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Amoebae, Giant Viruses, and
Virophages Make Up a Complex,
Multilayered Threesome

Jan Diesend, Janis Kruse, Monica Hagedorn and Christian Hammann*

Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany

Viral infection had not been observed for amoebae, until the Acanthamoeba polyphaga
mimivirus (APMV) was discovered in 2003. APMV belongs to the nucleocytoplasmatic
large DNA virus (NCLDV) family and infects not only A. polyphaga, but also other
professional phagocytes. Here, we review the Megavirales to give an overview of the
current members of the Mimi- and Marseilleviridae families and their structural features
during amoebal infection. We summarize the different steps of their infection cycle in A.
polyphaga and Acanthamoeba castellani. Furthermore, we dive into the emerging field of
virophages, which parasitize upon viral factories of the Megavirales family. The discovery
of virophages in 2008 and research in recent years revealed an increasingly complex
network of interactions between cell, giant virus, and virophage. Virophages seem to be
highly abundant in the environment and occupy the same niches as the Mimiviridae and
their hosts. Establishment of metagenomic and co-culture approaches rapidly increased
the number of detected virophages over the recent years. Genetic interaction of cell and
virophage might constitute a potent defense machinery against giant viruses and seems
to be important for survival of the infected cell during mimivirus infections. Nonetheless,
the molecular events during co-infection and the interactions of cell, giant virus, and
virophage have not been elucidated, yet. However, the genetic interactions of these three,
suggest an intricate, multilayered network during amoebal (co-)infections. Understanding
these interactions could elucidate molecular events essential for proper viral factory
activity and could implicate new ways of treating viruses that form viral factories.

Keywords: Acanthamoeba polyphaga mimivirus (APMV), virophage, nucleocytoplasmatic large DNA virus
(NCLDV), mimivirus, pathogen defense

INTRODUCTION TO GIANT VIRUSES

The discovery of giant viruses in the early 2000s led to a mind shift in the field of virology with
respect to the potential origins of viruses (La Scola et al.,, 2003; Raoult et al., 2004). Originally,
viruses were thought of as submicroscopic particles with a self-evident denial that viruses might
exist, whose size would be large enough to be resolved with a simple light microscope (Lwoff, 1957;
Raoult, 2013). Due to this mindset, the large, gram-positive particles in an Acanthamoeba polyphaga
population were at first erroneously classified as bacteria (Birtles et al., 1997; La Scola et al., 2003;
Raoult et al., 2007). Only the absence of ribosomal DNA in the presumed bacterium, led to the
discovery and definition of the A. polyphaga mimivirus (APMV) in 2003 (La Scola et al., 2003).
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The acronym mimivirus (for mimicking microbe) reflects the
resemblance to bacteria upon gram staining. At the same time,
the discovery of APMV was the first ever report of a virus
infecting amoebae. Amongst other features that are detailed
below, APMV is unusual as it contains a large genome of 1.14
Mbp, thereby even surpassing the genome size of some bacterial
species (Raoult et al., 2004). APMV particles are characterized
by an up to 700 nm large capsid (Figure 1A), which is well
above the resolution of a simple light microscope. Once it was
established that giant DNA viruses of amoebae exist, many more
such viruses, belonging to the nucleoplasmatic large DNA viruses
(NCLDV) were found in the environment, as well as within
a wide range of host organisms from humans, monkeys, and
oysters (Boughalmi et al., 2013a; Dornas et al., 2014; Andrade
et al., 2015). Ex vivo studies of human cell lines revealed that
APMYV is capable of infecting myeloid and mononuclear blood
cells and interferes with the type I Interferon system (Silva et al.,
2014). In addition, a distantly APMV-related NCLDV family
member has been shown to productively infect T-lymphocytes
under laboratory conditions (Popgeorgiev et al., 2013). In 2008,
a small particle called Sputnik 1 (La Scola et al., 2008) was
discovered in A. polyphaga, which parasitizes viral factories of
giant viruses. Due to the functional similarity to bacteriophages
in mediating lateral gene transfer, Sputnik was classified as a
virophage (La Scola et al., 2008). Here, we will review the
expanding family of virophages and discuss the implications for
giant virus reproduction inside amoebae.

THE DIVERSE FAMILIES OF GIANT
VIRUSES THAT INFECT AMOEBAE

The discovery of APMV sparked the interest in giant viruses and
spawned a contemporary research field of its own (La Scola et al.,
2003). Up until today, two giant virus families belonging to the
NCLDV have been described that primarily infect amoebae: the
Mimiviridae and the Marseilleviridae (Figure 1B). The latter has
the A. polyphaga marseillevirus (APMaV) as founding member,
which was discovered in 2009 (Boyer et al., 2009; Colson
et al,, 2013). In the last decade, nine additional viruses have
been associated with the Marseilleviridae group (Colson et al.,
2017). The Acanthamoeba castellani lausannevirus (ACLaV) was
discovered by incubating water from the Seine river in France
with A. castellani, a close relative of A. polyphaga (Thomas et al.,
2011). ACLaV is the first known giant virus to encode histone-
like proteins, which could point towards a DNA packaging
mechanism similar to eukaryotes (Thomas et al., 2011). The
Cannes 8 virus (Ca8V) (La Scola et al., 2010) and the Senegal
virus (SNGV) (Lagier et al., 2012) have been isolated using similar
co-culture methods and are grouped with the Marseilleviridae.
The icosahedral capsid of the Marseilleviridae is between 190 and
250 nm in diameter (Colson et al., 2013). Like the genome of the
Mimiviridae, the 370,000 bp dsDNA genome is encased in a lipid
bilayer and encodes about 450 proteins (Boyer et al., 2009; La
Scola et al., 2010; Thomas et al., 2011; Lagier et al., 2012). Both,
Mimiviridae and Marseilleviridae, share only nine core genes
with all NCLDVs (Figure 1C) and 180 genes are shared with at

least two of the NCLDV families (Yutin et al., 2009; Yutin and
Koonin, 2012). Based on the discovery of APMV and its complex
genome, it was suggested to incorporate viruses into the tree
of life by defining them as capsid-encoding organisms contrary
to the ribosome-encoding organisms, which are represented by
eukarya, bacteria, and archaea (Raoult and Forterre, 2008).

APMV—-THE BEST STUDIED GIANT VIRUS
OF AMOEBAE

APMYV was the first giant virus to be discovered (La Scola et al,,
2008) and confronted the scientific community with features
never observed in a virus before. Its capsid size and genetic
complexity with many genes usually found in eukaryotic and
prokaryotic cells challenged the Lwoft’s characteristics of a virus
(Raoult et al., 2004; Raoult and Forterre, 2008). The AT-rich
1.14 Mbp APMV genome features an impressive number of 979
protein-encoding genes in a dense arrangement (Raoult et al,
2004; Legendre et al., 2011). Several of its genes are only found
in giant viruses of amoebae and code for virus-atypical proteins
involved in DNA repair, protein folding, tRNA synthesis and
translation, and more (Raoult et al.,, 2004). In addition, the
APMYV genome displays some plasticity and encodes self-splicing
introns, inteins, and a specific set of mobile genetic elements
called transpovirons (Desnues et al., 2012). Furthermore, the
genome contains many genes likely acquired via horizontal gene
transfer, paralogous genes, and so called ORFans, genes that
encode proteins with unknown function (Suhre, 2005; Filée
et al, 2007; Moreira and Brochier-Armanet, 2008; Forterre,
2010). Many of these genes are shared with the poxviruses,
phycodnaviruses, and other NCLDV's (Filée et al., 2007). ORFans
represent roughly 50% of genes and about 40% of the APMV
proteome, which results in a high number of factors with
unknown functions that might act during viral replication and
morphogenesis (Renesto et al., 2006). Alike “classical” viruses,
APMV genes are partly under the control of early and late
stage-specific promoters (Raoult et al., 2004; Suhre et al., 2005).

The APMV particles possess remarkable structural features,
separating them from the classical structures of viruses
(Figure 1A). In its center, the viral DNA, mRNAs and proteins
are packed into the core compartment (Xiao et al., 2009;
Kuznetsov et al., 2013) and enclosed by a lipid membrane.
Among the pre-packed proteins are 12 enzymes involved in
transcription, five in DNA repair, two in RNA modification, and
five in protein modification (Renesto et al., 2006). The central
compartment is surrounded by an approximately 340 nm-large
lipid bilayer and a secondary bilayer directly underneath an
icosahedral capsid. This is comprised of major capsid proteins
and features a five-branch proteinaceous structure, the “stargate,”
at one vortex (Kuznetsov et al, 2013). The capsid itself is
covered by a compact layer of about 120-140 nm long, heavily
glycosylated fibrils, which potentially facilitate the attachment of
APMV to its host cells (Rodrigues et al., 2015).

As of now, only four fiber associated proteins (FAP1-4) have
been functionally associated with either fibril biosynthesis or as
components of the fibrils (Sobhy et al., 2015). FAP1 is an aryl
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FIGURE 1 | Structure of APMV and the core genes and relationship of giant viruses. (A) Viral particles of APMV feature a viral core with the genome, mRNAs, and
prefabricated proteins. This core is surrounded by the indicated membranes and the capsid structure that contains a pentagonal, star-shaped structure termed
“stargate,” which is involved in the release of the viral core into the host cell’'s cytosol upon phagocytosis. The capsid is decorated with a compact layer of fibrils. For
details see main text. (B) Cladogram displaying the relationships of the different lineages of the Mimiviridae and Marseilleviridae. Since the discovery of APMV, over
100 new mimivirus strains have been characterized using samples of various origins in amoebal co-culture methods (Pagnier et al., 2013; Khalil et al., 2016a,b). All
Mimiviridae share a capsid size between 370 and 600 nm and a 1.02-1.26 Mb AT-rich genome which encodes about 1.000 putative proteins (Colson et al., 2017).
Based on sequence homology, the Mimiviridae can be divided into three distinct lineages: lineage A with APMV as prototype and a total of 18 members, as reviewed
recently (Colson et al., 2017), lineage B with the moumouvirus as prototype and four additional members (Yoosuf et al., 2012; Colson et al., 2017), and lineage C with
Megavirus chiliensis as prototype and a total of 12 members (Arslan et al., 2011; Colson et al., 2017). The tree was created using the sequences of the D13 major
capsid proteins of the indicated prototype viruses using Phylogeny.fr, with the relative evolutionary distance indicated (Dereeper et al., 2008, 2010). (C) List of nine
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alcohol oxidase, which catalyzes the degradation of lignin or
lignin derivatives. This suggests that APMV might also be able
to infect lignin-containing algae (Klose et al., 2015; Rodrigues
et al., 2015). However, the fibrils and associated proteins are not
essential for the productive infection of amoebae: during long-
term intraamoebal culture (150 generations), the responsible
genes are lost (Boyer et al., 2011; Rodrigues et al., 2015). This
indicates that the genomic complexity of APMV might be
maintained to allow for a broad host range. If so, only a subset of
its diverse molecular tools would come in use to enter and infect
individual hosts.

INFECTION CYCLES OF GIANT VIRUSES
IN AMOEBAE

Even though the replication cycle of most giant viruses differ
in aspects like nuclear involvement, duration, assembly, and
release of the viral progeny, key steps in the infection appear
to be conserved, as summarized recently (Colson et al., 2017).
For example, all known giant viruses enter the host cell by
phagocytosis and release their DNA into the cytosol in a similar
manner (Ghigo et al, 2008). Furthermore, viral replication
takes place in specialized endoplasmatic reticulum (ER)-derived
compartments that are found in the cytosol and are called viral

factories (Xiao et al., 2009; Mutsafi et al., 2010; Kuznetsov et al.,
2013).

After uptake, the virus resides in a de-novo phagosome.
Subsequently, the phagosomal and viral membranes fuse, which
allows the release of the viral core, that contains the genome,
proteins, and mRNAs into the cytosol (Zauberman et al., 2008;
Mutsafi et al., 2010). Alike the well-described poxvirus (Broyles,
2003), the structural integrity of the viral core seems to be
retained until viral factories arise (Claverie et al., 2009; Mutsafi
et al., 2010). Intriguingly, recent experiments suggest that viral
transcription might be initiated already before the release of the
viral core (Mutsafi et al., 2014). Once in the cytosol, replication of
the viral genome begins immediately and the expression of early
stage genes leads to the formation of early viral factories (Suzan-
Monti et al., 2007; Mutsafi et al., 2013, 2014). The replication
cycle is confined to the cytosol, again a trait shared with the
poxvirus (La Scola et al, 2003; Claverie et al, 2009). This
also suggests that giant viruses (like the poxvirus) must carry
transcription complexes to initiate transcription immediately
after infection (Resch et al., 2007; Claverie et al., 2009). In
later stages of infection, these viral factories merge into one
large cytosolic compartment for replication and capsid assembly
(Suzan-Monti et al., 2007; Mutsafi et al., 2014). It should be
noted that viral factories are not chaotic, but rather appear
to feature distinct assembly lines for their progeny. The viral
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factory is made up of functional regions playing discrete roles
in replication, capsid assembly, DNA packaging, and attachment
of fibrils (Suzan-Monti et al., 2007; Mutsafi et al., 2014). In
the outermost layer of the viral factory, the internal membrane
layers of APMV are assembled from host-derived membrane
vesicles, which are thought to rupture, thereby forming open
single-layer membrane sheets (Mutsafi et al., 2013). Capsid
assembly occurs around these membrane sheets and is scaffolded
by the major capsid protein L425 (Mutsafi et al., 2013). Upon
capsid formation, the genome is deposited into the empty viral
particle through a transient interstice distal from the “stargate”
structure (Zauberman et al., 2008). There is little evidence
for a nuclear stage of giant viruses. However, the nuclei of
A. polyphaga and A. castellani exhibit transient changes in
their morphology during the early stages of infection with
members of the Marseilleviridae family (Arantes et al., 2016).
This indicates that nuclear host factors might play a role in
the APMV replication, a notion that is supported by a two-fold
decrease of the nuclear size in infected A. polyphaga cells (Colson
et al,, 2017). This might be due to a substantial redistribution
of nuclear factors for viral replication, transcription or other
processes (Colson et al., 2017). Albeit indirectly, this scenario
is supported by data on the cytoplasmic replication of the
Vaccinia virus (a poxvirus), to which mimivirus replication bears
similarities (Mutsafi et al., 2010) and for which the involvement
of nuclear enzymes has been demonstrated (Oh and Broyles,
2005).

VIROPHAGES AS PARASITES OF THE
MEGAVIRALES

The description of Megavirales infection of amoebae was
followed by the discovery of the fascinating virophage Sputnik in
2008 (La Scola et al., 2008). Sputnik was found infecting the viral
factories of the mamavirus, a close relative of APMV (La Scola
etal., 2008). Replication of the Sputnik virophages inside APMV-
infected A. castellani cells is deleterious to APMV replication
and results in abortive DNA replication and disruption of capsid
biogenesis (La Scola et al., 2008). There is an ongoing discussion
on the classification of virophages, that are denoted in several
articles as satellite viruses (Krupovic and Cvirkaite-Krupovic,
2011; Blanc et al., 2015; Koonin and Krupovic, 2017). Satellite
viruses are characterized by their dependency on factors of a
helper virus. However, the Sputnik genomes itself encodes factors
involved in viral replication (La Scola et al., 2008), suggesting that
Sputnik can be classified as a virus, rather than a defective viral
particle or sub-viral agent (Fischer, 2011; Desnues and Raoult,
2012).

All known members of the virophage family parasitizing
on giant viruses are categorized into the large virus-dependent
or -associated (Lavida-)viridae family that is divided into the
Sputnikvirus and Mavirus genera (Krupovic et al., 2016). At the
species level, the Sputnikvirus genus can be differentiated into the
APMV-dependent Sputnik virophage and the APMV-dependent
Zamilon virophage (Table 1), while Mavirus genus contains
only the Cafeteria roenbergensis virus (CroV)-dependent mavirus
(Krupovic et al., 2016).

Virophage replication has been extensively studied in
particular for Sputnik, Zamilon and mavirus. Studies on amoebae
infected with different mimiviruses revealed that Sputnik
virophages can parasitize mimiviruses from all Mimiviridae
lineages but apparently not the Marseilleviridae lineages (Gaia
et al., 2013). Sputnik replicates inside mamavirus-infected A.
castellani cells within the viral factories, nonetheless, with
different kinetics as the mamavirus and at multiple hot spots
inside the factory (La Scola et al., 2008). In APM Vs viral factories,
Sputnik infection results in the emergence of newly generated
particles 6h post infection with a concomitant decrease of
infective APMV particles (Ogata and Claverie, 2008). The 18,343-
kilobase circular dsDNA genome of Sputnik possesses 21 partly
overlapping open-reading frames (ORFs) encoding for several
factors involved in DNA replication (La Scola et al., 2008).
Interestingly, four of the ORFs are strongly homologous to
APMV-encoded genes (La Scola et al., 2008; Gaia et al., 2013).
Since Sputnik virophages encodes a lambda-type integrase, the
molecular tools for genomic integration are present (La Scola
et al., 2008). Indeed, an integration of the Sputnik genome into
the genome of the Lentille virus, a relative of APMYV, could
be observed experimentally (Desnues et al., 2012). There is no
indication of Sputnik genome integration into the host cell
genome, in line with the lack of indications for a nuclear phase.

The Zamilon virophage (belonging to the Sputnikvirus genus)
was discovered together with the Montl mimivirus in soil
samples from Tunisia (Boughalmi et al., 2013a; Gaia et al., 2014).
The 60 nm-wide, spherical virophage carries a 17,276 bp dsDNA
genome encoding 20 genes. Although Zamilon shares 76% of its
genomic sequence with Sputnik, Zamilon can only infect lineages
B and C (Gaia et al,, 2014). Furthermore, the tv_L8 protein,
encoded in the transpovirons of the Monve mimivirus, shares
significant homology with the ORF8-encoded protein of Zamilon
(Gaia et al,, 2014). This suggests that an exchange of genetic
material can in principle occur between the giant virus and the
Zamilon virophage within co-infected amoebae, although this
has not been observed experimentally so far.

The Maverick-related virus (mavirus), lonely member of the
Mavirus genus, parasitizes the viral factories of CroV that infects
the marine heterotrophic nanoflagellate C. roenbergensis (Fischer
et al.,, 2010; Fischer and Suttle, 2011). Although this review is
predominantly concerned with infection of amoebae, mavirus is
included here for its unique features for a virophage. Its 19,063
bp circular genome possesses 20 ORFs including a retroviral
integrase, an unsual, protein-primed DNA polymerase, plus four
additional proteins, all of which are also found conserved in
Maverick/Polinton (MP) retroelements (Fischer and Suttle, 2011;
Krupovic et al., 2014, 2016). Additionally, the termini of the
mavirus genome consist of long terminal repeats similar to
those found in MP retroelements (Yutin et al., 2013; Krupovic
et al, 2016). Both findings suggest that these retroelements
might have originated from mavirus genome integration events
in mavirus co-infected cells (Fischer and Suttle, 2011; Krupovic
et al.,, 2016). Nonetheless, this hypothesis for the origins of MP
retroelements remains to be tested experimentally. Fischer and
Hackl (2016) succeeded to monitor the integration of mavirus
into the C. roenbergensis genome by co-infection with a low
multiplicity of infection of CroV. Intriguingly, genes in the
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mavirus genome possess promoter sequences similar to the
late stage promoter of CroV (Fischer and Hackl, 2016). As
a consequence, re-infection of C. roenbergensis carrying the
integrated mavirus genome with CroV resulted in inhibition of
CroV DNA replication, concomitantly with an increased survival
of C. roenbergensis (Fischer and Hackl, 2016).

Other virophages have been discovered by metagenomic
analysis of water samples [e.g., the Organic Lake virophage (Yau
etal, 2011), the Yellowstone Lake virophages (Zhou et al., 2013,
2015)]. However, the viral and cellular host for these remain to be
determined (Krupovic et al., 2016), unlike the situation of the Rio
Negro virophage that has the Samba virus as viral host (Campos
et al., 2014).

OUTLOOK

Since the discovery of its first member APMV in 2003,
new giant viruses are discovered continuously in samples
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