease caused by H. influenzae
type b infection lead to its virtual elimination within countries
with widespread coverage (Lindberg, 1999). Similarly, the use
of glycoconjugate vaccines against Neisseria meningitides has
also met with effective results (Girard et al., 2006). Vaccines
for S. pneumoniae are also now glycoconjugates. Several other
glycoconjugate vaccines are currently under development, such
as a carbohydrate vaccine for group B streptococcus (DeGregorio
and Rappuoli, 2014; Lepenies, 2015). Today, glycoconjugate
vaccines have substituted pure carbohydrate vaccines where
possible, with the most common carrier proteins being CRM197

and tetanus toxin (Cavallari and De Libero, 2017).

EXPLOITING CARBOHYDRATE ANTIGENS
FOR PROTOZOAN PARASITE VACCINES

The key components of CPS carbohydrate vaccines—antigen,
carrier protein, linker, and adjuvant—have remained largely
consistent since their inception. Current parasite vaccine
research follows the same component model in this regard.
However, as illustrated in the following sections, a recurring
theme for carbohydrate parasite vaccines is the need to steer away
from traditional prophylactic vaccine development strategies that
were successfully applied to bacterial infections.

In addition to carbohydrate vaccines that can induce
sterile protection against the parasite itself, vaccinating against
deleterious immune responses in host-parasite interactions is
another strategy. Much of the pathology of parasitic disease is
due to the host’s own immune responses against the parasite.
For example, the deadly manifestation of severe malaria is a
result of the host’s own immune response against parasite-derived
molecules, causing the toxic, hyperinflammatory response
associated with severe malaria (Boutlis et al., 2002; Krishnegowda
et al., 2005; Patel et al., 2007). The Plasmodium falciparum-
specific glycoform of glycosylphosphatidylinositol (GPI) was
identified as the putative toxin implicated in disease (Schofield
and Hackett, 1993). GPI molecules are present on the surface of
virtually all eukaryotic cells and serve as surface protein anchors,
but parasite-specific GPIs occur at relatively high levels in
parasitic protozoa (Gowda, 2002). Vaccination strategies aimed
at neutralizing the effect of this malaria toxin are being pursued
(Schofield, 2007). Similar carbohydrate vaccine strategies for
other protozoan parasites are also employed (Buxbaum, 2013).
Anti-toxin vaccines have proven successful for other microbial
infections, such as the diphtheria toxoid vaccine (Playfair et al.,
1990; Schofield, 2007).
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We will explore the latest developments for both traditional
and non-traditional carbohydrate vaccine approaches for three
of the world’s major protozoan parasitic diseases—malaria,
toxoplasmosis, and leishmaniasis.

Plasmodium
Malaria is an intra-erythrocytic parasitic disease caused by
Plasmodium protozoan species. It is among the most devastating
infectious diseases of human history and over 3.3 billion people
across 97 countries are at risk of infection today (WHO, 2013b,
2014). An estimated 198 million new clinical cases of malaria
occur globally with over 80% of new clinical cases occur in
sub-saharan Africa alone (WHO, 2013b). Severe malaria disease
develops in 5% of P. falciparum infections and accounts for 98%
of all malaria-related deaths. There are an estimated 584,000
deaths per year attributed to severe disease, mostly young
children under the age of 5 (WHO, 2013b). Estimates of severe
disease-related deaths are as high as 1.2 million (Murray et al.,
2012). Without a vaccine, at least e2.4 billion are spent annually
on malaria control programs using bed nets, insecticides and
drug treatments (WHO, 2013b).

A malaria vaccine should be possible considering that
naturally acquired immunity to disease symptoms develops over
time. Vaccines against malaria aim to reduce morbidity and
mortality, and should be effective in protecting against severe
malaria. In the long term, the vaccine should also protect against
all clinical disease (WHO, 2013a). To this end, many stages of the
parasite lifecycle are targeted by vaccines that decrease parasite
load. Examples of some prophylactic vaccines include the whole
P. falciparum sporozoite vaccine currently in field trials (Seder
et al., 2013), and the protein antigen based RTS,S vaccine which
is the most advanced example of malaria vaccine currently under
development in Phase III (John et al., 2008; Tinto et al., 2015;
Gosling and von Seidlein, 2016) and Phase IV trials (WHO,
2016b). At present, the RTS,S vaccine has not been licensed for
use as a malaria vaccine (WHO, 2016a).

Anti-Toxin Vaccine
Severe malaria pathology is largely considered to arise from toxic
effects of P. falciparumGPI (PfGPI), which exists either as protein
free glycolipids, or as the major carbohydrate modifications for
proteins essential for erythrocyte invasion (Gowda et al., 1997;
Schofield and Grau, 2005). PfGPI-specific antibodies are found in
adults of malaria-endemic areas, andmay be inhibiting the ability
of PfGPI to induce the hyper-inflammatory response associated
with severe malaria. This is still up for debate, since studies that
find an association between PfGPI-specific antibody titer and
protection from severe malaria (Brasseur et al., 1990; Naik et al.,
2000; Gowda, 2002; Keenihan et al., 2003; Perraut et al., 2005)
are balanced by studies that find no such association (de Souza
et al., 2002; Boutlis et al., 2005; Cissoko et al., 2006; Gomes
et al., 2013; Mbengue et al., 2016). However, PfGPI-specific
antibodies are reported to show relevant action in modulating
immune responses by protecting immune cells against severe P.
falciparum-induced inflammatory responses in-vitro (Schofield
et al., 1993; de Souza et al., 2010).

To evaluate the effect of using PfGPI in an anti-toxin
vaccine, a PfGPI hexasaccharide was synthesized, conjugated
to KLH carrier protein and emulsified in CFA (Figure 2).
C57BL/6 mice were immunized with the glycoconjugate, and
then challenged with P. berghei ANKA in a mouse model
of malaria. Immunization resulted in significant protection
against severe malaria, with clearly reduced death rates at 75%
survival. The immunized mice were also protected from acidosis,
pulmonary oedema, cerebral syndrome and fatality characteristic
of the disease model. Apparently, the induction of protective,
PfGPI-specific antibodies ameliorated a hyper-inflammatory
response against the PfGPI toxin, specifically shown to neutralize
the parasite-induced production of TNF-α by macrophages in
vitro. Furthermore, vaccination did not change parasitaemia
levels, demonstrating that the effect of the carbohydrate vaccine
candidate was through the neutralization of GPI’s toxic effects,
rather than interfering with parasite replication (Schofield et al.,
2002).

Following this work, synthetic PfGPI were utilized as
biomarkers to improve our understanding of the PfGPI-specific
antibody response (Kamena et al., 2008; Tamborrini et al., 2010).
The synthesis of PfGPI molecules continues to be explored
(Gurale et al., 2016).

Sterile Immunity Vaccine
In healthy adults, up to 1–5% of circulating IgG and IgM are
specific to the carbohydrate known as α-Gal (Figure 3; Macher

FIGURE 2 | The P. falciparum GPI hexasaccharide of the sequence

α-Man-(1-2)-α-[PEtN-6]Man-(1-2)-α-Man(1-6)-α-Man-(1-4)-α-GlcN-(1-6)-myo-

Ino-1,2-cyclic-phosphate that was chemically synthesized, conjugated to

KLH, and used for immunization. The carrier protein was attached to the top

PEtN moiety, where PEtN is an abbreviation for phosphoethanolamine. The full

PfGPI (in gray) is shown for context, where R groups denote lipid moieties.
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FIGURE 3 | The α-gal carbohydrate epitope of the sequence

α-Gal-(1-3)-β-Gal-(1-4)-GlcNAc-R that was used as the antigen for generating

α-gal-specific antibodies.

and Galili, 2008). In contrast to other mammals, humans do not
express α-Gal (Galili and Swanson, 1991) allowing for immune
reactivity to this carbohydrate (Galili et al., 1984). Exposure to
microbiota expressing this glycan drives production of α-Gal-
specific antibodies (Macher and Galili, 2008) which are believed
to contribute to immune resistance against α-Gal-expressing
pathogenic microbes (Bishop and Gagneux, 2007; Cywes-Bentley
et al., 2013). P. falciparum and other animal model Plasmodium
spp. express the α-Gal carbohydrate (Galili et al., 1998) possibly
bound to GPI-anchored surface proteins (Yilmaz et al., 2014).
Early studies already uncovered an association between α-Gal-
specific IgM and protection from P. falciparum infection in
humans. Thus, the effect of immunization on the production of
α-Gal-specific antibodies was investigated (Yilmaz et al., 2014).

Genetically modifiedmice unable to express α-Gal (Yang et al.,
1998) were immunized for the production of α-Gal IgG and
IgM. The immunizations were either inoculation with α-Gal
expressing E. coli bacteria, α-Gal rich rabbit RBCs, or synthetic
α-Gal conjugated to BSA. Adjuvants used were CFA and toll-
like receptor 9 agonists that enhanced the immunogenicity. The
mice were then challenged with P. berghei ANKA infection by
Anophelesmosquito bites. It was found that α-Gal immunization
reduced the risk of parasite transmission, thereby providing
sterile immunity. This sterile immunity appears to be due to
the cytotoxic action of α-Gal specific IgM and subclasses of
IgG against the inoculating parasites. Moreover, the antibodies
were shown to inhibit hepatocyte transmigration of the parasite
(Yilmaz et al., 2014).

Sterile immunity against malaria infection through the
induction of α-Gal-specific antibodies is not similarly present
for people living in malaria endemic regions, possibly due
to low levels of naturally acquired, protective α-gal-specific
antibodies. Promoting a T cell-dependent immune response
against the α-Gal carbohydrate was shown to enhance the
protective effect of these antibodies in the mouse model

(Yilmaz et al., 2014). Moreover, naturally acquired α-gal-
specific antibodies may enhance the immunogenicity of antigens
enriched with α-gal epitopes by augmenting the T cell response
following immunization. This suggests that coupling the α-
Gal carbohydrate to existing malaria vaccine candidates could
enhance their immunogenicity (Benatuil et al., 2005; Yilmaz et al.,
2014). The effect of α-Gal carbohydrate vaccination against other
protozoan parasites expressing α-Gal, such as Trypanosoma spp.
and Leishmania spp., may also be considered (Yilmaz et al., 2014).

Toxoplasma
Toxoplasma gondii is found worldwide, capable of infecting
nucleated cells of many warm-blooded animals (McLeod et al.,
2009; Debierre-Grockiego and Schwarz, 2010) and is estimated to
infect half of the world’s population (Liu et al., 2012). The disease
burden for humans has been well-documented (McLeod et al.,
2009). Transmission to humans is either through consumption
of food contaminated with tissue cysts and meat products from
infected animals or by ingestion of oocysts released in the feces of
infected cats (Kijlstra and Jongert, 2008).

Immunocompetant individuals tolerate T. gondii infection
which is either asymptomatic or manifest with mild flu-like
symptoms. However, the formation of parasite-containing tissue
cysts prevents the clearance of the parasite after infection
(Montoya and Liesenfeld, 2004). When latent carriers of T.
gondii are later immunocompromized they are at risk of severe
inflammatory reactions in the brain and central nervous system
after liberation of the parasites from these cysts (Luft and
Remington, 1992). Pregnant women encountering their first
infection can also transmit the parasite to the unborn child
leading to retardation or abortion (Remington et al., 2004).

Early vaccination strategies using live parasites (Cutchins and
Warren, 1956) and fixed parasites (Krahenbuhl et al., 1972)
protected from subsequent challenge. Today, vaccines against
toxoplasmosis aim to limit acute parasitemia, protect against
congenital toxoplasmosis, reduce the number of tissue cysts, or
lessen parasite transmission (Kur et al., 2009). To date, sterile
immunity against T. gondii has not been achieved (Jongert et al.,
2009). A live vaccine for veterinary toxoplasmosis exists to give
limited protection during pregnancy (Buxton and Innes, 1995)
but is not approved for human use and does not fully eliminate
the parasite (Liu et al., 2012).

GPI Vaccine
Glycolipid GPI anchors of T. gondii (TgGPI) have been
considered as possible vaccine antigens due to their effect in
modulating inflammatory TNF-α responses against the parasite
(Debierre-Grockiego, 2010). In 2015, TgGPI were explored as
possible vaccine candidates for the first time.

GPI anchors are highly abundant on T. gondii (∼106 copies
per cell) (Tsai et al., 2012) and exist as a protein-attached
or protein-free glycoform (Figure 4). Both glycoforms induce
inflammatory reactions like macrophage TNF-α production
(Debierre-Grockiego et al., 2003) through TLR-2 and TLR-4
signaling (Debierre-Grockiego et al., 2007), which exacerbates
toxoplasmosis in mice (Hunter et al., 1996). A vaccine that
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FIGURE 4 | The T. gondii GPI of the sequence

α-Man-(1-2)-α-Man-(1-6)-α-Man-(1-4)-α-GlcN-(1-6)-myo-Ino with lipid moiety.

Glycoform 1R bears a α-Glc(1-4)-β-GalNAc side chain, while glycoform 2R

lacks the glucose moiety.

induces TgGPI-specific antibodies could ameliorate TgGPI-
mediated inflammatory effects and lower disease burden
(Debierre-Grockiego, 2010).

The two major TgGPI glycoforms were synthethized and
covalently conjugated to CRM197. BALB/c mice were then
immunized with either one of the glycoconjugates before
challenge with virulent T. gondii RH strain. Immunization
did not provide protection for mice in the lethal challenge
model. Furthermore, the induced antibodies failed to exhibit any
significant effect on the inflammatory response for either group
(Gotze et al., 2015). Analysis of the immune response indicates
that antibody induction was directed away from the desired
carbohydrate side branch of the TgGPI, and more toward the
linker used to attach the carbohydrate to the carrier protein. In
a potential next step, the formulation has to be adjusted (Gotze
et al., 2015).

Ongoing research utilizing synthetic TgGPI molecules has
helped to identify biomarkers of acute and latent infection.
During acute infection, high levels of TgGPI-specific IgM and
IgG are present, while latent infection shows a reduced IgM
response (Gotze et al., 2014).

Leishmania
There are two million new cases of leishmaniasis every year as
the disease is increasingly becoming a worldwide health burden
(Desjeux, 2004). The vector borne, facultative intracellular
parasite (Chappuis et al., 2007) enters mononuclear, phagocytotic
cells such as macrophages. Cutaneous leishmaniasis is the most
common form of disease, notable for skin ulcers that result in
disability and scarring for the infected patient (Seeberger, 2007;
WHO, 2017). Leishmania donovani causes visceral leishmaniasis
and is the most severe form of disease characterized by
fever, substantial weight loss, anemia, swelling of liver and
spleen, and possible death. It is believed to be second only to
malaria in terms of fatal infection (Seeberger, 2007; Aebischer,
2014). Patients are treated with antimony drugs which are
costly, toxic and increasingly ineffective against resistant parasite
strains. A vaccine against leishmaniasis is a desirable, economic
strategy to combat this disease (Lee et al., 2012; Singh et al.,
2016).

A cocktail of heat-killed Leishmania parasites is a clinically
tested vaccine. However, the efficacy of the vaccine to prevent
disease is not confirmed (Armijos et al., 2004; Velez et al.,
2005). Other attempts involving killed or attenuated parasites for
leishmanial vaccine development have not resulted in a licensed
vaccine (Topuzogullari et al., 2013).

Vaccine Efforts
Leishmania parasites express lipophosphoglycans (LPG) on their
cell surface. This molecule is composed of a GPI anchor, a
repeating phosphorylated disaccharide fragment, and variable
cap oligosaccharides (Seeberger, 2007). The LPGs are important
for survival and virulence of the parasite (Spath et al., 2000)
and vaccination preparations with purified LPG is protective
against cutaneous leishmaniasis (McConville et al., 1987; Russell
and Alexander, 1988; Moll et al., 1989). Regarding the variable
capping oligosaccharide, a unique capping tetrasaccharide
(Figure 5) was identified as vital for parasite invasion of
macrophages (Descoteaux and Turco, 2002) and was the key
component of a synthetic carbohydrate vaccine for leishmaniasis
(Liu et al., 2006).

The capping oligosaccharide moiety of LPG was synthesized
in initial immunological studies exploiting this antigen for
vaccination. The carbohydrate was loaded onto virosomes that
served as an integrated carrier and adjuvant, before being used to
immunize BALB/c mice. Oligosaccharide-specific IgM and IgG1
responses were produced, indicating that the immune response
to the carbohydrate antigen was T cell-dependent. Furthermore,
the antibodies against the synthetic carbohydrate were cross-
reactive with natural carbohydrate antigens of Leishmania
parasites indicating its possible utility as a vaccine antigen (Liu
et al., 2006). A further study immunized BALB/c mice with
synthetic LPG capping oligosaccharides conjugated to CRM197

and emulsified in CFA. This vaccine candidate produced IgG
antibodies specific for the parasite. The oligosaccharides were
used to evaluate immune responses of infected humans and dogs
as the basis for a diagnostic test (Anish et al., 2013). Given the
carbohydrate vaccines currently in production, animal model
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FIGURE 5 | The general structure of the capping tetrasaccharide

α-Man-(1-2)-α-Man-(1-2)-[β-Gal-(1-4)]-α-Man of Leishmania LPG. This

oligosaccharide is attached to phosphoglycan repeating units, followed by a

GPI anchor.

challenge studies to test the protective effect of these synthetic
molecules is the next logical step.

LPG vaccination to protect against cutaneous leishmaniasis
employed animal challenge studies that evaluated the LPG
component of whole L. amazonensis antigen (LaAg). It
was known that intramuscular, systemic immunization of
LaAg results in deleterious disease outcomes after challenge,
however LPG depletion rendered LaAg protective against
Leishmania infection with respect to lesion growth and
parasite load compared to non-depleted LaAg. This indicated
that LPG was the component responsible for deleterious
effects of LaAg inoculation. During further investigations,
mice were intranasally vaccinated with LPG alone to
determine whether intranasal vaccination of the disease-
promoting component could promote protection against
cutaneous leishmaniasis (Pinheiro et al., 2007). Intranasal
vaccination with LPG was protective, and provided further
evidence for the potential of utilizing LPG in a carbohydrate
antigen vaccine that would protect against cutaneous
leishmaniasis.

Recently, the role of L. mexicana protein-free GPI molecules
(GIPL) in disease has been elucidated, shedding more light
on immunologic pathways affecting glycolipid-specific antibody
responses (Figure 6). After it was determined that L. mexicana
infection induces GIPL-specific IgG1 responses, a monoclonal
antibody against GIPL was shown to bind to the surface of

FIGURE 6 | The L. mexicana GIPLs contain the sequence PEtN-6-α-Man-(1-

2)-α-Man-(1-6)-α-Man-(1-4)-α-GlcN-(1-6)-myo-Ino-2-phosphate attached to a

lipid base that anchors into the membrane (McConville et al., 1993). PEtN is an

abbreviation for phosphoethanolamine. Additions to this base sequence are

found for many of the GIPLs. Note the structure of the carbohydrate chain is

the same as the sequence of protein-free P. falciparum GPI anchors (Assis

et al., 2012).

parasites, and promote IL-10 production in macrophages co-
cultured with parasite. Production of IL-10 is deleterious as
it blocks an effective immune response that is needed to kill
parasites and resolve skin lesions in cutaneous leishmaniasis.
In humans, GIPL-specific antibodies are produced in response
to infection with cutaneous leishmaniasis. Opsonization of
parasites with these antibodies was shown to promote deleterious
IL-10 production in macrophages. The role of GIPL-specific
antibodies in both mouse and humans opens the possibility of
generating a carbohydrate vaccine that can induce competing,
non-pathogenic antibody isotypes that can protect against L.
mexicana infection (Buxbaum, 2013).

CONCLUDING REMARKS

Carbohydrate vaccines represent a promising application of
glycobiology to human health. The immense successes of
bacterial CPS vaccines should, in theory, be similarly achievable
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with parasite carbohydrate vaccines. With continued advances
in parasite culture handling, and carbohydrate synthesis
technologies, it is a great time to apply the development
strategies employed for bacterial CPS vaccine research to parasite
carbohydrate vaccine research.
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