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Cerebral malaria is among the major causes of malaria-associated mortality and effective

adjunctive therapeutic strategies are currently lacking. Central pathophysiological

processes involved in the development of cerebral malaria include an imbalance

of pro- and anti-inflammatory responses to Plasmodium infection, endothelial cell

activation, and loss of blood-brain barrier integrity. However, the sequence of events,

which initiates these pathophysiological processes as well as the contribution of

their complex interplay to the development of cerebral malaria remain incompletely

understood. Several cytokines and chemokines have repeatedly been associated with

cerebral malaria severity. Increased levels of these inflammatory mediators could account

for the sequestration of leukocytes in the cerebral microvasculature present during

cerebral malaria, thereby contributing to an amplification of local inflammation and

promoting cerebral malaria pathogenesis. Herein, we highlight the current knowledge

on the contribution of cytokines and chemokines to the pathogenesis of cerebral malaria

with particular emphasis on their roles in endothelial activation and leukocyte recruitment,

as well as their implication in the progression to blood-brain barrier permeability and

neuroinflammation, in both human cerebral malaria and in the murine experimental

cerebral malaria model. A better molecular understanding of these processes could

provide the basis for evidence-based development of adjunct therapies and the definition

of diagnostic markers of disease progression.
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INTRODUCTION

Malaria is one of the most prevalent infectious diseases worldwide and contributes considerably
to the global disease burden. With ∼200 million new cases and an estimated 430,000
deaths annually (WHO, 2016), malaria remains the most important vector-borne infectious
disease. The human-adapted Plasmodium species P. falciparum and P. vivax account for the
majority of malaria cases and are transmitted by the bite of an infective Anopheles mosquito.
Despite considerable progress in malaria eradication over the past 15 years (WHO, 2016),
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efforts are hampered by emerging Plasmodium resistance to
commonly used anti-malaria drugs (Cui et al., 2015) and limited
efficacy of the currently most advanced vaccine candidate (White
et al., 2015; Olotu et al., 2016).

Among infections by human host-adapted Plasmodium
species, P. falciparum infections are most likely to progress to
organ-related pathology and severe malaria, and thereby account
for the vast majority of malaria-associated fatalities. Along with
severe anemia and respiratory distress, cerebral malaria (CM)
is one of the major manifestations of severe malaria (Haldar
et al., 2007). CM manifests with impaired consciousness and
coma in both children and adults (Idro et al., 2010), while other
clinical features differ. In addition to the characteristic diffuse
encephalopathy, retinal abnormalities are frequent in children
and less common in adults with CM (Beare et al., 2006; Idro
et al., 2010). In contrast, CM in adults is accompanied by multi-
organ disorder including renal failure and pulmonary edema,
which are less frequently observed in children suffering from
CM (Idro et al., 2010). Although anti-malaria treatment using
artesunate was reported to improve CM outcome in children
and adults (Dondorp et al., 2005, 2010), the case-fatality rate
of pediatric CM is approximately 20% (Haldar et al., 2007) and
sustained cognitive and/or neurological impairment may occur
(John et al., 2008a). Consequently, treatment strategies, which
not only target the parasite but also othermechanisms underlying
CM pathogenesis, need to be developed. Since the pathogenesis
of CM is still incompletely understood, further investigations are
an important medical research priority, especially in the context
of adjunctive therapies. Since accumulating evidence indicates
that an imbalance in pro- and anti-inflammatory immune
responses partially contributes to CM pathogenesis, such
therapeutic approaches could target cytokines and chemokines
associated with CM severity. Cytokines are polypeptides, which
mediate and generate inflammatory responses. Along with their
contribution to disease pathogenesis in general, cytokines also
exert physiological roles at lower concentrations (Clark and
Vissel, 2017). Chemokines are chemotactic cytokines, which
recruit lymphocytes and monocytes to the site of pathogen
encounter by binding to their respective chemokine receptor
(Griffith et al., 2014). Given that leukocytes were found to
sequester in the microvasculature of the brain in human CM and
murine ECM (Hunt and Grau, 2003), local chemokine gradients
may mediate leukocyte recruitment and thus promote CM
pathogenesis. Chemokines exert their function through binding
to their respective G protein-coupled chemokine receptors
(Table 1), which induces activation of phosphatidylinositol 3-
kinase (PI3K) and Rho GTPase signaling pathways, thus leading
to F-actin polymerization and migration (Viola and Luster,
2008).

In this review, we highlight findings from both experimental
murine models and natural human infections, and assess
the current knowledge on the role of host cytokine and
chemokine responses in the severe malaria complication of
cerebral malaria. We also emphasize the potential inflammatory
cascade resulting from Plasmodium life cycle progression after
sporozoite inoculation and ultimately culminating in cerebral
malaria pathology (Figure 1).

CURRENT CONCEPTS IN CEREBRAL
MALARIA PATHOGENESIS

Two central concepts to explain CM pathogenesis have evolved
and they are likely mutually dependent- the vascular occlusion
hypothesis and the inflammation hypothesis (Storm and Craig,
2014).

The concept of vascular occlusion leading to CM is based
on the ability of mature P. falciparum-infected erythrocytes
to sequester in the microvasculature through binding of
P. falciparum erythrocyte membrane protein 1 (PfEMP1)
present on the erythrocyte surface to endothelial cell surface
proteins, such as intercellular adhesion molecule 1 (ICAM-
1), vascular cell adhesion molecule 1 (VCAM-1), cluster of
differentiation 36 (CD36), or endothelial protein C receptor
(EPCR) (Pasloske and Howard, 1994; Chen et al., 2000; Rowe
et al., 2009; Smith et al., 2013; Turner et al., 2013; Lennartz et al.,
2017). Sequestration occurs in various organs and, along with
increased rigidity of erythrocytes, is believed to cause vascular
occlusion (Dondorp et al., 2004). Additionally, microvascular
obstruction during P. falciparum infection may be worsened
by the formation of rosettes and clumps (Chen et al., 2000;
Rowe et al., 2009; Adams et al., 2014), i.e., the binding of
uninfected erythrocytes by infected erythrocytes (Handunnetti
et al., 1989), and aggregation of infected erythrocytes and
platelets (Pain et al., 2001), respectively. These events may
cause a reduction in microvascular blood flow, ischemia, and
tissue hypoxia (Medana and Turner, 2006), thereby accounting
for cerebral pathology. Reduced vessel perfusion and occlusion
was indeed observed by fluorescein angiography of the retina
in pediatric CM cases (Beare et al., 2009) and by in vivo
imaging of the microcirculation in adult patients with CM or
other manifestations of severe malaria (Dondorp et al., 2008),
although further studies are needed to determine the underlying
cause of these observations. Additionally, sequestration of
P. falciparum-infected erythrocytes was observed in the cerebral
microvasculature of CM patients in post mortem brain histology
studies (Ponsford et al., 2012; Milner et al., 2014, 2015).

Despite accumulating evidence, the relevance of sequestration
in the development of CM is still incompletely understood, since
the degree of sequestration in brains of non-fatal CM cases
cannot be investigated non-invasively and is, thus, unspecified
(Miller et al., 2002). Occasionally, fatal CM cases present little
sequestration and vessel occlusion similar to non-CM severe
malaria cases (Ponsford et al., 2012). Moreover, isolated CM
cases were reported in children and adults with confirmed
P. vivaxmono-infections in India (Kochar et al., 2009), although
P. vivax is unlikely to sequester in the microvasculature
since late-stage P. vivax-infected erythrocytes are present in
peripheral blood (Anstey et al., 2009). Together, cerebral
malaria occasionally develops in a few P. vivax infections
without obvious signs of sequestration in vivo or microvascular
obstruction.

Given the unresolved role of sequestration in the pathogenesis
of CM, additional factors may determine disease severity.
Notably, other infectious diseases that result in systemic
inflammation and fever also progress to severe forms,
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TABLE 1 | Selected human and murine chemokines and their receptorsa.

Chemokine Other names Gene Receptors Key function

Human Mouse

CCL2 MCP-1

JE (mouse)

CCL2 Ccl2 CCR2 Inflammatory monocyte trafficking

CCL3 MIP-1α CCL3 Ccl3 CCR1, CCR5 Macrophage and NK cell migration, T cell-DC interactions

CCL4 MIP-1β CCL4 Ccl4 CCR5

CCL5 RANTES CCL5 Ccl5 CCR1, CCR3, CCR5

CCL11 Eotaxin CCL11 Ccl11 CCR3, CCR5 Eosinophil and basophil migration

CCL20 MIP-3α CCL20 Ccl20 CCR6 Th17 responses, B cell and DC homing

CXCL1 GROα

Gm1960 (mouse)

CXCL1 Cxcl3 CXCR2 Neutrophil trafficking

CXCL3 GROγ

KC (mouse)

CXCL3 Cxcl1 CXCR2

CXCL4 PF4 PF4 – CXCR3-B Procoagulant

CXCL4L1 PF4V1 PF4V1 Pf4 CXCR3-B

CXCL8 IL-8 IL-8 – CXCR1, CXCR2 Neutrophil trafficking

CXCL9 MIG CXCL9 Cxcl9 CXCR3 T cell and NK cell trafficking

CXCL10 IP-10 CXCL10 Cxcl10 CXCR3

aModified from Zlotnik and Yoshie (2012) and Griffith et al. (2014).

FIGURE 1 | Overview of a potential inflammatory cascade culminating in cerebral malaria pathology. Five consecutive events shape the outcome of a Plasmodium

infection and contribute to cerebral malaria. During Plasmodium infection of the mammalian host, two consecutive parasite replication phases in the liver and red

blood cells lead to distinct innate responses, which modulate downstream parasite/host cell interactions. Upon parasite accumulation in the microvasculature,

endothelial cells become activated, leading to enhanced chemokine secretion, which in turn enhances leukocyte recruitment. Acute pathology is caused by

permeabilization of the endothelial barrier. See Figures 2–6 for the central roles of chemokines and cytokines in the individual events.

including neurological complications such as sepsis-associated
encephalopathy (De Backer et al., 2002; Clark et al., 2004).
Strikingly, systemic cytokine levels have been described to
correlate with disease severity in malaria as well as sepsis
(Prakash et al., 2006; Bozza et al., 2007). These findings
corroborate an earlier proposal that an imbalance in pro- and
anti-inflammatory immune responses triggers immune-induced
pathology and might be a leading cause of CM pathogenesis,
which may be further amplified by sequestration (Clark and
Rockett, 1994). In addition to inflammation and sequestration,
CM is associated with endothelial activation and increased
blood-brain barrier permeability, and these processes might act
reciprocally and have synergistic effects (van der Heyde et al.,
2006). In line with this notion, certain PfEMP1 variants, which
are associated with CM, were described to compete with activated
protein C in binding to EPCR (Turner et al., 2013; Bernabeu
et al., 2016). Therefore, the anti-coagulant, anti-inflammatory,

cytoprotective properties, which are induced upon interaction
of protein C with EPCR, might be impeded by PfEMP1-EPCR

interaction and consequently, disease mechanisms may be
further exacerbated (Bernabeu and Smith, 2017; Wassmer and
Grau, 2017). However, the impact of the interaction between

PfEMP1 and EPCR on inflammation and coagulation remains
to be demonstrated.

Insights into the mechanisms underlying CM in humans are
limited and mostly based on post mortem histopathology or
correlations of serum parameters with disease outcome (Hunt
and Grau, 2003). Despite potential differences in human and
murine CM pathogenesis (Riley et al., 2010; Craig et al., 2012),
P. berghei (strain ANKA) infection reliably causes signature
symptoms of CM in susceptible C57BL/6 mice (de Souza
and Riley, 2002; Hunt and Grau, 2003). This host-parasite
combination is a widely used and well-established murine model
for CM, termed experimental cerebral malaria (ECM), which
permits mechanistic studies (Craig et al., 2012). Consequently,
studies highlighted in this review include reports on human
cerebral malaria cases combined with mechanistic insights based
on the murine ECMmodel and in vitro studies.

INNATE IMMUNE ACTIVATION DURING
LIVER STAGE DEVELOPMENT

Upon transmission by the bite of an infective Anopheles
mosquito, Plasmodium sporozoites rapidly migrate to the liver,
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invade hepatocytes and develop into thousands of merozoites.
Since this developmental stage of Plasmodium parasites is
clinically silent, the immune response mounted by the host in
order to limit parasite expansion during liver stage development
remains largely unexplored (Hafalla et al., 2011). However, it
seems likely that sporozoite and liver stage recognition primes
the innate immune system locally and well below the pyrogenic
threshold. In fact, innate immune cells have occasionally been
observed to surround P. berghei-infected hepatocytes, indicating
that Plasmodium does not remain undetected during liver stage
development (Liehl and Mota, 2012). Additionally, a type I
interferon (IFN) response is induced in livers of mice infected
with P. yoelii or P. berghei (Liehl et al., 2014; Miller et al., 2014).
Such an initial type I IFN response might induce chemokines,
including IFN-γ-inducible protein 10 (IP-10)/CXCL10, which in
turn could recruit cells expressing the corresponding chemokine
receptor CXCR3, such as T, natural killer (NK), and NKT cells,
to the site of infection, which might contribute to the local
immune response by IFN-γ secretion (Figure 2; Liehl et al.,
2014; Miller et al., 2014). In good agreement, an increase in
IFN-γ plasma concentration prior to onset of detectable blood-
stage infection was reported in controlled human P. falciparum
infection (Hermsen et al., 2003). Clearly, the initial cytokine
response fails to arrest liver stage development and, thus, does
not curtail the proceeding to erythrocyte infection. Interestingly,
P. berghei sporozoite and blood stage infections result in ECM
symptoms in a similar time frame (Kordes et al., 2011), suggesting
that immune responses against liver stages might not modulate
CM pathogenesis. Whether this first immune response reduces

FIGURE 2 | Innate immune response to Plasmodium liver stage infection.

Plasmodium infection of hepatocytes activates interferon regulatory factors

(IRF), which induce transcription of type I interferons (IFN) IFNα and IFNβ.

Secretion of type I IFNs activates IFNα/β receptor IFNAR in an autocrine or

paracrine manner. IFNAR signaling results in transcription of IFN-stimulated

genes (ISGs), which includes chemokines, such as CXCL9 and CXCL10. Upon

secretion from hepatocytes, these chemokines might recruit cells expressing

the corresponding chemokine receptor CXCR3, including natural killer (NK), T,

and NKT cells. Upon activation by type I IFN at the site of infection, these cell

types could contribute to limiting Plasmodium liver stage expansion by IFN-γ

secretion. Based on Liehl et al. (2014) and Miller et al. (2014).

the initial parasite number released into the blood stream and
thereby influences the magnitude of early blood stage-induced
immune responses remains to be tested.

BLOOD STAGE-INDUCED INNATE
IMMUNE RESPONSES

Concomitant with the release of merozoites into the bloodstream
and infection of erythrocytes, a Plasmodium infection progresses
from the clinically silent liver stage to the symptomatic blood
stage. Merozoites are only very briefly (∼60 s) exposed to
the immune system before they rapidly enter new erythrocytes
(Gilson and Crabb, 2009; Beeson et al., 2016), and blood
stage infection is the exclusive cause of malaria symptoms,
which is associated with systemic inflammation and fever.
Fever is a common and effective host defense against microbial
pathogens and swiftly initiated upon the first host-pathogen
interaction. The febrile response is likely triggered through
a universal mechanism, in which pyrogens, such as the pro-
inflammatory cytokines interleukin 1α (IL-1α), IL-1β, IL-6, or
tumor necrosis factor (TNF), are secreted by innate immune
cells upon recognition of pathogen-associatedmolecular patterns
(PAMPs) or host-derived danger-associated molecular patterns
(DAMPs) by pattern recognition receptors (PRRs) (Evans et al.,
2015). In Plasmodium infection, the characteristic recurrent fever
coincides with synchronized rupture of infected erythrocytes in
the schizont stage (Oakley et al., 2011). Release of parasite- and
host-derived molecules due to erythrocyte rupture was described
to induce TNF in vitro (Kwiatkowski et al., 1989; Bate and
Kwiatkowski, 1994), and peaks in TNF serum concentration were
found to coincide with elevated body temperature during P. vivax
infection (Karunaweera et al., 1992), indicating that malaria
fever is elicited by repeated release of PAMPs and DAMPs.
Although an increase in core body temperature is associated
with resolution of infection (Oakley et al., 2011), such a pro-
inflammatory immune response needs to be counterbalanced by
anti-inflammatory mechanisms in order to avoid a dysregulated
immune response, which might lead to complications such as
cerebral malaria.

The innate immune system represents the first line of defense
against pathogens and mediates recognition and clearance of
Plasmodium parasites (Figure 3). Cells of the innate immune
system such as macrophages and dendritic cells (DCs) as well
as non-professional immune cells such as endothelial cells and
fibroblasts express PRR. These include Toll-like receptors (TLR),
C-type lectin receptors (CLR), Retinoic acid-inducible gene
(RIG)-I-like receptors, and NOD-like receptors (NLR), which
recognize PAMPs and host-derived DAMPs (Takeuchi and Akira,
2010). Most malaria PAMPs and DAMPs known so far are
apparently recognized by TLR. Activation of TLR initiates a
signaling cascade including the adaptor protein MyD88 and
the transcription factors NF-κB, AP-1, and interferon regulatory
factor (IRF). As a consequence, expression of genes encoding
pro-inflammatory cytokines such as type I IFN, IFN-γ, IL-6, IL-
12, and TNF, is induced (Eriksson et al., 2013; Gazzinelli et al.,
2014).
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FIGURE 3 | Innate immune response to Plasmodium blood stage infection in

the spleen. Macrophages as well as dendritic cells (DC) remove infected

erythrocytes from the circulation by phagocytosis. In macrophages, uptake of

infected erythrocytes might not lead to secretion of pro-inflammatory cytokines

due to phagosomal acidification (Wu et al., 2015). Upon rupture of infected

erythrocytes, pathogen-associated molecular patterns (PAMPs) and

danger-associated molecular patterns (DAMPs) are released, including

microvesicles, hemozoin, and glycosylphosphatidylinositols (GPI). These

potential PAMPs and DAMPs might be recognized by DC through pattern

recognition receptors, resulting in the secretion of interleukin 12 (IL-12), tumor

necrosis factor (TNF), and IL-6 (Wu et al., 2015). DC-derived IL-12 might

activate natural killer (NK) cells, which in turn secrete interferon γ (IFN-γ) and

could thereby activate macrophages (Stevenson and Riley, 2004).

Several Plasmodium-derived molecules have been recognized
as malaria PAMPs based on their ability to induce cytokine
responses in vitro (Figure 3). One of the candidate malaria
PAMPs are glycosylphosphatidylinositols (GPI). Although GPI
are present in all eukaryotic cells where they serve as membrane
anchors for certain cell surface proteins, Plasmodium GPI
are structurally distinct from human GPI (Gowda, 2007).
Consequently, Plasmodium GPI moieties may be recognized
by the host immune system. Indeed, P. falciparum GPI were
reported to induce the pro-inflammatory cytokines TNF and IL-
1β in murine macrophages in vitro (Schofield and Hackett, 1993;
Tachado et al., 1996). Moreover, purified GPI immobilized on
gold particles elicited pronounced TNF responses from murine
macrophages in vitro (Krishnegowda et al., 2005; Zhu et al.,
2009, 2011), which was attributed to recognition of P. falciparum
GPI through TLR2 or heterodimers of TLR2/1 and TLR2/6
(Krishnegowda et al., 2005; Zhu et al., 2011). However, given
that TLR-deficiency did not impair immune responses elicited by
P. berghei ANKA in vivo and did not protect mice from ECM
(Togbe et al., 2007; Lepenies et al., 2008), the mechanism of
GPI-induced innate immune activation in vivo remains to be
determined.

Another potential malaria PAMP is hemozoin, an insoluble
polymer formed inside the digestive vacuole to detoxify heme
and its conjugated redox-active iron, which is released during
hemoglobin proteolysis (Francis et al., 1997; Sigala and Goldberg,
2014). Hemozoin becomes accessible during erythrocyte rupture
and upon phagocytosis of infected erythrocytes, and has been

described to induce expression of pro-inflammatory cytokines,
such as TNF and IL-1β, as well as chemokines from human
monocytes, murine macrophages (Olivier et al., 2014), and
human monocyte-derived DCs (Bujila et al., 2016). Hemozoin
or hemozoin-bound nucleic acids are recognized by endosomal
TLR9 (Coban et al., 2005; Parroche et al., 2007), cytoplasmic
inflammasomes, or cytoplasmic sensors (Kalantari et al., 2014).
However, it remains unresolved whether hemozoin itself or
molecules bound to hemozoin, such as DNA, activate TLR9
(Liehl andMota, 2012). In fact, the AT-rich Plasmodium genomic
DNA, a feature shared bymany pathogens including Schistosoma,
was described to be immunomodulatory in vitro, but this
response is apparently TLR9-independent (McCutchan et al.,
1984; Sharma et al., 2011).

In addition to inducing pro-inflammatory responses,
recognition of parasites and Plasmodium-infected erythrocytes
is crucial for the phagocytic uptake and thus removal of parasites
from the circulation by macrophages and DCs (McGilvray
et al., 2000; Stevenson and Riley, 2004; Figure 3). Interestingly,
although macrophages and DCs may both contribute to early
pro-inflammatory cytokine responses via activation of PRR-
mediated signaling, a recent study suggests that macrophage
responsiveness is strongly compromised upon phagocytosis
of P. falciparum- or P. berghei-infected erythrocytes or free
merozoites due to pronounced phagosomal acidification (Wu
et al., 2015). Instead, DCs contribute to increased serum levels
of pro-inflammatory cytokines early during P. berghei infection,
including IL-6, IL-12p40, and TNF (Wu et al., 2015).

Apart from parasite-derived stimuli, host-derived DAMPs
such as urate crystals, heme, and microvesicles released
from damaged host cells may activate the innate immune
system, although so far this has only been demonstrated for
microvesicles (Gazzinelli et al., 2014). Plasmodium falciparum-
infected erythrocyte-derived microvesicles have been reported
to induce TNF and IL-10 from monocyte-derived human
macrophages in vitro, potentially through phagocytic uptake of
microvesicles (Mantel et al., 2013). In line with this observation,
plasma microparticles derived from P. berghei -infected mice
stimulated bone marrow-derived macrophages to secrete TNF in
vitro, and TNF induction was reported to be TLR4-dependent
(Couper et al., 2010). In humans, increased numbers of plasma
microparticles have been detected during P. falciparum and
P. vivax infection, and microparticle numbers were higher in
severe malaria cases, including CM, than in uncomplicated
P. falciparum infections (Campos et al., 2010; Nantakomol
et al., 2011; Sahu et al., 2013). Furthermore, two studies point
toward infection-induced alterations in the microvesicle cargo,
suggesting that not only microvesicle frequency but also content
are relevant in inducing pro-inflammatory responses (Couper
et al., 2010; Tiberti et al., 2016). Together, these studies indicate
that microvesicles might contribute to CM pathogenesis and
to other manifestations of severe malaria, and the association
with pro-inflammatory immune responses warrants further
investigations.

Although parasite-derived stimuli have been repeatedly
reported to induce pro-inflammatory responses, the real
qualitative and quantitative nature of the stimuli remains
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inadequately understood and may point toward a complex
synergistic effect of multiple stimuli. Pro-inflammatory cytokines
such as TNF, IL-1α (Kwiatkowski et al., 1990; Tchinda et al.,
2007), IFN-γ and IL-12p40 (Hermsen et al., 2003), as well
as chemokines, including IL-8/CXCL8 (Hermsen et al., 2003),
platelet factor 4 (PF4)/CXCL4, and IP-10/CXCL10 (Wilson et al.,
2011), are clearly elevated during P. falciparum infection. Several
cytokines and chemokines, including TNF and CXCL10, have
been found to be associated with CM severity (Kwiatkowski et al.,
1990;Wilson et al., 2011), while a more recent study reported that
neither plasma nor cerebrospinal fluid (CSF) TNF concentration
were indicative of CM-associated mortality, yet elevated levels
of TNF in CSF of pediatric CM cases were associated with
long-term neurologic and cognitive deficits (Shabani et al.,
2017). Consequently, it remains to be conclusively determined
which cytokines and/or chemokines present suitable prognostic
signatures of disease progression.

While many early studies focused on the identification of
single inflammatory cytokines critically involved in malaria
pathology, it is likely that numerous immune players are
modulated during the course of a Plasmodium infection -
sequentially and/or simultaneously. Accordingly, it is conceivable
that a complex interplay of immune mediators contributes to
the development of severe malaria in general, and to CM
pathogenesis in particular. Several studies have addressed this
issue by systematically analyzing pro- and anti-inflammatory
markers. Since these studies included patients from different
study sites of varying age and at various time points of infection,
the cytokines identified to be associated with disease severity
varied substantially, and the combination of selected analytes was
heterogenous between studies (Prakash et al., 2006; Jain et al.,
2008; Thuma et al., 2011). An early study reported two clusters of
cytokines associated with mild and cerebral malaria, respectively,
in P. falciparum-infected adults (Prakash et al., 2006). According
to this study, IFN-γ, IL-2, IL-5, IL-6 and IL-12 were increased
in mild malaria whereas TGF-β, TNF, IL-10 and IL-1β were
particularly elevated in CM. In a study cohort of P. falciparum-
infected children and adults, serum TNF levels did not correlate
with disease severity, and instead IP-10/CXCL10, sTNF-R2, and
sFas were proposed as biomarkers of CM severity and mortality
(Jain et al., 2008). Additional cytokines were elevated in malaria
cases compared to healthy controls and included IL-1ra, IL-10,
IL-8/CXCL8, and macrophage inflammatory protein 1β (MIP-
1β)/CCL4 (Jain et al., 2008). In two cohorts of P. falciparum-
infected children, TNF concentration was slightly, albeit non-
significantly, elevated in CM compared to severe anemia cases
(Thuma et al., 2011; Mandala et al., 2017). In the study by Thuma
et al. (2011) conducted in Zambia, IL-10, IL-1α, IL-6, and IP-
10/CXCL10 plasma levels were higher in children suffering from
CM than in children with severe anemia (Thuma et al., 2011).
In line with these findings, Mandala et al. (2017) found higher
IL-10 and IL-6 serum levels in Malawian children suffering from
CM compared to those with severe anemia, while IFN-γ and
IL-8/CXCL-8 were also elevated in pediatric CM cases.

In summary, cytokine profiling continues to aid in identifying
distinct patterns of pro- and anti-inflammatory cytokines
and chemokines in CM patients. Although a common

cytokine/chemokine signature associated with CM severity
has not yet been identified, which is in part due to the fact that
the combination of markers investigated varies among studies,
collectively, these studies point toward important roles for certain
immunoregulatory molecules in modulating CM severity. In
order to describe how inflammatory mediators associated with
Plasmodium infection may contribute to CM pathogenesis, we
will highlight their roles in endothelial activation, blood-brain
barrier permeability, and neuroinflammation, by drawing on
findings obtained from in vitro studies and the murine ECM
model.

INFLAMMATION AND ENDOTHELIAL
ACTIVATION

Functions of healthy endothelium include anti-coagulant
properties through inhibiting platelet adhesion and aggregation,
regulation of blood flow by releasing nitric oxide, controlling
endothelial permeability, preventing extravasation of plasma
proteins to tissue, and preventing leukocyte adhesion through
suppressing adhesion molecule expression and sequestering
chemokines within Weibel-Palade-bodies (Pober and Sessa,
2007). Under inflammatory conditions such as systemic
inflammation during Plasmodium infection, endothelial
activation may seriously impair endothelial function (Figure 4).
A hallmark of endothelial activation is the expression of adhesion
molecules such as VCAM-1 and ICAM-1 on the endothelial
cell surface. Systemic endothelial activation was reported in
P. falciparum-infected and in sepsis patients based on plasma
levels of soluble adhesion molecules (Turner et al., 1998).
Moreover, immunohistochemical analysis of fatal P. falciparum
-infected CM cases revealed that expression of ICAM-1 was

FIGURE 4 | Endothelial activation and chemokine secretion. A characteristic

feature of Plasmodium infection is endothelial activation, which is likely induced

by elevated serum tumor necrosis factor (TNF) levels. Binding of TNF to its

receptor (TNFR1) induces transcription of adhesion molecules, including

ICAM-1 and VCAM-1, as well as chemokines (Pober and Sessa, 2007).

Endothelial activation might be directly induced by infected erythrocytes,

possibly through activation of pattern recognition receptors (PRR), resulting in

elevated expression of ICAM-1 and chemokine secretion (Viebig et al., 2005;

Tripathi et al., 2006, 2009; Chakravorty et al., 2007).
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most pronounced in the brain microvasculature compared to
other organs and biopsies from non-malaria cases (Turner et al.,
1994). In good agreement, ICAM-1 staining was described to
be more pronounced on brain endothelial cells from P. berghei
(strain ANKA)-infected mice during ECM than in those
isolated from P. yoelii-infected (non-ECM) mice (Grau et al.,
1991). Accordingly, Icam1-deficiency protected mice from
P. berghei-induced ECM (Favre et al., 1999). Considering
that adhesion molecules are thought to promote binding of
infected erythrocytes and leukocytes to endothelial cells, and that
human as well as murine CM is associated with intravascular
accumulation of leukocytes in the brain (Hunt and Grau, 2003),
these findings signify a critical role for endothelial activation in
CM pathogenesis.

Among other factors, endothelial activation may be induced
by inflammatory cytokines. TNF and lymphotoxin α (LTα)
activate human endothelial cells in vitro (Cavender et al., 1989;
Pober and Cotran, 1990). Similarly, IFN-γ, IL-1α, and IL-1β
function in endothelial activation (Pober and Cotran, 1990; Bauer
et al., 2002). These pro-inflammatory cytokines have been found
to be elevated in serum or plasma of P. falciparum-infected
patients and TNF as well as IL-1α and IL-1β were described
to be associated with CM severity (Prakash et al., 2006; Thuma
et al., 2011). Consequently, endothelial activation observed in
P. falciparum infection might in part be mediated by these
cytokines. In accordance with a proposed role for endothelial
activation in CM, the pathology observed in murine ECM is
associated with a T helper 1 (Th 1) immune response, and
cytokines, such as IFN-γ, TNF, and LTα, and immune cells, e.g.,
CD4+ and CD8+ T cells together with NK cells are involved
in ECM (Yanez et al., 1996; Lucas et al., 1997; Engwerda et al.,
2002; Hunt andGrau, 2003; Schofield andGrau, 2005; Langhorne
et al., 2008). Of note, despite an association of TNF with disease
severity in CM, Tnf -deficient mice were not protected from
ECM (Engwerda et al., 2002), and blocking of TNF by anti-
TNF antibodies or pentoxifylline did not improve survival in
human CM (Di Perri et al., 1995; van Hensbroek et al., 1996).
Consequently, blocking TNF was demonstrated to be insufficient
to prevent fatal CM, and, therefore, additional mechanisms are
likely to critically contribute to CM pathogenesis. Moreover,
these early therapeutic interventions highlight the complexity of
this malaria syndrome, indicating that single serum cytokines
associated with CM severity do not necessarily translate
into therapeutic approaches. Notably, elevated serum TNF in
particular may represent a secondary immune response, which
might further amplify severity while not being critical in
initiating CM pathogenesis.

Apart from the induction of endothelial activation by pro-
inflammatory cytokines, endothelial cells are an important part
of the innate immune response since they recognize PAMPs
through expression of PRR such as TLR and NLR. Endothelial
cells were found to secrete pro-inflammatory cytokines,
including IL-1α, IL-1β, or IL-6, as well as immunomodulatory
cytokines, namely IL-10 and TGF-β, and chemokines,
e.g., monocyte chemoattractant protein 1 (MCP-1)/CCL2,
RANTES/CCL5, and IL-8/CXCL8, upon stimulation by pro-
inflammatory cytokines or lipopolysaccharide (LPS) in vitro

(Mai et al., 2013). Notably, microvascular endothelial cells
derived from subcutaneous adipose tissue of patients with
uncomplicated malaria and fatal CM were demonstrated to
differ in their endothelial inflammatory response to TNF
stimulation ex vivo in that MCP-1/CCL2 and IL-6 were induced
to a larger extent in endothelial cells derived from CM patients.
Consequently, it was proposed that inter-individual differences
in the endothelial response to inflammation might account for
CM severity (Wassmer et al., 2011). These results support the
notion that the pro-inflammatory microvascular environment
during P. falciparum infection might be enhanced by endothelial
cells. Interestingly, human brain microvascular endothelial cells
have been described to phagocytose P. berghei merozoites in
vitro (Howland et al., 2015b). Furthermore, upon co-culture with
P. falciparum-infected erythrocytes, human endothelial cell lines
were reported to upregulate ICAM-1 expression (Viebig et al.,
2005; Tripathi et al., 2006), to increase transcription of CCL20,
CXCL1, CXCL2, CXCL8, and IL6 (Tripathi et al., 2009), and to
secrete MCP-1/CCL2, MIP-3α/CCL20, and IL-8/CXCL8 (Viebig
et al., 2005; Chakravorty et al., 2007) (Figure 4). Together, these
in vitro observations suggest that endothelial cells are potentially
directly involved in the immune response to Plasmodium
infection. Since leukocyte sequestration in the microvasculature
of the brain was described in human CM andmurine ECM (Hunt
and Grau, 2003), local chemokine gradients originating from
brain endothelial cells might orchestrate leukocyte migration
and thus promote local inflammation, thereby contributing to
the development of CM.

Although the extent of the contribution of endothelial cell-
derived chemokines in the process of leukocyte accumulation
in brains of patients suffering from CM and of ECM mice
remains to be established, a number of clinical studies reported
that several chemokines are elevated in serum and CSF
of CM patients, thereby providing a potential link between
serum or CSF chemokine levels and progression from mild
malaria to CM. Chemokines that were elevated in human
CM cases included MCP-1/CCL2, MIP-1β/CCL4, PF4/CXCL4,
IL-8/CXCL8, and IP-10/CXCL10 (Jain et al., 2008; Wilson
et al., 2011). Particularly, MCP-1/CCL2, Eotaxin/CCL11, and IP-
10/CXLC10 were reported to be indicative of disease severity
(Armah et al., 2007; Jain et al., 2008; Thuma et al., 2011;
Wilson et al., 2011). Moreover, post mortem MIP-1β/CCL4, IL-
8/CXCL8, and IP-10/CXCL10 levels were significantly elevated
in cerebrospinal fluid (CSF) of fatal P. falciparum-induced CM
cases when compared to fatal severe malarial anemia cases and
non-malaria deaths (Armah et al., 2007). In another study,
IL-8/CXCL8 was elevated in CSF of non-fatal CM cases of
P. falciparum-infected children (John et al., 2008b), while MCP-
1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5
levels were comparable to malaria-free controls. The relevance
of certain chemokines in cerebral malaria pathogenesis was
demonstrated in the murine ECM model, in which Cxcl4-,
Cxcl9-, or Cxcl10-deficiency resulted in reduced ECM-associated
mortality (Campanella et al., 2008; Srivastava et al., 2008; Nie
et al., 2009). Notably, PF4/CXCL4 was elevated in plasma of
P. berghei ANKA-infected mice and demonstrated to induce
TNF secretion from peritoneal macrophages and T cells in vitro,
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and Cxcl4-deficiency resulted in reduced serum TNF and IFN-
γ levels during P. berghei ANKA-infection (Srivastava et al.,
2008), indicating that PF4/CXCL4 contributes to establishing
a pro-inflammatory environment, which might amplify further
immune responses and could thereby promote CM pathogenesis.
Furthermore, protection from ECM in Cxcl10-deficient mice was
associated with a decrease in leukocyte sequestration in brains of
P. berghei ANKA-infected mice, while parasite-specific CXCR3+

T cells were increased in spleens of Cxcl10-deficient compared
to WT mice (Nie et al., 2009), suggesting that IP-10/CXCL10-
mediated recruitment of CXCR3+ T cells to the brain might
contribute to the development of ECM. A similar phenomenon
might account for a decrease in ECM-associated mortality
described for Cxcl9-deficient mice (Campanella et al., 2008),
since recruitment of CXCR3-expressing cells can also be initiated
by monokine induced by IFN-γ (MIG)/CXCL9. However, the
precise mechanism by which MIG/CXCL9 contributes to ECM
pathogenesis is yet to be determined. Apart from studies using
specific gene deletions, chemokine transcripts were found to
be induced to a higher extent in brains of ECM- compared
to non-ECM mice. These transcripts included Ccl2, Ccl3, Ccl4,
Ccl5, Cxcl1, Cxcl9, and Cxcl10 (Miu et al., 2008; Van den
Steen et al., 2008), supporting the finding that apart from NK
and T cells, monocytes and neutrophils also sequester in the
microvasculature (Renia et al., 2012), e.g., through recruitment
by MCP-1/CCL2 and keratinocyte chemoattractant (KC)/Cxcl1,
respectively. Nevertheless, studies to identify the cell types
producing these chemokines in the brain are very limited.
For instance, CXCL9 was demonstrated to be expressed by
endothelial cells, while the source(s) of CXCL10 in the brain
during P. berghei infection remain to be conclusively determined,
and could include neurons, astrocytes, or endothelial cells
(Campanella et al., 2008; Miu et al., 2008) as well as recruited
monocytes (Ioannidis et al., 2016).

Together, activated endothelial cells likely contribute to local
inflammation by secreting cytokines and chemokines, thereby
recruiting leukocytes, including monocytes, macrophages,
neutrophils and T cells, which accumulate in brains of mice and
humans during ECM and CM, respectively (Renia et al., 2012;
Storm and Craig, 2014). Since these cell types might secrete
cytokines and chemokines themselves, local inflammation and
endothelial activation could be further exacerbated (Figure 5).
For instance, potential endothelial cell-induced recruitment
of neutrophils and monocytes expressing IP-10/CXCL10 may
promote further recruitment of CXCR3+ cells such as NK and T
cells to the brain (Ioannidis et al., 2016).

ENDOTHELIAL ACTIVATION AND
BLOOD-BRAIN BARRIER INTEGRITY

The blood-brain barrier is comprised of endothelial cells forming
a continuous barrier through tight junctions, a basement
membrane and astrocytes, which are in direct contact with
neurons and microglia. This composition is critical to minimize
local inflammation and neuronal damage (Obermeier et al.,
2013). In the course of Plasmodium infection, endothelial

FIGURE 5 | Chemokine-mediated leukocyte recruitment and progression of

local inflammation. As a consequence of endothelial activation by

pro-inflammatory cytokines, such as TNF, and infected erythrocytes,

chemokines are secreted from endothelial cells, which initiate recruitment of

leukocytes expressing the respective chemokine receptors, including

macrophages, monocytes, neutrophils, and T cell. These cell types were also

found to sequester in the microvasculature during human CM as well as

murine ECM (Hunt and Grau, 2003; Renia et al., 2012). Upon arrival at the site

of the inflammatory insult, these leukocyte subsets may in turn secrete

cytokines as well as chemokines, thereby further promoting endothelial

activation and leukocyte recruitment. Thus, a feed-forward loop is initiated

which exacerbates local inflammation in the brain.

activation may progress to vascular permeability and loss of
blood-brain barrier integrity, as indicated by hemorrhages in
brains of CM patients and extravasation of dyes or antibodies
into the brain parenchyma in ECM (Renia et al., 2012). Although
the extent of pathological events related to blood-brain barrier
function in human CM is variable, dysfunction of the blood-
brain barrier appears to be associated with progression of
cerebral disease (Medana and Turner, 2006). Histology of brain
sections from fatal human CM cases revealed a redistribution
of the tight junction proteins occludin, vinculin, and zonula
occludens 1 (ZO-1), which are central to blood-brain barrier
integrity (Brown et al., 1999). Moreover, immunohistochemistry
of brain sections derived from pediatric fatal CM cases indicated
blood-brain barrier impairment in areas containing sequestered
P. falciparum-infected erythrocytes, where they were associated
with focal loss of endothelial intercellular junctions (Brown
et al., 2001). Additionally, in vitro studies have demonstrated a
decrease in endothelial resistance upon addition of P. falciparum-
infected erythrocytes to endothelial cells (Tripathi et al., 2007;
Jambou et al., 2010). This model, however, only partially reflects
the response at the blood-brain barrier due to lack of barrier
components such as astrocytes and pericytes (Medana and
Turner, 2007).

Interestingly, MCP-1/CCL2 induces redistribution of tight
junction proteins and increases endothelial permeability in vitro
(Stamatovic et al., 2003; Song and Pachter, 2004; Yao and
Tsirka, 2011). Thus, chemokinesmay contribute to organ-specific
inflammation by inducing signals that promote endothelial
permeability (Figure 6). The roles of the respective chemokine
receptors are less clear in this context. This is exemplified in the
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FIGURE 6 | Endothelial permeability and neuroinflammation. Through

continued inflammatory insults toward endothelial cells by, for instance,

circulating tumor necrosis factor (TNF) and interferon γ (IFN-γ), miR-155 might

be upregulated in endothelial cells. Along with uptake of miR-451a from

P. falciparum-infected erythrocyte-derived extracellular vesicles, reorganization

of tight junction proteins such as zonula occludens 1 (ZO-1) is induced and

could contribute to endothelial permeability during cerebral malaria

(Lopez-Ramirez et al., 2014; Mantel et al., 2016). Additionally, chemokine

receptors might induce redistribution of tight junction proteins in a G

protein-dependent manner (Stamatovic et al., 2003; Song and Pachter, 2004;

Yao and Tsirka, 2011), while the contribution of chemokine-induced opening of

tight junctions is less clear in the context of cerebral malaria. CD8+ T

cell-mediated cytotoxity toward endothelial cells through recognition of

parasite antigen presented on MHC class I molecules on endothelial cells likely

contributes substantially to blood-brain barrier permeability during cerebral

malaria (Howland et al., 2015a,b). Consequently, pro-inflammatory cytokines

enter the brain parenchyma and could thereby activate astrocytes and

microglia, which in turn could secrete chemokines (Capuccini et al., 2016) and

thus promote leukocyte recruitment and local inflammation.

MCP-1/CCL2 receptor CCR2. Ccr2-deficiency abrogated CCL2-
induced endothelial permeability in vitro (Stamatovic et al.,
2003), but did not protect against ECM (Belnoue et al., 2003),
indicating that other chemokines and/or additional mechanisms
induce blood-brain barrier permeability.

Along with the observed redistribution of endothelial tight
junction proteins and loss of intercellular junctions, growing
evidence from the murine ECM model suggests that CD8+

T cells are primary mediators in CM disease pathogenesis by
contributing considerably to the loss of blood-brain barrier
integrity (Howland et al., 2015a). Indeed, the accumulation of
CD8+ T cells in brains of P. bergheiANKA-infected mice appears
to be critical for the development of ECM (Villegas-Mendez
et al., 2012), and blood-brain barrier disruption was proposed to
be a consequence of CD8+ T cell-mediated cytotoxicity toward
endothelial cells cross-presenting parasite antigen (Howland
et al., 2015b) (Figure 6). Recruitment of CD8+ T cells to the

brain of infected mice has been described to be partly mediated
by expression of the chemokine receptor CXCR3 and its IFN-γ-
inducible ligands MIG/CXCL9 as well as IP-10/CXCL10 (Hansen
et al., 2007; Villegas-Mendez et al., 2012). Indeed, NK cell-derived
IFN-γ has been demonstrated to be crucial for the induction of
CXCR3 expression on T cells and subsequent T-cell migration
to the brain of P. berghei ANKA-infected mice (Hansen et al.,
2007). In line with these findings, brain transcripts of Cxcr3
were reduced in mice deficient for IFN-γR1 in comparison to
wild type mice infected with P. berghei ANKA. Additionally,
while expression of MIG/CXCL9 and IP-10/CXCL10 is induced
in brains of P. berghei ANKA-infected wild type mice, expression
levels of these chemokines in Ifngr1-deficient mice were similar
to those of uninfected mice (Palomo et al., 2013). Collectively,
these findings suggest that IFN-γ-induced signaling is crucial for
chemokine-mediated leukocyte recruitment to the brain during
ECM, while it remains to be established to which extent activated
endothelium might contribute to this chemokine response.

Importantly, Cxcr3-deficient mice were less likely to succumb
to ECM (Campanella et al., 2008; Miu et al., 2008), and numbers
of CD4+ and CD8+ T cells in brains of Cxcr3-deficient mice
were reported to be reduced compared to wild type mice
during P. berghei ANKA infection. However, the extent of
CD8+ T cell recruitment was similar in Cxcr3-deficient mice
which were either resistant or susceptible to ECM (Miu et al.,
2008). These results indicate that the quantity of CD8+ T
cells in brains of P. berghei ANKA-infected mice is not critical
for the development of ECM. Rather, additional aspects such
as CD8+ T-cell specificity toward parasite antigen presented
on endothelium, expression levels of key cytotoxic effector
molecules perforin and granzyme B by CD8+ T cells, and
localization of these CD8+ T cells within the brain might play
a substantial role in the development of ECM (Miu et al., 2008;
Haque et al., 2011; Howland et al., 2015b; Huggins et al., 2017).
Nevertheless, it remains to be determined why susceptibility to
ECM among Cxcr3-deficient mice is variable. Moreover, these
findings indicate that additional mechanisms other than CD8+

T cell-mediated cytotoxicity might be involved in the loss of
blood-brain barrier integrity.

In fact, in addition to CD8+ T cells and chemokines,
extracellular vesicles derived from P. falciparum-infected
erythrocytes were recently implicated in blood-brain barrier
permeability in vitro (Mantel et al., 2016; Figure 6). These
extracellular vesicles contained miRNA miR-451a, which,
upon endocytosis by endothelial cells, correlated with
reduced endothelial caveolin-1 expression. Interestingly, MCP-
1/CCL2-induced redistribution of tight junction proteins and
concomitant endothelial permeability (Stamatovic et al., 2003)
was also accompanied by a decrease in caveolin-1 protein (Song
and Pachter, 2004), thus pointing toward a common underlying
mechanism in the induction of endothelial permeability by CCL2
and extracellular vesicles derived from P. falciparum-infected
erythrocytes. Since sequestration of infected erythrocytes in the
microvasculature is likely promoted by expression of adhesion
molecules upon endothelial activation, locally increased release
of P. falciparum-infected erythrocyte-derived extracellular
vesicles carrying miRNA miR-451a might be an additional
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mechanism involved in blood-brain barrier permeability in
CM.

In addition to miR-451a, another miRNA, miR-155, was
implicated in inflammation-associated blood-brain barrier
permeability. Upon stimulation of human brain endothelial
cells with pro-inflammatory cytokines TNF and IFN-γ in vitro,
miR-155 was found to be upregulated. The tight junction protein
claudin-1 was reported to be among the candidate targets of
miR-155, and cytokine stimulation or miR-155 overexpression
resulted in reorganization of the tight junction protein ZO-1
along with increased endothelial permeability (Lopez-Ramirez
et al., 2014), indicating that cytokines such as TNF and IFN-γ
might directly contribute to blood-brain barrier permeability
through induction of regulatory miRNAs. Interestingly, levels of
miR-155 were recently reported to be elevated in extracellular
vesicles in the circulation of P. berghei ANKA-infected mice,
and miR-155-deficiency resulted in preservation of blood-brain
barrier integrity and reduced ECM-associated mortality (Barker
et al., 2017). Notably, plasma concentrations of IL-6, IFN-γ,
and MCP-1/CCL2 were significantly elevated in P. berghei
ANKA-infected miR-155-deficient compared to wild type mice
in this study, suggesting that miR-155 might have additional
targets other than tight junction proteins. Importantly, whether
miR-155-carrying extracellular vesicles are derived from
activated endothelium, and their impact on tight junction
reorganization in the context of ECM, remain to be determined.
Nevertheless, inhibition of the function of miR-155 might
present a useful target for therapeutic approaches (Barker et al.,
2017). These processes of chemokine induction, microvascular
sequestration of infected erythrocytes and leukocytes, and
release of extracellular vesicles carrying regulatory miRNAs are
most likely not exclusive to the brain. However, endothelial
permeability is likely more detrimental in the brain than in other
organs and, hence, cerebral malaria may be the most severe
manifestation of these processes. Additionally, brain endothelial
cells have been described to express comparably low levels of
thrombin-binding thrombomodulin, and excess of unbound
thrombin may further promote local endothelial activation by
inducing further expression of adhesion molecules (Clark et al.,
2006).

Together, cytokine- or Plasmodium-induced endothelial
activation may lead to chemokine induction and leukocyte
recruitment as well as sequestration of infected erythrocytes,
which may act synergistically in promoting endothelial
permeability. Nevertheless, the precise molecular mechanisms
that trigger loss of blood-brain barrier integrity in CM are
incompletely understood and need to be further investigated.

NEUROINFLAMMATION

Upon disruption of the blood-brain barrier, cytokines,
chemokines, and soluble parasite products might enter the
brain parenchyma and, thereby, activate astrocytes and
microglia, and result in symptoms of neuroinflammation in the
absence of extravasation of infected erythrocytes or leukocytes
into the brain parenchyma (Combes et al., 2010). Indeed,

activation of microglia and astrocytes has been observed in
murine and human CM (Hunt et al., 2006; Combes et al.,
2010). For instance, transcriptome analysis of microglia isolated
from P. berghei-infected mice revealed that several chemokines
as well as transcripts related to type I IFN signaling were
differentially upregulated (Capuccini et al., 2016). This finding
was confirmed in vitro by stimulation of a murine microglia cell
line with IFN-β, which resulted in secretion of MCP-1/CCL2,
RANTES/CCL5, MIG/CXCL9, and IP-10/CXCL10. Moreover,
stimulation of human primary astrocytes with a combination
of IFN-γ and LTα synergistically induced IP-10/CXCL10
secretion in vitro (Bakmiwewa et al., 2016). Additionally,
co-culture of P. berghei-infected erythrocytes with a mixed
astrocyte-microglia culture resulted in phagocytic uptake of
infected erythrocytes and of parasitized erythrocyte-derived
microvesicles by microglia and astrocytes, respectively, which
in turn was associated with an induction in IP-10/CXCL10
secretion (Shrivastava et al., 2017). Furthermore, astrocytes
and microglia may secrete various cytokines and chemokines
upon activation (Dong and Benveniste, 2001; Medana et al.,
2001). Consequently, loss of blood-brain barrier integrity and
subsequent activation of microglia and astrocytes might result
in further chemokine-mediated recruitment of leukocytes to the
brain and subsequent amplification of inflammation (Figure 6).
Additionally, activation of microglia might induce expression
of FasL, which, upon binding to Fas expressed on astrocytes,
could induce astrocyte damage (Hunt et al., 2006). However,
to our knowledge, this has so far not been demonstrated in
the context of CM. Since astrocytes are critically involved in
maintaining blood-brain barrier properties and survival of
neurons (Combes et al., 2010), their functional impairment
might disrupt neuronal activity and could thereby account for
the neurological impairment observed in some CM cases (Hunt
et al., 2006).

SUMMARY AND PERSPECTIVES

The human and murine immune system are in part strikingly
different (Stevenson and Riley, 2004). For instance, IL-8/CXCL8
was reported to be associated with cerebral malaria (Armah
et al., 2007; John et al., 2008b), while this chemokine is not
expressed in mice (Viola and Luster, 2008). However, KC/Cxcl1
is considered a functional homolog of IL-8/CXCL8 in mice
(Hol et al., 2010), which mediates neutrophil recruitment,
and Cxcl1 transcripts were reported to be elevated in brains
of ECM compared to non-ECM mice (Miu et al., 2008),
suggesting that KC/Cxcl1 might be similarly involved in ECM
pathogenesis. Yet, the precise contribution of IL-8/CXCL8 and
KC/Cxcl1 to human CM and murine ECM, respectively, needs
to be further investigated. Moreover, the murine ECM model
shares several features with human CM, including aspects
of histopathology and inflammatory responses. Importantly,
mechanistic insights can only be gained from the murine
ECM model, and many observations are in remarkably good
agreement with clinical data obtained from P. falciparum-
induced CM. Although a comprehensive representation of the
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events leading to CM pathogenesis remains elusive, a working
model of an inflammatory cascade leading to CM is conceivable
(Figure 1).

Upon establishing liver stage infection, a first type I IFN
response is mounted by hepatocytes, leading to a primary
activation of IFN-γ-producing NK cells (Liehl et al., 2014;
Miller et al., 2014; Figure 2) and, consequently, induction of
MIG/CXCL9 and IP-10/CXCL10 secretion, potentially from
endothelial cells (Campanella et al., 2008; Miu et al., 2008). Upon
progression of the Plasmodium infection to the blood stages,
infected erythrocytes are recognized by DCs and induce the
secretion of IL-12 and TNF (Wu et al., 2015; Figure 3). IL-12
contributes to further activation of NK and differentiation of Th1
cells (Stevenson and Riley, 2004), while TNF and IFN-γ activate
chemokine transcription and adhesion molecule expression on
endothelial cells (Pober and Sessa, 2007; Miu et al., 2008; Griffith
et al., 2014). As the infection progresses further, Plasmodium-
infected erythrocytes are recognized by endothelial cells and
induce expression of chemokines, such as MCP-1/CCL2 and IL-
8/CXCL8 (Viebig et al., 2005; Chakravorty et al., 2007; Tripathi
et al., 2009; Figure 4). As a result, leukocytes are recruited,
including monocytes, macrophages, neutrophils, as well as T
cells, and initiate a local inflammatory response (Renia et al.,
2012; Storm and Craig, 2014; Figure 5). These cell types secrete
chemokines, thereby amplifying the response leading to further
leukocyte recruitment and intensifying local inflammation.
Additionally, endothelial cells phagocytose merozoites and
parasite material released during schizont rupture and present
parasite antigens to CD8+ T cells (Howland et al., 2015b;
Figure 6), which may result in targeted elimination of antigen-
presenting endothelial cells and, thus, cause damages to the
endothelial lining of the blood-brain barrier. This process can be
further exacerbated by openings of tight junctions mediated by
chemokines and extracellular vesicle-derived miRNAs (Song and
Pachter, 2004; Mantel et al., 2016). As a result, small molecules
can enter the brain parenchyma and potentially activate
brain-resident microglia and astrocytes, further amplifying
local inflammation through cytokine secretion and leukocyte
recruitment and impairing neuronal functionality (Hunt et al.,
2006; Combes et al., 2010).

Even though the febrile response elicited during Plasmodium
blood stage infection together with the concomitant
inflammatory cytokine responses limit parasite growth
and mediate the resolution of infection, imbalances in
pro-inflammatory and anti-inflammatory cytokines cause
progression of malaria disease to manifestations of severe
malaria, such as CM, and death. Adjunctive therapies
that prevent adverse effects of the immune response to
Plasmodium infection are therefore urgently needed. Although
immunomodulation is a promising approach to alleviate
immune-mediated pathology, such therapies need to be designed
carefully in order to maintain efficient control of parasite growth.
Notably, adjunct therapies modulating chemokine responses
may have fewer side-effects compared to therapies based on

neutralizing cytokines (Ioannidis et al., 2014). Indeed, antibody-
mediated targeting of IP-10/CXCL10 was demonstrated to result
in reduced ECM-induced mortality and parasite burden in
mice, which was likely mediated by retention and expansion
of parasite-specific T cells in the spleen (Nie et al., 2009).
Such treatments may be relevant in other contexts as well:
murine Toxoplasma encephalitis has been described to be
associated with constant expression of Ccl2, Ccl3, Ccl4, Ccl5, and
Cxcl10 in brains of infected mice concomitant with continuous
recruitment of CD4+ and CD8+ T cells, which was not the case
for mice in which the infection developed into chronic latency
(Strack et al., 2002). Furthermore, targeted neutralization of
single chemokines, including MCP-1/CCL2, MIP-1α/CCL3,
RANTES/CCL5, or IP-10/CXCL10, resulted in protection of
mice from experimental autoimmune encephalomyelitis, a
murine model for multiple sclerosis (Karin and Wildbaum,
2015). These findings from other neuroinflammatory diseases
highlight that chemokines might present a valuable target for
intervention strategies in several diseases. However, efforts
to design chemokine-based therapies are challenged by the
complexity of the chemokine system as well as properties such as
redundancy, pleiotropy, and speciation (Viola and Luster, 2008).
In fact, most cell populations express several different chemokine
receptors and thus single chemokine or chemokine receptor
blockade may not affect disease outcome in certain pathological
conditions.

Together, reliable biomarkers which predict disease outcome
and allow for potential prophylactic measures are yet to
be identified. Several clinical studies have reported potential
diagnostic and prognostic biomarkers for CM, which apart from
chemokines such as IP-10/CXCL10 and PF4/CXCL4 also include
P. falciparum histidine-rich protein 2 (PfHRP2), a protein
which correlates with parasite biomass, as well as regulators
of endothelial activation angiopoietin-1 and -2 (summarized
in Sahu et al., 2015). Still, comprehensive studies with defined
clinical parameters and systematic assessment of plasma levels
of multiple inflammatory mediators need to be performed to
determine whether distinct clusters of markers can be associated
with disease severity in order to identify patients at risk
of developing CM early during infection. Such studies will
inform future investigations into mechanisms underlying disease
pathogenesis in order to develop novel evidence-based malaria
intervention strategies.
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