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Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean

salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant

fish disease. Membrane vesicles (MVs) released by P. salmonis deliver several virulence

factors to host cells. To improve on existing knowledge for the pathogenicity-associated

functions of P. salmonis MVs, we studied the proteome of purified MVs from the

P. salmonis LF-89 type strain using multidimensional protein identification technology.

Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89

was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality

of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified

452 proteins of different subcellular origins; most of them were associated with the

cytoplasmic compartment and were mainly related to key functions for pathogen survival.

Interestingly, previously unidentified putative virulence-related proteins were identified in

P. salmonisMVs, such as outer membrane porin F and hemolysin. Additionally, five amino

acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino

acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia

coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were

located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we

propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein

characteristics of this P. salmonis type strain.
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INTRODUCTION

Salmonid rickettsial septicemia, also known as piscirickettsiosis,
is a multi-systemic infectious disease that produces septicemia
in infected salmonids, ultimately affecting the kidney, liver,
spleen, intestine, brain, skeletal muscle, ovaries, and gills.
This disease causes high mortality rates in Atlantic salmon
(Salmo salar), coho salmon (Oncorhynchus kisutch), and
rainbow trout (Oncorhynchus mykiss), ultimately translating into
significant economic losses for the salmon industry in Chile
(Rozas and Enríquez, 2014). Piscirickettsiosis is caused by the
Gram-negative, facultative intracellular bacterium Piscirickettsia
salmonis. This fastidious pathogen was first reported in coho
salmon in Chile and has since been found in Canada, Ireland,
Norway, and Scotland (Fryer and Hedrick, 2003). Currently,
piscirickettsiosis is the most important fish disease affecting
marine aquaculture in Chile (Sernapesca, 2015).

Gram-negative bacteria produce membrane vesicles (MVs)
during both in vitro growth and in vivo infection (Lee et al., 2008),
including Escherichia coli, Pseudomonas aeruginosa, Shigella
flexneri, Helicobacter pylori (Hoekstra et al., 1976; Fiocca
et al., 1999; Kadurugamuwa and Beveridge, 1999), and the fish
pathogens Francisella noatunensis (Bakkemo et al., 2011) and
Vibrio anguillarum (Hong et al., 2009). MVs, small spherical
structures that range in size from 10 to 300 nm in diameter,
are released from the surface of Gram-negative bacteria. These
structures are mainly composed of outer membrane proteins,
lipopolysaccharides, phospholipids, and periplasmic proteins
and are a reduced composition of inner membrane and
cytoplasmic proteins (Deatherage et al., 2009). Interestingly,
bacterial MVs can also contain toxins or effector proteins
involved in survival and pathogenesis (Bomberger et al., 2009).
Indeed, MVs are implicated in the pathogenicity of several
bacteria, such as Acinetobacter baumannii (Kwon et al., 2009)
and Edwardsiella tarda (Park et al., 2011). Importantly, MVs
have been licensed for use in humans and for example to control
outbreaks of disease caused by Neisseria meningitidis (Holst
et al., 2009, 2013). It was recently reported that P. salmonis can
produce MVs during normal growth in liquid media and during
the infection of CHSE-214 cells. Interestingly, purified MVs are
cytotoxic for CHSE-214 cells (Oliver et al., 2016) and zebrafish
(Danio rerio) (Tandberg et al., 2016). However, despite the
increasing research concerning MVs and bacterial pathogenicity,
the mechanisms underlying the pathophysiological roles of MVs
have not been clearly defined.

Multiple mass spectrometry (MS) methods for the proteomic
characterization of bacterial MVs have been reported,
including liquid chromatography-MS/MS (Kwon et al.,
2009; Pierson et al., 2011; Choi et al., 2014), matrix-assisted
laser desorption/ionization, time-of-flight MS (Galka et al.,
2008), and multidimensional protein identification technology
(MudPIT) (McCaig et al., 2013). Additionally, several proteins
involved in virulence were recently pinpointed through the
partial proteomic characterization of MVs from the P. salmonis
LF-89 type strain using liquid chromatography-MS/MS (Oliver
et al., 2016; Tandberg et al., 2016). Nevertheless, identification
remains pending for the full P. salmonis-purified MVs proteome,

as well as for toxins or virulence-related proteins that could
contribute to pathogenicity. Therefore, the aim of this study was
to extensively characterize the proteome of MVs purified from P.
salmonis LF-89 using highly sensitive MudPIT technology.

MATERIALS AND METHODS

Bacterial Culture
The P. salmonis LF-89 (equivalent to ATCC VR-1361) type strain
was grown on AUSTRAL-TSFe agar plates at 18◦C for 10 days
(Yañez et al., 2013). After this period, bacteria were growth in
AUSTRAL- salmonid rickettsial septicemia broth until reaching
the logarithmic phase (Yañez et al., 2012). Finally, the culture
(4 mL) was inoculated in a minimal liquid medium (400 mL)
and incubated at 18◦C with agitation (50 rpm) until the early
stationary phase (Oliver et al., 2016).

Isolation and Purification of MVs from
Culture Supernatant
MVs were isolated from the culture supernatant following the
method described by Oliver et al. (2016). Briefly, P. salmonis cells
were removed through low-speed centrifugation at 5,000× g for
10 min at 4◦C. The supernatant was sequentially filtered through
a 0.45 and 0.22 µm/pore-filter to remove residual cells. Finally,
MVs were isolated and concentrated through ultracentrifugation
at 125,000× g for 2 h at 4◦C. The pelletedMVs were resuspended
in phosphate-buffered saline (PBS) with 0.05% sodium azide.
The protein concentration obtained from MVs purification was
equivalent to ∼166.9 ± 44.5mg per liter of bacterial culture.
The purified MVs were stored at −80◦C until use. The purity of
MVs after purification was confirmed by transmission electron
microscopy.

Intraperitoneal Injection of
P. salmonis-Derived MVs in Adult Zebrafish
A total of 120 healthy male and female wild-type, strain AB
zebrafish (Danio rerio; 10–11 months-old) were obtained from
the Model Fish Unit at the Norwegian University of Life Science.
Fish were acclimatized for 2 weeks at room temperature (20
± 2◦C) prior to the experiment. The fish were fed every
morning with brine shrimp (Scanbur AS, Nittedal, Norway)
and afternoon with SDS 400 Scientific Fish Food (Scanbur AS).
After acclimation, zebrafish were randomly allocated among 6
experimental groups containing 20 fish each. All fish groups
were anesthetized by immersion in water containing tricaine
methanesulfonate (100 mg/mL; MS-222, Sigma Aldrich St. Louis,
MO, USA) buffered with bicarbonate to pH 7–7.5. Then,
three experimental groups were intraperitoneally injected (27 G
needle) with 20 µL of 10, 20, or 40 µg of P. salmonis LF-89 MVs
in PBS (Cosma et al., 2006; Brudal et al., 2015). As a positive
control, an additional group was intraperitoneally injected with
20 µL of P. salmonis LF-89 (equivalent to 109 colony forming
units [CFU]/mL). Additionally, a group of 20 fish were injected
with PBS as negative control.

After injection, the 6 fish groups (n = 20 fish) were
separately placed into polycarbonate recovery tanks (6 L; Pentair,
Minneapolis, MN, USA), in which 50% of the water wasmanually
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changed daily. Tank water was provided by the Model Fish
Unit at the Norwegian University of Life Science and was
supplemented with Instant Ocean sea salt (0.55 g/L; Spectrum
Brands, Blacksburg, VA, USA), sodium bicarbonate (0.053 g/L),
and calcium chloride (0.015 g/L). Water parameters (i.e., pH,
NO−

2 , NO
2−
3 , NH3/NH

+

4 , and hardness) were monitored every
third day using commercial TetraTest Kits (Spectrum Brands).
The tanks were maintained at 20◦C with a 14:10 light:dark cycle.
Tank wastewater was decontaminated through chlorination and
tested for sterility before disposal.

The fish were closely monitored, and animal health was
recorded twice daily. Fish that did not resume normal behavior
after injections were removed from the experiment and
euthanized with an overdose of tricaine methanesulfonate (250
mg/mL; Sigma Aldrich). These fish included those that were
moribund or that clearly showed deviant behaviors/clinical
symptoms inconsistent with good animal welfare (e.g., greatly
reduced activity levels, environmental responses, and/or
appetite). All experimental procedures were approved by The
Norwegian Animal Research Authority.

Sample Preparation for Proteomics
Analysis
Purified MVs were incubated in lysis buffer (50 mM Tris–HCl,
pH 7.5; 150 mM NaCl; 1% NP-40; 0.5% sodium deoxicolate; and
1% SDS) for 1 h at 4◦C. Finally, the solution was sonicated for
10 min at 4◦C at a frequency of 20 kHz, lyophilized and stored at
−20◦C until use. All samples were analyzed by SDS-PAGE.

LyophilizedMVs proteins were resolubilized in 6M guanidine
hydrochloride and 25 mM NH4HCO3, pH 7.5. Subsequently,
proteins were reduced at room temperature for 30 min with 2
mM dithiothreitol and alkylated in the dark at room temperature
for 30 min with 10 mM iodoacetamide. The reaction was diluted
seven times with 25 mM NH4HCO3, pH 7.5; 2 µL of 0.1 ng/mL
modified trypsin (Promega, Madison, WI, USA) was added, and
the reaction was incubated at 37◦C for 16 h. The reaction was
stopped by adding acetic acid, pH 2.0.

Identification of MV Proteins by MudPIT
All samples were concentrated on a CentriVap Concentrator
(Labconco, Kansas City, MO, USA) to a final volume of 20 µL
and loaded on a 350 µm ID fused silica 2D high-performance
liquid chromatography triphasic peptide trap column packed in-
house with 3 cm of a reverse-phase desalting C18 (100 Å, 5
µm Magic C18 particles; Michrom Bioresources, Auburn, CA,
USA), 3 cm of a strong cation exchange column (300 Å, 5
µm, PolySULFOETHYL A; PolyLC Inc., Columbia, MD, USA),
and, finally, 3 cm of reversed phase resolving C18. The peptide
trap was mounted on the loop of a nanoLC (Thermo Finnigan
LLC, Waltham, WA, USA). Following a wash with 0.1% formic
acid for 30 min at 0.5 µL/min, the efflux of the peptide trap
column was directed to a 10 cm resolving reversed-phase column
(100 Å, 5 µm Magic C18 particles, Michrom Bioresources),
which was mounted on the electrospray stage of a FT ICR mass
spectrometer (LTQ FT, Thermo Finnigan LLC). The peptides
were separated on-line using 15 salt steps (0, 10, 30, 50, 100,
150, 200, 250, 300, 350, 400, 500, 1,000, 1,500, and 2,000 mM

NH4CH3OO) followed by a 0–90% acetonitrile gradient for 120
min at a flow rate of 350 nL/min. An electrospray voltage of 1.9
kV was used, with the ion transfer temperature set to 250◦C.
The mass spectrometer was controlled by the Xcalibur software,
which continuously performed mass-scan analysis of the FT and,
subsequently, of the six most intense ions during MS/MS scans
of the ion traps. For this, one repeat scan of the same ion
was dynamically excluded, using a 30 s repeat duration and 90 s
exclusion duration. Normalized collision energy for the MS/MS
was set to 35%. Details of the proteome analysis by MudPIT are
available (Supplementary Data 2).

Data Analysis Using Database Search
Algorithm
All tandem mass spectra MS/MS samples were analyzed using
SEQUEST (v1.4.0.288; Thermo Fisher Scientific, San Jose,
CA, USA) and X! Tandem (vCYCLONE 2010.12.01.1; The
GPM, thegpm.org). SEQUEST searched the National Center
for Biotechnology Information (NCBI) Piscirickettsia salmonis
12-21-2015.fasta database (10,012 entries) assuming digestion
of the enzyme trypsin. X! Tandem searched a subset of the
Piscirickettsia salmonisNCBI 11-03-2016 database, also assuming
trypsin digestion. SEQUEST and X! Tandemwere searched with a
fragment ionmass tolerance of 0.80 Da and a parent ion tolerance
of 50 PPM. Carbamidomethyl-cysteine was a fixed modification
in SEQUEST and X! Tandem. In SEQUEST, asparagine and
glutamine deamidation and methionine oxidation were variable
modifications. In X! Tandem, Glu->pyro-Glu of the N-
terminus, ammonia-loss of the n-terminus, gln->pyro-Glu of
the N-terminus, asparagine and glutamine deamidation, and
methionine oxidation were variable modifications.

Criteria for Protein Identification
Scaffold (v.4.5.0; Proteome Software Inc., Portland, OR, USA)
was used to validate MS/MS-based peptide and protein
identifications. Peptide identifications were accepted if the
Peptide Prophet algorithm, with Scaffold delta-mass correction,
established a >95.0% probability (Keller et al., 2002). Protein
identifications were accepted if presenting a >99.9% probability,
as assigned by the Protein Prophet algorithm, and containing at
least two identified peptides (Nesvizhskii et al., 2003). Proteins
containing similar peptides that could not be differentiated
based on MS/MS analysis alone were grouped. Proteins
sharing significant peptide evidence were grouped into clusters.
Proteins were annotated with NCBI Gene Ontology terms
(downloaded 17-03-2016) (Ashburner et al., 2000). Secondary
and tertiary structure prediction were make using I-TASSER
(https://zhanglab.ccmb.med.umich.edu/I-TASSER/). The crystal
structures predictions and alignments were visualized using
multiseq extension through VMD 1.9.3 (Visual Molecular
Dinamics, Illinois University).

In Silico Analysis of Toxins Contained in
P. salmonis MVs
Amino acid sequences from seven putative proteins annotated
as toxins, and separated into two groups, were retrieved from
the NCBI database and mapped on the P. salmonis LF-89
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plasmid 1 (CP011850) using the TBLASTn tool with default
parameters. Additionally, five putative pertussis toxin sequences
(≈685 amino acids) were aligned using Clustal Omega and
phylogenetically analyzed. Phylogenetic calculations and tree
building were performed in the CLC Sequence Viewer v7.7 using
the UPGMA method and applying a Jukes-Cantor Model. A
total of 10,000 bootstrap replicates were performed to evaluate
node-support values.

Statistical Analysis
For zebrafish infection, dataset analyses and graphing were
completed using Graphpad Prism v7 (GraphPad Software Inc.,
La Jolla, CA, USA). Mortality curves were used for analyzing the
percent mortality, and differences between groups were deemed
statistically significant at p-value < 0.05, as established using the
Gehan-Breslow-Wilcoxon and Log-rank tests.

RESULTS

Proteome Analysis of MVs Derived from
P. salmonis
MudPIT analysis was performed to identify proteome
components in the MVs purified from P. salmonis LF-89
(Supplementary Figure 1). A total of 452 unique MV-
associated proteins were identified (Supplementary Table 1
and Supplementary Data 1). The 30 most-abundant proteins
from the purified MVs are listed in Table 1.

To determine the subcellular localization of the identified
proteins, the proteins were classified by the subcellular
localization prediction tool (PSORTb v.3.0.2). This resulted in
the following six groups, which were classified according to
protein localization in the bacterium: (1) cytoplasmic proteins,
(2) cytoplasmic membrane proteins, (3) periplasmic proteins,
(4) outer membrane proteins, (5) extracellular proteins, and
(6) proteins of unknown localization or multiple localization
sites. Of the 452 proteins identified in MVs, 7 (1.3%) were
extracellular, 27 (4.9%) were from the outer membrane, 15 (2.7%)
were periplasmic, 143 (26%) were from the inner membrane,
209 (38%) were cytoplasmic, and 149 (27.1%) were from an
unknown localization group (Figure 1A). The 5 most-abundant
proteins from each subcellular compartment are listed inTable 2.
Although a large amount of outer membrane proteins was
expected, these results indicate that cytoplasmic proteins are
the predominant component in MVs. Furthermore, the high
representation of inner membrane and cytoplasmic proteins
suggests that P. salmonis LF-89MVs composition is derived from
multiple bacterial compartments.

Functional Classification of Identified
Proteins in P. salmonis MVs
To determine the putative functions of the 452 proteins in
the P. salmonis LF-89 MVs proteome, the proteins were
analyzed according to Clusters of Orthologous Groups (COGs)
definitions (http://www.ncbi.nlm.nih.gov/COG/). The results
showed that the six largest COGs recognized in P. salmonis
MVs (Figure 1B) were mainly involved in cell wall, membrane,
and envelope biogenesis (69 proteins). Furthermore, 48 proteins

were involved in the transport and metabolism of amino
acids and signal transduction mechanisms; 45 proteins were
involved in post-translational modifications, protein turnover,
and chaperone activities; 44 were involved in translation,
ribosomal structuring, and biogenesis; 35 were involved in
inorganic ion transport and metabolism; and 34 proteins were
related to the replication, recombination, and repair of the
mobilome. Details for the functional classifications of these
proteins are shown in Supplementary Table 1. Additionally, some
proteins were involved in functions such as defense mechanisms,
metal ion binding, and DNA/RNA binding. Interestingly, 25
proteins were identified in relation to intracellular trafficking,
secretion, and vesicular transport. Taken together, these results
suggest that MVs may exhibit multiple, specific functions inside
the host.

Virulence-Associated Proteins Contained
in P. salmonis MVs
To gain insight into the virulence potential of P. salmonis LF-
89 MVs, the 452 proteins identified by MudPIT were subjected
to in silico analysis using the virulent factor database (Chen
et al., 2016), which is designed to predict virulent proteins
of pathogenic bacteria. Analysis showed that 64 of the MV
proteins (≈14%) (Table 3) had a predicted association with
bacterial virulence, including members of the heat-shock families
GroEL and GroES, which are strong immunogenic proteins.
Additionally, other molecular chaperones, such as GrpE, Hsp33,
DnaJ, DnaK, and HtpG, were also identified together with the
outer membrane protein OmpA and outer membrane porin
OmpF. The latter two are integral outer membrane proteins
that are highly immunogenic. Some components of the flagellar
structure, such as FlhA, FliF, FliM, FliL, and FliH, and proteins
involved in type IV pilus biogenesis, such as PilC, PilT, PilB,
PilW, and FimV were found present in P. salmonis LF-89
MVs. Furthermore, MVs purified from P. salmonis LF-89
also contained siderophores such as SufD, a TonB-dependent
siderophore receptor family protein, and other proteins related to
iron transport andmetabolism. The presence of multiple proteins
involved in the secretion of virulence factors supports a role of P.
salmonisMVs in the pathogenesis of piscirickettsiosis.

Putative Bacterial Toxins Secreted in
P. salmonis lF-89 MVs
A total of seven putative toxin sequences (Table 4) were
detected in the proteome of MVs purified from P. salmonis
LF-89 through an NCBI conservative domain database search
(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). The
identified toxin-related peptides are listed in Supplementary
Table 2. Five amino acids sequences corresponding to
Bordetella pertussis toxin subunit 1 were identified in the
P. salmonis LF-89 plasmid pPSLF89-1 (accession number
CP011850.1) (Figure 2A). Interestingly, three of these sequences
(i.e., WP_032126894.1, ERL60989.1, and WP_036817364.1)
corresponded to Ps-Tox1 and were located in the same plasmid
region (between ≈9,500 and 11,600 base pairs). TBLASTn
analyses of these sequences showed high identity percentages
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TABLE 1 | Most abundant proteins identified from P. salmonis LF-89 type strain membrane vesicles.

Accession (gi) Protein name Molecular

weight (kDa)

Normalized total

spectraa
Conserved protein

domain family

Accession function

838099093 Membrane protein 46 1443 OM channels cl21487

758740411 Molecular chaperone GroEL 51 113 Chaperonin like COG0459

873977985 Elongation factor Tu 43 93 P-loop NTPase cl21455;

COG0050;

COG2229

873977924 Hypothetical protein PSLF89 280 13 82 Phasin 2 COG5490;

cl11491

873979583 Hypothetical protein PSLF89 2434 23 74 OM channels; LomR; LptD COG1452;

cl21487;

COG3637

965558488 Superoxide dismutase 18 70 Cu-Zn Superoxide

Dismutase

COG2032;

cl00891

920728843 Type IV secretion system protein VirB9 39 59 VirB9 CagX TrbG COG3504;

cl11423

920729012 Molecular chaperone DnaK 69 58 DnaK COG0443

873978943 Cell envelope biogenesis protein OmpA 23 55 OmpA COG2885

873979466 Disulfide bond formation protein DsbA 30 47 DsbG COG1651

873976170 Hypothetical protein PSLF89 1p34 (plasmid) 127 44 HepA COG0553

873980150 Molecular chaperone GroES 11 39 GroES; cpn10 COG0234;

cl09113

923110936 Outer membrane porin F 35 36 LomR; OM channels; OmpA COG3637;

cl21487;

COG2885

873979967 Peptidylprolyl isomerase 28 34 FkpA COG0545

738930989 Hypothetical protein 33 33 Pertussis S1 cl03779

920729023 Type IV pilus biogenesis protein PilC 46 30 PulF COG1459

873979859 Meta-pathway of phenol degradation family

protein

20 30 LomR; OM channels COG3637;

cl21487

920731540 D-methionine-binding lipoprotein metQ 31 29 NlpA; Periplasmic binding

protein type 2

COG1464;

cl21456

314561212 Sequence 14 from patent US 7811583 35 28 AcrA COG0845

873979142 Conjugal transfer protein TrbI 43 25 VirB10 COG2948

920731472 Membrane protein 17 23 CopD COG1981;

cl21540

738930884 Hypothetical protein 15 22 PAZ cl00301

873978057 Chemotaxis protein 61 21 Tar COG0840

873977962 Molecular chaperone DnaJ 40 21 DnaJ COG0484

965558412 Signal peptidase, peptidase S26 family protein 20 21 TraF; Peptidase S24 S26 COG4959;

cl10465

546139961 Major Facilitator Superfamily protein NR 19 AraJ COG2814

920728747 Hypothetical protein KW89 30 FNK 19 – –

873979727 DNA-binding protein 14 18 HimA; HU IHF COG0776;

cl00257

873977977 50S ribosomal protein L1 24 17 RplA; Ribosomal L1 COG0081;

cl00322

873978375 Hypothetical protein PSLF89 826 26 16 – –

aRelative abundance was calculated from the normalized spectral count for the total of spectra of each identified peptide.

NR, not reported; FNK, Function not known.

(>95%) with the P. salmonis LF-89 plasmid sequence. Similarly,
two identical sequences (accession number AKP74948.2 and
WP_036817009.1) corresponding to Ps-Tox2 were located in the
plasmid region between 123,047 and 124,891 base pairs, with
100% identity. Additionally, multiple alignments of amino acid
sequences showed that Ps-Tox1.1, Ps-Tox1.2, and Ps-Tox1.3

were identical to the B. pertussis toxin subunit 1 (accession
number AMT50644.1), evidencing 7.5, 8.9, and 11.6% identities,
respectively (Supplementary Figure 2 and Supplementary
Data 3). In the case of Ps-Tox2.1 and Ps-Tox2.2, the identity
percentage was 8.6%. Despite the low identities of these putative
toxins, most changes in the amino acids sequences were
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FIGURE 1 | Classification of P. salmonis LF-89 membrane vesicles proteins. (A) Subcellular locations of membrane vesicle proteins identified by MudPIT. Predicted

subcellular locations of the 452 membrane vesicle proteins identified using PSORT3b. (B) Functional classification of P. salmonis LF-89 membrane vesicles proteins.

The 452 proteins identified by MudPIT were sorted according to the indicated clusters of orthologous groups.

conservative modifications. Subsequently, a phylogenetic tree
was constructed according to amino acid sequence alignment
of the five putative toxins corresponding to Ps-Tox (Figure 2B).
As could be expected from the previously obtained data, these
putative toxins were classified into two clusters, namely Ps-Tox1,
containing Ps-Tox1.1, Ps-Tox1.2, and Ps-Tox1.3; and Ps-Tox2,
conformed by Ps-Tox2.1 and Ps-Tox2.2.

On the other hand, another two amino acid sequences
corresponding to the heat-labile enterotoxin alpha chain of
E. coli were also identified in the P. salmonis LF-89 plasmid.
One sequence (100% identity) for Ps-eTox1 (accession number
AKP74865.2) was located in the plasmid region between
≈11,850 and 12,370 base pairs, while the second amino
acid sequence (100% identity) was for Ps-eTox2 (accession
number ALB24633.1) and matched two different plasmid regions
(≈56,400 and 61,300 base pairs, and ≈114,750 and 116,640
base pairs). Multiple alignments of these amino acid sequences

showed that Ps-eTox1 and Ps-eTox2 were identical to the
enterotoxin alpha from E. coli (13.7 and 16.6%, respectively)
(Supplementary Figure 3).

Interestingly, the analysis of the secondary and tertiary
structure of Ps-Tox and Ps-eTox generated by i-tasser revealed
a high structural similarity with CARDS toxin, which is present
inMycoplasma pneumonia, and also common with the adhesion
domain of B. pertussis toxin and heat-labile enterotoxin alpha
chain of E. coli (Supplementary Figure 4).

Effect of MVs Isolated from P. salmonis in
Adult Zebrafish
To evaluate the toxicity of MVs isolated from the pathogenic P.
salmonis LF89 strain, different MV concentrations were injected
into an adult zebrafish infectionmodel. The cumulative mortality
of zebrafish injected with MVs showed a dose-dependent pattern
(Figure 3). Fish injected with 10 µg of MVs registered <5%
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TABLE 2 | Five most abundant proteins from each subcellular compartment identified in P. salmonis LF-89 type strain membrane vesicles.

Subcellular compartment Accession (gi) Protein name Molecular weight (kDa) Normalized total

spectraa

Outer membrane KLV35478.1 Membrane protein 46 1,443

AKP73473.1 Cell envelope biogenesis protein OmpA 23 55

AKP73996.1 Disulfide bond formation protein DsbA 30 47

ALB21306.1 Outer membrane porin F 35 36

WP_032126547.1 Type I secretion protein TolC 51 16

Periplasmic space AKP73249.2 Superoxide dismutase 18 70

AKP73751.1 Gamma-glutamyltranspeptidase 63 11

ALA26413.1 Trypsin family protein 39 8

ERL62613.1 D-alanyl-D-alanine

carboxypeptidase/D-alanyl-D-alanine-endopeptidase

47 3

ALA24513.1 Tol-Pal system beta propeller repeat protein TolB 48 7

Inner membrane ALA23777.1 Type IV pilus biogenesis protein PilC 46 30

ALA26294.1 D-methionine-binding lipoprotein metQ 31 29

ADS71725.1 Sequence 14 from patent US 35 28

ALA26226.1 Membrane protein 17 23

AKP72587.1 Chemotaxis protein 61 21

Cytoplasm AJO71851.1 Molecular chaperone GroEL 51 113

AKP72515.1 Elongation factor Tu 43 93

ALA23766.1 Molecular chaperone DnaK 69 58

AKP74876.1 Hypothetical protein PSLF89_1p34 (plasmid) 127 44

AKP74680.1 Molecular chaperone GroES 11 39

aRelative abundance was calculated from the normalized spectral count for the total of spectra of each identified peptide.

mortality 14 days post-injection. In contrast, fish injected with
40 µg of MVs showed a rapid onset of mortalities (≈20%) just 3
days post-injection. After 14 days, the 40µgMV group registered
≈45% mortality, which was higher than the final 5 and 15% in
the 10 and 20µgMV groups, respectively. Interestingly, zebrafish
challenged with live P. salmonis (109 CFU/mL, positive control)
had a cumulative mortality of ≈30% 7 days post-injection, a
rate similar to that for the 40 µg MV group. Nevertheless, the
mortality of the positive control group reached≈60% by the end
of the challenge period. These findings support that MVs isolated
from P. salmonis are cytotoxic for zebrafish.

DISCUSSION

Membrane vesicles are produced by several Gram-negative
bacteria, and the pathogenic role of MVs during bacterial
infection has been extensively reported (Lim and Yoon, 2015).
The main focus of this study was to expand on the knowledge
available for proteins contained in P. salmonis MVs. In the
present work, a total of 452 proteins were identified using
MudPIT analysis, 28 of which were within the outer membrane,
as indicated by the PSORTb algorithm. Interestingly, most
proteins (209) in P. salmonis LF-89 MVs corresponded to the
cytoplasmic compartment, and 143 proteins were associated
with the inner membrane. Finally, the locations of 149 proteins
could not be identified. Despite some reports suggesting that

Gram-negative bacterial MV proteomes consist mainly of outer
membrane and periplasmic proteins (Horstman and Kuehn,
2000; Deatherage et al., 2009), other proteomic approaches
indicate that MVs contain proteins with different cellular
origins, including the cytoplasmic, inner membrane, outer
membrane, and periplasmic proteins (Lee et al., 2007; Galka
et al., 2008). Other studies still report that MVs contain mostly
cytoplasmic and periplasmic proteins (Choi et al., 2011; Bai
et al., 2014), such as specifically observed in the Aggregatibacter
actinomycetemcomitans MV proteome (Kieselbach et al., 2015).
A possible explanation for this phenomenon may be related to
a physiological role of MVs, which have been found to help
bacteria expel useless and harmful waste that has accumulated
inside bacterial cells via MVs (McBroom and Kuehn, 2007).
However, further studies are needed to elucidate this hypothesis
and the production of MVs by P. salmonis. On the other
hand, the presence of cytoplasmic proteins in the MV proteome
may be due to moonlighting abilities, which is the capacity to
perform additional biological activities distinct from those they
normally occupy (Mani et al., 2014). These multitasking bacterial
proteins include metabolic proteins/enzymes and molecular
chaperones, which could to play a role in bacterial interaction
with host cells by serving as adhesins and invasins (Henderson
and Martin, 2011; Wang et al., 2014). Thus, this possibility
needs to be assessed through further studies on P. salmonis
MV cytoplasmic proteins and respective potential moonlighting
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TABLE 3 | Classification of virulence-related proteins identified from Piscirickettsia salmonis LF-89 type strain membrane vesicles.

Classification Accession

(gi)

Description Biological function

Proteases 873980158 ATP-dependent metalloprotease [P. salmonis LF-89 =

ATCC VR-1361]

ATP-dependent protease

693576047 Putative endopeptidase Clp ATP-binding chain B

[P. salmonis]

Clp protease ATP-binding subunit

873979420 ATP-dependent Clp protease proteolytic subunit

[P. salmonis LF-89 = ATCC VR-1361]

Clp protease ATP-binding subunit

873978774 ATP-dependent Clp protease ATP-binding subunit ClpX

[P. salmonis LF-89 = ATCC VR-1361]

Clp protease ATP-binding subunit

873977871 Protease [P. salmonis LF-89 = ATCC VR-1361] Protease activity

920731742 Secreted metalloprotease Mcp02 Elastase LasB

920731659 Trypsin family protein Serine protease

Efflux pump 965558557 ABC transporter ATP-binding protein [P. salmonis LF-89

= ATCC VR-1361]

ABC transporter ATP-dependent

546141634 Efflux transporter, RND family, MFP subunit [P. salmonis

LF-89 = ATCC VR-1361]

RND efflux pump

546140760 Type I secretion outer membrane, TolC family protein

[P. salmonis LF-89 = ATCC VR-1361]

TolC family type secretion outer

873978747 Type I secretion protein TolC [P. salmonis LF-89 = ATCC

VR-1361]

TolC family type secretion outer

920729839 Bcr/CflA family drug resistance efflux transporter

[P. salmonis]

Drug resistance efflux transporter

546141806 Oligopeptide/dipeptide ABC transporter, ATP-binding,

C-terminal domain protein

ABC transporter

923113856 Multidrug transporter AcrB [P. salmonis] Multidrug transporter

965557328 Polysaccharide biosynthesis/export family protein Polysaccharide transmembrane

transporter activity

920731713 MMPL family protein Cation/multidrug efflux pump

Heat shock proteins 758740409 Molecular chaperone GroEL, partial [P. salmonis] Molecular chaperone

873977962 Molecular chaperone DnaJ [P. salmonis LF-89 = ATCC

VR-1361]

Molecular chaperone

873980150 Molecular chaperone GroES [P. salmonis LF-89 = ATCC

VR-1361]

Molecular chaperone

873979102 Molecular chaperone HtpG [P. salmonis LF-89 = ATCC

VR-1361]

Molecular chaperone

Secretion systems 546141413 Protein-export membrane protein SecD [P. salmonis

LF-89 = ATCC VR-1361]

Secretion protein

873979147 Type IV secretion system protein DotC [P. salmonis

LF-89 = ATCC VR-1361]

Secretion system

440922721 Dot/Icm type IV secretion system DotA [P. salmonis] Secretion protein

663090053 Type I secretion outer membrane protein 2 [P. salmonis] Secretion system

873978747 Type I secretion protein TolC [P. salmonis LF-89 = ATCC

VR-1361]

Outer membrane protein precursor

920728841 Type IV secretion system protein VirB4 [P. salmonis] Secretion system

920730537 Type IV secretion system protein IcmL Secretion system

873977714 Preprotein translocase subunit SecA Secretion protein

873979155 AAA family ATPase Dot/Icm type IV secretion system

protein IcmB/DotO

923113388 Type IV secretion system protein IcmO Secretion protein

873980314 ATP synthase subunit alpha ATP synthase in type III secretion

system

873980312 ATP synthase subunit beta ATP synthase in type III secretion

system

(Continued)
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TABLE 3 | Continued

Classification Accession

(gi)

Description Biological function

Iron metabolism and

transport

838099434 Ferric uptake regulator family protein [P. salmonis LF-89

= ATCC VR-1361]

Iron regulator

920730359 Ferric iron reductase FhuF-like transporter family protein

[P. salmonis]

Transport

920730832 Iron dicitrate transport regulator FecR [P. salmonis] Iron metabolism

873979309 Bacterioferritin [P. salmonis LF-89 = ATCC VR-1361] Iron metabolism

873979364 Iron-sulfur cluster assembly accessory family protein

[P. salmonis LF-89 = ATCC VR-1361]

Iron metabolism

873979869 Fe(2+)-trafficking protein [P. salmonis LF-89 = ATCC

VR-1361]

Iron metabolism

920730832 Iron dicitrate transport regulator FecR [P. salmonis] Iron metabolism

965558572 TonB-dependent receptor [P. salmonis LF-89 = ATCC

VR-1361]

Siderophores metabolism

920730355 TonB-dependent siderophore receptor family protein

[P. salmonis]

Siderophores metabolism

920730153 FeS assembly protein SufD [P. salmonis] Siderophores metabolism

663090031 Siderophore carboxylate outer membrane receptor

[P. salmonis]

Siderophores metabolism

Pilus 873978913 Pilus assembly protein PilW [P. salmonis LF-89 = ATCC

VR-1361]

Secretion

920729023 Type IV pilus biogenesis protein PilC [P. salmonis] Secretion system

920729024 Type IV pilus assembly protein PilB [P. salmonis] Secretion system

Flagellar 873979673 Flagellar basal-body rod protein FlgG [P. salmonis LF-89

= ATCC VR-1361]

Motion

920729867 AT hook motif family protein [P. salmonis] Flagelar protein

920730141 Flagellar biosynthesis protein FlhF [P. salmonis] Motion

692315022 Flagellar basal body rod protein FlgC [P. salmonis] Motion

873978423 Flagellar protein export ATPase FliI ATP synthase in type III secretion

system

873979350 Flagellar biosynthesis protein FlhA Type III secretion system LcrD

homolog protein BcrD

Chemotaxis 546139871 Methyl-accepting chemotaxis (MCP) signaling domain

protein

Accessory colonization factor AcfB

923113559 Chemotaxis methyl-accepting receptor Toxin co-regulated pilus biosynthesis

protein I

Capsule 873978463 Capsule biosynthesis protein Capsule formation

546141779 Capsular exopolysaccharide family domain protein Accessory colonization factor AcfB

Other 920729497 Superoxide dismutase Superoxide dismutase precursor

(Cu-Zn)

923110936 Outer membrane porin F [P. salmonis] Porin, adhesin

873980129 D-methionine-binding lipoprotein metQ Immunogenic lipoprotein A

920730232 RNA polymerase sigma factor RpoS Sigma S (sigma 38) factor of RNA

polymerase, major sigma factor

during stationary phase

965557432 Penicillin-binding protein activator LpoB [P. salmonis

LF-89 = ATCC VR-1361]

Antibiotic resistance

923113583 Penicillin-binding protein 2 [P. salmonis] Antibiotic resistance

873979221 Gamma-glutamyltranspeptidase Gamma-glutamyltranspeptidase
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TABLE 4 | Toxins identified by MudPIT analysis from Piscirickettsia salmonis LF-89 type strain membrane vesicles.

Accession

numbera
Previous annotation New

annotation

E-valueb Bit Scorec Accession

numberd
Short name Definition

ERL60989 Hypothetical protein

K661_02693, partial

Ps-Tox1 3.10E-04 41,286 cl03779 Pertussis_S1

superfamily

Pertussis toxin, subunit

1 Bordetella pertussis

WP_032126894 Hypothetical protein Ps-Tox1 2.40E-04 416,712 cl03779 Pertussis_S1

superfamily

Pertussis toxin, subunit

1 B. pertussis

WP_036817364 Hypothetical protein Ps-Tox1 1.90E-03 37,434 cl03779 Pertussis_S1

superfamily

Pertussis toxin, subunit

1 B. pertussis

WP_036817009 Hypothetical protein Ps-Tox2 1.00E-04 428,268 cl03779 Pertussis_S1

superfamily

Pertussis toxin, subunit

1 B. pertussis

AKP74948 Hypothetical protein

PSLF89_1p159

(plasmid)

Ps-Tox2 1.15E-04 428,268 cl03779 Pertussis_S1

superfamily

Pertussis toxin, subunit

1 B. pertussis

AKP74865.2 Hypothetical protein

KU39_3p171 (plasmid)

Ps-eTox1 3.18E-04 413,979 cl03186 Enterotoxin_a

superfamily

Heat-labile enterotoxin

alpha chain E. coli

ALB24633.1 Hypothetical protein

PSLF89_1p15

(plasmid)

Ps-eTox2 3.50E-03 356,199 cl03186 Enterotoxin_a

superfamily

Heat-labile enterotoxin

alpha chain E. coli

aGene bank accession number from NCBI.
bStatistical significance of the hit as hit likelihood was found by chance.
cRaw alignment score.
dGene ontology accession number; conserved domains from NCBI.

functions. Nevertheless, the present findings support that the P.
salmonis LF-89 MV proteome includes proteins from different
subcellular origins.

In relation to differential origins, the identified P. salmonis
LF-89 MV proteins presented varied functions. Thus, a total
of 69 proteins were classified through COG definitions with
functions in cell wall, membrane, and envelope biogenesis,
including VirB9, required for type IV secretion (Jakubowski et al.,
2003), which has been shown to induce humoral and cellular
immunity in A. marginale (Zhao et al., 2016). Likewise, the
inner membrane-associated ATPase VirB4, essential for pilus
biogenesis and protein transport in type IV secretion systems was
also identified (Peña et al., 2012). In turn, 48 proteins were related
to amino acids transport and metabolism, as well as to signal
transduction mechanisms. Other proteins were associated with
functions of post-translational modification, protein turnover,
and chaperone activity (45 proteins), including GroEL, GroES,
DnaJ, and HtpG, homolog of the ubiquitous HSP90 family of
proteins; translation, ribosomal structure, and biogenesis (44
proteins); inorganic ion transport and metabolism (35 proteins);
and the replication, recombination, and repair of the mobilome
(34 proteins). Additionally, other proteins were involved in
defense mechanisms, metal ion binding, and DNA/RNA binding.
Overall, the high amount of P. salmonis MV proteins involved
in key functions for pathogen survival is in accordance with
findings from previously reported MV proteomes for several
Gram-negative bacteria, such as Pseudomonas syringae (Kulkarni
et al., 2014) and A. actinomycetemcomitans (Kieselbach et al.,
2015).

From a functional point of view, many vesicle-associated
proteins are virulence factors, playing diverse bacterial roles in
pathogenicity such as invasion, adherence, antibiotic resistance,

damage to host cells, modulation of the host immune response,
biofilm formation, and promotion of virulence. Thus, several
antibiotic resistance-related proteins have been identified in
the P. salmonis MVs proteome including the transporter
AcrB, TolC, and the MFP subunit, members of the RND-
type multidrugs efflux pumps, which have been previously
described in P. salmonis (Sandoval et al., 2016). Furthermore,
the Bcr/CflA family drug resistance efflux transporter, described
as resistance to bicyclomycin in E. coli (Bentley et al., 1993),
and chloramphenicol and florfenicol in Salmonella typhimurium
(Braibant et al., 2005) were also identified. Additionally, several
proteins involved in iron metabolism and uptake (FhuF-
like transporter, the regulator FecR, and Bacterioferritin),
and siderophores metabolism (TonB-dependent siderophore
receptor and FeS assembly protein SufD) were identified.
These proteins are highly important for intracellular bacterial
pathogens, which use multiple strategies to obtain nutritional
iron from the intracellular environment in order to use this
element for its replication, in the same way as it does P. salmonis
(Pulgar et al., 2015; Almarza et al., 2016). Although, the flagellar
basal-body rod protein Flagellin G (FlgG) and the chaperone
GroEL are present in P. salmonis MVs and they were chosen
in early vaccine studies (Wilhelm et al., 2006), the field results
suggest that these two proteins are not suitable as a vaccine
candidates for P. salmonis. It is possible that some combination
of these and other immunogenic and/or virulence-associated
antigens may be needed as has been reported for the fish
pathogen Flavobacterium psychrophilum (Plant et al., 2011).

Interestingly, our study identified the outer membrane
proteins OmpA, that has been involved in adhesion, invasion and
replication of several bacterial pathogens; and OmpF, with porin
activity forming small water-filled channels (Buehler et al., 1991;
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FIGURE 2 | Identification of Ps-Tox genes in the P. salmonis LF-89 plasmid. (A) Schematic representation of Ps-Tox genes in the P. salmonis LF-89 plasmid. Two

genomic regions containing three amino acid copies of Ps-Tox 1 (Ps-Tox1.1; Ps-Tox1.2; and Ps-Tox1.3) and two amino acid copies of Ps-Tox 2 (Ps-Tox2.1 and

Ps-Tox2.2) were identified after TBLASTn analysis. The identity of each Ps-Tox1 and Ps-Tox2 is indicated in parenthesis. (B) Phylogenetic relationship between five

Ps-Tox copies. A phylogenetic tree was constructed using the neighbor joining method with 1,000 bootstrap replicates according to the alignment of the Ps-tox

amino acid sequence. Bootstrap support values are indicated at the nodes.

Cowan et al., 1992). These highly immunogenic proteins are
found across genera in Gram-negative bacteria such as Yersinia
enterocolitica (Gu et al., 2012), Salmonella enterica (Toobak et al.,
2013), and Coxiella burnetii (Martinez et al., 2014), and several
successful bacterial OMP-based vaccines have used OmpA and
OmpF in its formulation (Camacho et al., 2013; Liu et al., 2016).
Thus, P. salmonis MVs containing OmpA and OmpF proteins
could serve as protective antigens and should be further assessed
as potential vaccine candidates against piscirickettsiosis.

Furthermore and importantly, this is the first study
demonstrating that the B. pertussis toxin subunit 1 and
heat-labile enterotoxin alpha chain of E. coli are proteins carried
by P. salmonis LF-89 MVs. It has been widely demonstrated
that important bacterial toxins are secreted via bacterial MVs,
including heat-labile enterotoxin from E. coli (Horstman and
Kuehn, 2000), the anthrax toxin from Bacillus anthracis (Rivera
et al., 2010), the cholera toxin from Vibrio cholerae (Chatterjee
and Chaudhuri, 2011), listeriolysin O (Listeria monocytogenes),

and alpha-hemolysin from Staphylococcus aureus (Lee et al.,
2013). More specifically, B. pertussis toxin subunit 1 (28 kDa)
is an important virulence factor that exercises NAD-dependent
ADP-ribosyltransferase activity, which plays a crucial role in B.
pertussis pathogenesis by causing the suppression/modulation
of the host immune and inflammatory responses (Higgs et al.,
2012; Melvin et al., 2014). Indeed, ADP-ribosylation of target
substrates in eukaryotic cells is a common action mechanism of
many bacterial protein toxins, including the cholera toxin from
V. cholerae (Chatterjee and Chaudhuri, 2011) and exotoxin A
from P. aeruginosa (Allured et al., 1986). In turn, expression of
the heat-labile enterotoxin by enterotoxigenic E. coli promotes
bacterial adherence to intestinal epithelial cells (Johnson et al.,
2009), causing diarrhea in infected subjects (Nataro, 2005). This
action is mediated by an ADP-ribosylation activity of the A
subunit of heat-labile enterotoxin. Additionally, further reports
support that enterotoxigenic E. coli secretes physiologically
active heat-labile enterotoxin via MVs (Horstman and Kuehn,
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FIGURE 3 | Cumulative mortality (%) of adult zebrafish challenged with

membrane vesicles (MVs) isolated from Piscirickettsia salmonis LF-89 type

strain. Adult zebrafish were injected with 10, 20, and 40 µg of MVs isolated

from P. salmonis. PBS and live P. salmonis LF-89 were used as controls

(n = 20). Asterisks indicate statistical significance (P < 0.05).

2000). Similar to P. salmonis, it was recently found that B.
pertussis can survive and replicate inside human macrophages.
Furthermore, the bactericidal and inflammatory response of
infected macrophages is progressively downregulated, and the
pertussis toxin is involved in manipulating the host-cell response
(Valdez et al., 2016). Likewise, once P. salmonis is inside the host
cell, can modulate the expression of several pro-inflammatory
cytokines (Tacchi et al., 2011; Salazar et al., 2016). Furthermore,
IL-10 is upregulated in the RTS-11 monocyte/macrophage cell
line during P. salmonis infection, thus promoting the bacterial
survival inside the cell throughmacrophage inactivation (Álvarez
et al., 2016). Likewise, Tandberg et al. (2016) demonstrated an
upregulation of several pro-inflammatory genes in the spleen
and kidney of adult zebrafish after immunization with MVs from
P. salmonis. Additionally, it has been revealed that tnf-a, il-1b,
il-6 and il-10 display significant differences in MV-immunized
fish (Tandberg et al., 2017). The modulation of these genes might
therefore indicate the functionality of B. pertussis toxin subunit 1
and E. coli heat-labile enterotoxin alpha in the modulation of the
host immune response and in the pathogenicity of P. salmonis.
However, the presence of these putative toxins in P. salmonis
MVs, the toxicity induced by these toxins, toxin regulations, and
the modulation of the host immune and inflammatory responses
by these putative toxins should be explored in future studies.

Our group previously reported the production of MVs by the
fish pathogen P. salmonis through microscopic characterization
and liquid chromatography-MS/MS, the first proteomic
approach in this bacterium (Oliver et al., 2016). In the present
study, the cytotoxicity of MVs purified from the P. salmonis
LF-89 type strain was confirmed in an in vivomodel. Specifically,
the cumulative mortality of adult zebrafish was ≈40% 14 days
after MV injection (40 µg). This finding was similar to Tandberg
et al. (2016), who reported a mortality of ≈50% in zebrafish
injected with the same quantity of MVs purified from P. salmonis
isolates. Additionally, the presently purified MVs induced dose-
dependent mortality rates in fish. However, the inflammatory
response, other immune issues, and the putative protection
induced by the MVs, a point imperative to the possible vaccine

application of MVs against piscirickettsiosis, were not evaluated
in this study and should be considered in future investigations.

On the other hand, MV-based vaccines have successfully been
used for epidemic control against serogroup B meningococcal
disease (Holst et al., 2013). MVs used in vaccination of fish have
also been reported to give good protection against several fish
pathogens (Lagos et al., 2017; Tandberg et al., 2017), inducing up-
regulation of immune-related genes, showing MVs as potential
activator of the host’s immune system. However, whether this
activation is mediated by i.e., toll-like receptors (TLRs) or
not, is still not known. Thus, considering the composition of
MVs, which contain several molecules and proteins identified
as pathogen associated molecular pattern (PAMPS) including
LPS, carbohydrates, HSPs, and nuclei sequencemotifs suggest the
participation of TLRs as a bridge between innate and adaptive
immunity, making P. salmonis MVs interesting as a vaccine
candidate. Interestingly, it has been described different effects
on mortality induced by MVs purified from three different P.
salmonis strains, been LF-89 MVs the most toxic (Tandberg et al.,
2016). However, whether the difference in mortality are caused
by differences in the LPS, it is unknown. Thus, there is still a
lack of knowledge regarding the immunogenic effect of LPS from
fish pathogens, and studies of P. salmonis derived LPS would
be interesting to follow up in future studies Recent studies have
shown that LPS is one of the most abundant components of
OMVs, being able to exceed the total protein content of vesicles
by ratios as high as 10:1 (Ellis and Kuehn, 2010). Given the
high LPS content, all investigations into immune responses to
OMVs must define the contribution of LPS to the host response.
MVs, as LPS delivery vehicles, have the capacity to enhance either
bacterial clearance or cause host tissue damage by activating an
inflammatory response. Recent studies have identified MVs as
the vehicle that mediates the cytosolic localization of LPS during
extra cellular Gram-negative bacterial infections, demonstrating
a necessary role for MVs for intracellular LPS release during
bacterial infections (Vanaja et al., 2016). To date, no studies
have demonstrated LPS purified from either P. salmonis or MVs
directly impacting the host responses. However, the present
study identified several proteins in MVs, including toxins, which
would be able to stimulate the fish immune system. However,
the importance of each of these components in virulence and
pathogenesis of P. salmonis it is until now, unexplored.

Collectively, these results suggest that MV secretion might
have an association with P. salmonis virulence. Although not
specifically tested herein, we speculate that MVs secretion might
contribute to the transport and dissemination of key virulence
factors and putative bacterial toxins to host cells during bacterial
infection.

In conclusion, the present study identified 452 proteins
in P. salmonis MVs, which, to our knowledge, is the most
comprehensive report on a bacterial MV proteome. Notably,
a relatively large number of cytoplasmic proteins were found
in the vesicles. Taken together, the present results support
that the P. salmonis MVs purified from the LF-89 type strain
contain numerous virulence factors that can stimulate the
host immune system, as well as some proteins involved in
antibiotic resistance, invasion into host cells, and, interestingly,
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intracellular trafficking. Two putative toxins were also identified
in the MVs, which might be involved in P. salmonis cytotoxicity,
as previously reported by our research group. Overall, the
currently presented results suggest that the protein composition
of the MVs in P. salmonis LF-89 may reflect the characteristics
of the total P. salmonis proteome. This valuable information
provides a basis for future studies toward elucidating key
pathogenic roles of P. salmonisMVs. Moreover, this study should
contribute to the development of vaccines or vaccine adjuvants
against this fastidious fish pathogen.
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