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Pneumonia and meningitis continue to present an enormous public health burden

and pose a major threat to young children. Among the causative organisms of

pneumonia and meningitis, bacteria are the most common causes of serious disease

and deaths. It is challenging to accurately and rapidly identify these agents. To solve

this problem, we developed and validated a 12-plex PCR coupled with matrix-assisted

laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) method

(bacterial pathogen-mass spectrometry, BP-MS) that can be used to simultaneously

screen for 11 key bacterial pathogens related to pneumonia and meningitis. Forty-six

nasopharyngeal swabs and 12 isolates were used to determine the specificity of the

method. The results showed that, using the BP-MS method, we could accurately

identify the expected bacteria without cross-reactivity with other pathogens. For the

11 target bacterial pathogens, the analytical sensitivity of the BP-MS method was as

low as 10 copies/reaction. To further evaluate the clinical effectiveness of this method,

204 nasopharyngeal swabs from hospitalized children with suspected pneumonia were

tested using this method. In total, 81.9% (167/204) of the samples were positive for at

least one of the 11 target pathogens. Among the 167 bacteria-positive samples, the

rate of multiple infections was 55.7% (93/167), and the most frequent combination was

Streptococcus pneumoniae with Haemophilus influenzae, representing 46.2% (43/93)

two-pathogen mixed infections. We used real-time PCR and nested PCR to confirm

positive results, with identical results obtained for 81.4% (136/167) of the samples. The

BP-MS method is a sensitive and specific molecular detection technique in a multiplex

format and with high sample throughput. Therefore, it will be a powerful tool for pathogen

screening and antibiotic selection at an early stage of disease.
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INTRODUCTION

Pneumonia and meningitis continue to be an enormous public
health burden. According to the Global Burden of Disease 2015
study, more than 3.1 million deaths due to pneumonia and
meningitis were estimated to have occurred in 2015. The two
diseases together accounted for more than 15% of deaths in
children under 5 years of age. Bacteria, viruses, and fungi can
all cause pneumonia and meningitis, but bacteria are the leading
cause of serious disease and deaths (GBD 2015 Mortality and
Causes of Death Collaborators, 2016). For bacterial pathogens,
the selection of appropriate antibiotics forms the basis of
sound clinical management. However, this complex etiology and
overlapping clinical presentations make it challenging to identify
the causative organism.

Culture-based microbiological methods are routinely used to
determine the responsible pathogen, but a long turn-around time
and low sensitivity reduce their utility in making timely decisions
(Prina et al., 2015). Even with an advanced automated bacteria
identification system, nearly 20 h of processing time is needed
(Bobenchik et al., 2014; Jacobs et al., 2017). Moreover, additional
time and labor are necessary for pathogens that grow slowly,
such as Legionella pneumophila and Mycoplasma pneumoniae
(Atkinson et al., 2008; Mercante and Winchell, 2015). To avoid
the drawbacks of culture-based approaches, molecular testing
has been widely applied, providing an important complement
to bacterial culture. Molecular detection is faster, more sensitive,
and can be automated. In addition, several emerging technologies
such as multiplex real-time PCR and microarray methods are
available for clinical application (Buchan and Ledeboer, 2014).

MassARRAY System (Agena Bioscience, Inc., San Diego,
CA, USA), a detection platform combining matrix-assisted laser
desorption ionization-time of flight mass spectrometry (MALDI-
TOF MS) with endpoint PCR, has been successfully applied in
the field of microbial detection (Syrmis et al., 2011; Li et al.,
2013; Peng et al., 2013a,b, 2014, 2016; Zhang et al., 2015).
Taking advantage of the system’s multiplex capability and high
sample throughput, we developed and validated a bacterial
pathogen-MS panel (BP-MS) to simultaneously screen 11 key
bacterial pathogens associated with pneumonia and meningitis,

including Streptococcus pneumoniae, Haemophilus influenzae,
Neisseria meningitidis, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, Staphylococcus aureus,
Moraxella catarrhalis, L. pneumophila, M. pneumoniae, and
Bordetella pertussis. To evaluate the effectiveness of the BP-MS
method, we tested 204 clinical respiratory tract samples. Real-
time PCR and nested PCR were used to confirm the results.

MATERIALS AND METHODS

Specimens
Using PCR and Sanger sequencing, 46 stock nasopharyngeal
swabs were determined positive for target pathogens and used in
the validation stage (data not shown). Isolates were also included
in this validation stage. The 204 nasopharyngeal swabs used in the
evaluation stage were collected from children hospitalized with

suspected pneumonia in Beijing Children’s Hospital in 2014. The
swab samples were collected before antibiotic treatment.

DNA Extraction
All of the nasopharyngeal swabs were collected according to
a standard protocol in general bacteria collection tubes with
maintenance medium (Yocon, Beijing, China) and then stored
at −80◦C. For DNA extraction, samples were thawed at room
temperature, 200 µl of maintenance medium was added, and the
mixture was centrifuged at 5,000 × g for 10min. The bacterial
pellets were then resuspended in 150 µl of enzyme cocktail
containing 30U of lysostaphin, 6mg of lysozyme, 37.5U of
mutanolysin, and 30U of lyticase (Millipore Sigma, Darmstadt,
Germany) in lysis buffer with working concentrations of 20mM
Tris-HCI (pH 8), 2mM EDTA, and 1.2% Triton. To lyse the
rigid cell walls of gram-positive bacteria, the resuspended bacteria
were incubated at 37◦C for 30min. After incubation, 20 µl of
proteinase K and 200µl of buffer AL (QIAgen, Hilden, Germany)
were added, and the mixture was incubated for 20min at 56◦C
and then 15min at 95◦C. Finally, the DNA was purified using a
QIAamp DNA Mini Kit (QIAgen, Hilden, Germany) according
to the user’s guide.

Assay Design
To design the assay, we used Assay Design 4.0 software (Agena
Bioscience, Inc., San Diego, CA, USA) according to the user’s
manual. For each of the 11 pathogens, a target gene was chosen to
design the detection assays. Human β-globin (HBB) was selected
as an internal control, and BLASTn was used to check the
specificity of each target gene. For each target gene, sequences
in GenBank database were downloaded and aligned. Conserved
regions were chosen to design the assays. In each assay, forward
and reverse PCR primers were used to amplify the template and
an extension primer was used for single base extension (SBE)
reaction. To avoid interference in the mass spectra, a 10-base
mass tag (ACGTTGGATG) was added to the 5′ end of each PCR
primer. PCR and extension primers were synthesized by Tsingke
Biological Technology (Beijing, China).

Primary Multiplex PCR and
Dephosphorylation Reaction
Twelve pairs of PCR primers were pooled and then mixed
with hot start PCR enzyme, PCR buffer, MgCl2 (Agena
Bioscience, Inc.), uracil-DNA glycosylase (ShineGene Molecular
Biotechnology, Shanghai, China), dNTP (dATP, dGTP, dCTP, and
dUTP) (Promega,Madison,WI, USA), and 2µl of DNA template
for a 5-µl total volume. The multiplex PCR was performed
in 384-well PCR plates using a ProFlex PCR system (Applied
Biosciences, Foster City, CA, USA). The reaction conditions for
the multiplex PCR were as follows: 45◦C for 2min; 94◦C for
4min; 95◦C for 2min; 45 cycles of 95◦C for 30 s, 56.5◦C for
30 s, and 72◦C for 1min; and 72◦C for 5min. After amplification,
shrimp alkaline phosphatase (SAP) (Agena Bioscience, Inc.) was
used to dephosphorylate excess dNTP at 37◦C for 40min, and
then the SAP was inactivated at 85◦C for 5min.
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SBE Reaction and MS
Following the dephosphorylation reaction, an SBE reaction was
performed using the iPlex Pro SBE system (Agena Bioscience,
Inc.) with a mixture of 12 extension primers according to the
user’s manual. During this process, the extension primers bound
to the amplicons generated in the primary multiplex PCR and
incorporated one terminator nucleotide. After exchanging salts
with resin, the SBE reaction products were transferred to a 384
silica array preloaded with matrix (Agena Bioscience, Inc.) and
then analyzed by mass spectrometry. If an extension primer
incorporated a terminator nucleotide, a peak representing the
extended extension primer appeared at the expected mass. The
peak height representing the original extension primer was
reduced. Based on the mass spectrum, the template could be
identified. The detailed procedure with reagent concentrations
and reaction conditions can be found in previous reports (Zhang
et al., 2015; Xiu et al., 2017).

Real-Time PCR and Nested PCR Methods
Used as Confirmatory Tests
Real-time PCR was performed to confirm positive results
from the BP-MS method. For S. pneumoniae, H. influenzae,
S. aureus, M. catarrhalis, K. pneumoniae, A. baumannii, and P.
aeruginosa, multiplex real-time PCR was used (Gadsby et al.,
2015). For N. meningitidis, L. pneumophila, M. pneumoniae,
and B. pertussis, singleplex real-time PCR was used according
to previously published methods (Corless et al., 2001; Welti
et al., 2003; Tatti et al., 2011). Each sample was tested in
duplicate and regarded as positive if both cycle threshold
(CT) values were <40. Nested PCR methods were used to
resolve disagreements between results of the BP-MS and real-
time PCR methods. The nested PCR was designed in-house
for this study and was based on published conventional PCR
assays. The primers and probes used in the confirmatory tests
described above are listed in Tables S2, S3 in the Supplementary
Material.

Statistical Analysis
Differences in the concordance rates of results for multiple-
infection samples and single-infection samples were χ2-tested.
A p-value <0.05 was considered statistically significant.

Ethics Approval
The study was performed in accordance with the
recommendations of national ethics regulations and approved
by the Institutional Review Board of the Institute of Pathogen
Biology. All participants provided written informed consent
in accordance with the Declaration of Helsinki. For children,
written informed consent was obtained from parents or
guardians.

RESULTS

BP-MS Method
In this study, we developed a 12-plex method to simultaneously
detect 11 key bacterial pathogens associated with pneumonia
and meningitis, using HBB as a nucleic acid extraction

control. On the basis of previously published studies, we
chose well-characterized and highly sensitive and specific
genes as targets. In silico analysis showed that the BP-MS
method can be used to specifically detect target pathogens,
including most strains within a species. The final target
genes and assays are listed in Table S1 in the Supplementary
Material.

Validation of Specificity and Sensitivity
Specificity of the method was validated by testing 58 confirmed
clinical samples and isolates (Table 1). The results showed
that the BP-MS method can be used to accurately identify
the expected bacteria without cross-reactivity with non-target
pathogens (Figures S1, S2 in the Supplementary Material).
Plasmids containing the target genes of each pathogen
were 10-fold diluted and used to evaluate the analytical
sensitivity of the BP-MS method. Based on the results, the
BP-MS method can be used to determine the concentration
of corresponding plasmids with 10 copies per reaction
(Figure 1).

Evaluation of the BP-MS Method
Performance With Clinical Samples
A total of 204 nasal and throat swabs were collected to
evaluate the performance of the BP-MS method. Each
of the 11 target pathogens was detected, with an overall
detection rate of 81.9% (167/204). Among all the 167
pathogen-positive samples, the rate of infection with

multiple pathogens was 55.7% (93/167). Two and three
pathogens were detected in 47 and 29 samples, respectively,
whereas four or five pathogens were detected in 17
samples.

Samples determined pathogen-positive by the BP-MS method
were re-tested first by real-time PCR. Using a combination
of multiplex and singleplex real-time PCRs, 46.1% (77/167)
of the positive samples showed results concordant with

TABLE 1 | Sequencing confirmed nasopharyngeal swabs and isolates used for

validating specificity.

Target bacteria No. of confirmed

swabs

No. of isolates Total

Streptococcus pneumoniae 7 0 7

Haemophilus influenzae 6 1 7

Neisseria meningitidis 2 2 4

Klebsiella pneumoniae 3 2 5

Acinetobacter baumannii 3 1 4

Pseudomonas aeruginosa 3 1 4

Staphylococcus aureus 6 0 6

Moraxella catarrhalis 5 1 6

Legionella pneumophila 0 4 4

Mycoplasma pneumoniae 7 0 7

Bordetella pertussis 4 0 4

Total 46 12 58
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FIGURE 1 | Mass spectrum of sensitivity evaluation by using 10-fold diluted plasmids. Figures (A–L) represents the mass spectra of each target by analyzing

plasmids at 10 copies/reaction. The left arrow indicates the consumed unextended primer and the right arrow indicates the extended primer. The x-axis represents the

mass of extension primer and the y-axis represents the intensity.

those from the BP-MS method. Compared with the BP-MS
method, 56.8% (42/74) of the single-infection samples showed
concordant results, but for multiple infection samples, the
concordance rate was only 37.6% (35/93). These concordance
rates differed significantly (p = 0.014 by χ2-test). The
discordant samples were further confirmed by nested PCR
followed by sequencing of PCR products. Combining results
of the real-time and nested PCRs, the BP-MS method and

confirmatory tests showed 81.4% (136/167) concordance, with
verification rates for each target pathogen ranging from 50%
(L. pneumophila) to 100% (B. pertussis) (Table 2). For single-
infection samples, the overall verification rate was 81.1%
(60/74), whereas this rate was 81.7% (76/93) for multiple-
infection samples. The difference between these two rates
was not statistically significant (p = 0.92 by χ2-test). The
most frequent combination in multiple-pathogen infections
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was S. pneumoniae with H. influenzae, which accounted for
46.2% (43/93) of mixed infections. All combinations of multiple
infections that were verified by confirmatory tests in this study
are listed in Table 3. Thirty-one BP-MS-positive samples were
not verified by either real-time PCR or nested PCR. Of these,
14 were single-infection samples and 17 were multiple-infection
samples. All single-infection samples tested negative by both
confirmatory tests, and, for 13 of 17 multiple-infection samples,
one of the targets was not confirmed. For single-infection
samples, S. pneumoniae was the pathogen most commonly
unconfirmed (n = 9) whereas for multiple-infection samples,
K. pneumoniae was the pathogen most commonly unconfirmed
(n = 7). Details of the 31 discordant samples are shown in
Table 4.

DISCUSSION

Pneumonia and meningitis can be caused by various bacterial
pathogens; therefore, identifying the causative organism in
a clinical case is challenging. Real-time PCR is a method
frequently used for pathogen detection, but the limited optical
channels restrict the number of targets that can be detected
simultaneously. An optimized real-time PCR assay can be used
to detect three to four targets in one reaction, which means that
multiple reactions are needed to cover the spectrum of potential
pathogens (Edin et al., 2015; Gadsby et al., 2015). Some sample-
to-result platforms, such as the FilmArray (Biofire, Salt Lake
City, UT, USA) system, provide another solution. The FilmArray
system integrates sample preparation, amplification, detection,

TABLE 2 | Results of confirmatory tests of positive samples by the BP-MS method.

Target bacteria No. (%) of

positive samples

by BP-MS

No. of samples

confirmed by real-time

PCR/No. of positive

samples by BP-MS

Verification rate

(%) of real-time

PCR

No. of discordant

samples confirmed by

nested PCR

No. of overall

confirmed

samples

Overall

verification rate

(%)

Streptococcus pneumoniae 124 (60.8) 72/124 58.1 40 112 90.3

Haemophilus influenzae 56 (27.5) 52/56 92.9 2 54 96.4

Neisseria meningitidis 1 (0.5) 0/1 0 1 1 100

Klebsiella pneumoniae 25 (12.3) 1/25 4 15 16 64

Acinetobacter baumannii 23 (11.3) 11/23 47.8 7 18 78.3

Pseudomonas aeruginosa 13 (6.4) 9/13 69.2 2 11 84.6

Staphylococcus aureus 25 (12.3) 17/25 68 7 24 96

Moraxella catarrhalis 27 (13.2) 24/27 88.9 2 26 96.3

Legionella pneumophila 2 (1) 1/2 50 0 1 50

Mycoplasma pneumoniae 25 (12.3) 21/25 84 1 22 88

Bordetella pertussis 3 (1.5) 3/3 100 0 3 100

Totala 167(81.9) 77/167 46.1 59 136 81.4

aThe total number of clinical samples is 204.

TABLE 3 | Multiple infections verified by confirmatory tests.

Infection typea No. Infection type No. Infection type No.

Dual infections (n = 40) Triple infections (n = 24) Quadruple infections (n = 11)

SP, HI 15 SP, HI, MC 4 SP, HI, KP, AB 2

SP, PA 5 SP, HI, AB 4 SP, MP, HI, SA 1

SP, MP 3 SP, HI, SA 3 HI, MC, KP, PA 1

SP, SA 3 SP, SA, MC 3 SP, MC, KP, AB 1

SP, MC 3 SP, MP, HI 3 SP, MP, MC, AB 1

SP, AB 2 SA, MC, KP 2 SP, MP, HI, KP 1

KP, AB 2 KP, PA, AB 1 SP, HI, MC, KP 1

MP, HI 2 SP, HI, PA 1 SP, HI, MC, NM 1

SA, KP 2 MP, HI, KP 1 SP, HI, SA, MC 1

SA, MC 1 SP, MP, MC 1 SP, BP, SA, AB 1

HI, KP 1 SP, MP, PA 1 Quintuple infections (n=1)

HI, MC 1 SP, MP, HI, SA, MC 1

aSP, Streptococcus pneumoniae; LP, Legionella pneumophila; BP, Bordetella pertussis; MP, Mycoplasma pneumoniae; HI, Haemophilus influenzae; SA, Staphylococcus aureus;

MC, Moraxella catarrhalis; KP, Klebsiella pneumoniae; PA, Pseudomonas aeruginosa; AB, Acinetobacter baumannii; NM, Neisseria meningitides.
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TABLE 4 | Samples with discordant results by the BP-MS method and the

confirmatory tests.

Sample ID BP-MS resultsa Confirmatory tests results

S1 PA Negative

S2 SP Negative

S3 SP Negative

S4 AB Negative

S5 KP Negative

S6 SP Negative

S7 SP Negative

S8 LP Negative

S9 SP Negative

S10 SP Negative

S11 SP Negative

S12 SP Negative

S13 SP Negative

S14 HI Negative

S15 SP, SA, KP, AB SP, SA, AB

S16 SP, HI, AB SP, HI

S17 SP, AB SP

S18 HI, MC, KP, PA HI, MC

S19 SP, MP SP

S20 SP, HI, SA SP, SA

S21 SP, BP, HI BP, HI

S22 SP, MC, KP, AB SP

S23 SP, MP, HI, SA SP, MP, HI

S24 MP, PA PA

S25 SA, KP, AB SA

S26 SP, LP, KP SP, LP

S27 KP, AB AB

S28 SP, KP KP

S29 SP, MP SP

S30 SP, KP Negative

S31 SP, HI, KP, AB SP, HI, AB

aSP, Streptococcus pneumoniae; LP, Legionella pneumophila; BP, Bordetella pertussis;

MP, Mycoplasma pneumoniae; HI, Haemophilus influenzae; SA, Staphylococcus aureus;

MC, Moraxella catarrhalis; KP, Klebsiella pneumoniae; PA, Pseudomonas aeruginosa; AB,

Acinetobacter baumannii; NM, Neisseria meningitidis.

and analysis in one device, and the results can be obtained in 1 h,
with 5min of hands-on time. However, each FilmArray analyzer
can process only one specimen per run, resulting in a high cost
per specimen (Poritz et al., 2011; Babady, 2013).

One advantage of the BP-MS method established in this study
is the comprehensive coverage of targets. Up to 11 pathogens can
be detected simultaneously in one reaction, which is beneficial
in respiratory illnesses with many possible etiologies and saves
a substantial amount of labor. The high sample throughput of
this method is another advantage. Using a 384-well PCR plate, as
many as 380 clinical specimens can be analyzed within a single
experiment, reducing the cost to <$4 per sample (not including
nucleic acid extraction). Therefore, when many samples need to
be tested, the BP-MS method is more feasible and economical
than a FilmArray system.

The 11 target pathogens selected for use in the BP-MS
method are the etiologic organisms most frequently detected in
association with bacterial respiratory diseases. For community
acquired pneumonia (CAP), S. pneumoniae is most often the
cause, and other common bacterial causes include H. influenzae
andM. catarrhalis (Musher and Thorner, 2014).M. pneumoniae
and L. pneumophila are atypical CAP etiologies (Arnold et al.,
2007). In contrast to bacteria associated with CAP, the dominant
etiologic agents of hospital-acquired bacterial pneumonia are
S. aureus, P. aeruginosa, K. pneumoniae, and A. baumannii,
always showing less susceptibility to antimicrobials (Jones, 2010).
In addition, N. meningitidis and B. pertussis are common causes
of meningitis and pertussis. We have also designed assays for
Chlamydia pneumoniae, which is an important atypical pathogen
responsible for CAP. As isolates and positive clinical samples
of C. pneumoniae are not available in this study, we have not
evaluated its performance, so it is not included in the current
panel.

Based on the sensitivity test, the limit of detection (LOD) of
the BP-MS method is 10 gene copies/reaction. In this study, 31
samples positive for at least one of the target pathogens using
the BP-MS method were not confirmed positive by either real-
time PCR or nested PCR. We speculate that the different designs
of the BP-MS method and confirmatory tests accounted for such
discrepancies. Apart frommethodological factors, the lower LOD
with the BP-MSmethod may be attributable to the five additional
cycles of primary multiplex PCR and dissimilar target selection
(H. influenzae and S. aureus, Table S2). For target pathogens
with low rates of concordance, such as K. pneumoniae, this
disagreement may be attributable to differences in sensitivities of
the BP-MS method and confirmatory tests.

The composition of the airway microbiota is driven by
different ecological factors and is highly heterogeneous
(Huffnagle et al., 2017). Some commensal bacteria such as
Streptococcus mitis, Streptococcus oralis, and Haemophilus
haemolyticus are closely related to pathogenic bacteria, which
complicates accurate identification in certain individuals.
Because of resource constraints, isolates of commensal bacteria
were not included in the validation stage. The increase in
detection with the BP-MS method relative for that with real-time
PCR and nested PCR may be the results of cross-reactions
with related species. Although we chose species-specific genes
as targets to avoid cross-reactions, this possibility cannot be
ruled out.

For CAP cases, multiple types of specimens should be used
for microbial diagnosis (Johansson et al., 2010). A positive result
from blood or pleural fluid (e.g., for meningitis, cerebrospinal
fluid) samples by molecular test is of great value for pathogen
identification. However, some substances present in blood, body
fluids, and sputum may affect polymerase activity and inhibit
amplification (Burd, 2010). Because of this, in the next stage of
evaluation, various specimen types will be included.

The BP-MSmethod is a qualitative test, and its high sensitivity
may allow asymptomatic carriage to be incorrectly interpreted as
an etiological diagnosis. S. pneumoniae is the most commonly
pathogenic bacteria carried in the nasopharyngeal cavity. The
prevalence of S. pneumoniae carriage differs greatly between
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countries, ranging from 8.6 to 72%, and is higher in developing
countries (Marchisio et al., 2002; Huang et al., 2004; Hill et al.,
2006; Neves et al., 2013). Two recent studies indicate that the
colonization rate of S. pneumoniae among healthy children in
China is 16.6 to 26.6% (Hu et al., 2016; Pan et al., 2016),
which means that for some cases of pneumonia, S. pneumoniae
may not be the causative agent. Therefore, S. pneumoniae in a
respiratory tract sample should be interpreted clinically, as is the
case with other colonizing microorganisms such asH. influenzae,
S. aureus, M. catarrhalis, and N. meningitidis. In this respect,
a quantitative molecular test is more helpful in distinguishing
etiological infection from asymptomatic carriage (Gadsby et al.,
2015), whereas the BP-MS method can provide guidance on
target selection for quantitative tests.

Using conventional and real-time PCR techniques, microbial
etiologies can be identified in 65 to 86% of CAP cases (Thomson
and Harris, 2011). For bacterial etiologies, detection rates are
reported to be 58% by Johansson et al. (2010) and 44.7% by
Jones (2010). Still nearly half of pneumonia cases, in which no
causative agents can be detected (Mandell et al., 2007). In the
present study, using the BP-MS method, the rate of bacterial
pathogen detection was 81.9% (167/204), which indicates that
this new method can assist determining the causative pathogens
in cases with unknown etiologies.

Mixed infections have been reported by different groups,
with the rate of bacterial coinfection varying from 13%
to approximately 33%; the most common combination is
S. pneumoniae and H. influenzae (de Roux et al., 2006; Cilloniz
et al., 2011b; Musher et al., 2017). Bacterial coinfection is
associated with severe disease and high mortality rates, so
timely discovery of mixed etiologies is critical for antimicrobial
treatment and clinical outcomes (Cilloniz et al., 2011a,b;
Kumagai et al., 2015). In our study, S. pneumoniae and
H. influenzae were the most frequently identified coinfection
bacteria, but multiple infections were found in 45.6% (93/204)
of samples, which is higher than the percentage determined in

other studies. In particular, we noticed that, when using real-
time PCR alone, the concordance rate of results for samples
with multiple infections was lower than that for single-infection
samples. This finding suggests that the BP-MS method performs
well in clarifying complicated polymicrobial etiologies.

In summary, with the advantages of its multiplex format and
high sample throughput, the BP-MS method is a powerful tool
that can be used for pathogen screening andmay provide valuable
information for antibiotic selection in early stages of disease.
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