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Tuberculosis (TB) is a formidable infectious disease that remains a major cause of

death worldwide today. Escalating application of genomic techniques has expedited

the identification of increasing number of mutations associated with drug resistance

in Mycobacterium tuberculosis. Unfortunately the prevalence of bacillary resistance

becomes alarming in many parts of the world, with the daunting scenarios

of multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis

(XDR-TB) and total drug-resistant tuberculosis (TDR-TB), due to number of resistance

pathways, alongside some apparently obscure ones. Recent advances in the

understanding of the molecular/ genetic basis of drug targets and drug resistance

mechanisms have been steadily made. Intriguing findings through whole genome

sequencing and other molecular approaches facilitate the further understanding of

biology and pathology of M. tuberculosis for the development of new therapeutics to

meet the immense challenge of global health.

Keywords: Mycobacterium tuberculosis, drug resistance, molecular, comorbidities, therapeutic, drug targets

INTRODUCTION

Tuberculosis (TB) is an airborne infectious disease caused byMycobacterium tuberculosis (Arnold,
2007; Lillebaek et al., 2016). During the eighteenth and nineteenth centuries, this disease widely
plagued Europe and North America and was known as “Captain among these men of Death.” In
the 1800’s, a person with TB was advised to “take slumber and ingest nutritious diet,” due to lack of
knowledge about this disease and the absence of medication (Keshavjee and Farmer, 2012). Later,
the discoveries of tuberculin in 1890, Bacille-Calmette-Guérin (BCG) vaccine in 1908, streptomycin
(STR) in 1944 and isoniazid (INH) in 1952 (Daniel, 2006) were all perceived as scientific revolutions
that could finally lead to the eradication of this deadly disease (Fogel, 2015). The emergence of
drug-resistance as well as infection and transmission of the human-immunodeficiency virus (HIV)
further demonstrated the need of better weapons to eliminate TB. Soon after, researchers realized
that more advanced investigations would be required for development of rapid diagnostic tools and
effective chemotherapy to reduce drug resistant-TB morbidity, mortality and risk of transmission.
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According to the World Health Organization (WHO), 10.4
million TB cases were reported in 2016, including 1 million
people co-infected with HIV, 1.9 million were attributable to
malnutrition, 0.8 million to diabetes and 0.8 million to smoking.
The same year, TB caused 1.3million deaths amongHIV-negative
patients and additionally 374,000 deaths among HIV-positive
patients (WHO, 2017). M. tuberculosis, unlike other pathogens,
requires an extended anti-TB therapy treatment of at least 6
months in order to achieve complete sterilization and prevent
relapse. Chemotherapy of TB is required to tackle growing
and semi-dormant/dormant bacilli, as well as to restrain the
emergence of drug resistance. Unfortunately, development of
drug resistance in the form of monoresistant-TB or MDR-/XDR-
/TDR-TB critically obstructs the efficacy of currently available
drug regimens. Improper use of antibiotics, lack of treatment
adherence, mutational modifications, and limited access to drugs
or diagnostic tools all are risk factors associated with the
emergence of resistant forms of TB (Lange et al., 2014; Georghiou
et al., 2017; Manson et al., 2017). Besides, acquired drug-resistant
TB and transmitted drug-resistant TB pose a serious threat to
global TB control and population health. To meet the evolving
challenge of TB today, newly developed anti-TB drugs and
vaccines are urgently needed.

Furthermore, several studies strongly emphasize that
pathoadaptive mutations and the mutations in drug-related
genes (e.g., genes responsible for drug activation/conversion) are
mainly responsible for numerous pathways in the evolution of
pathogenic organisms and emergence of drug-resistant strains,
respectively (Day et al., 2001). In this review we mainly focused
on molecular targets containing mutations which are found to
be involved in development of drug resistance inM. tuberculosis.

MDR-, XDR-, AND TDR-TB AND THEIR
GLOBAL EXTENT

WHO identified that TB is among the top 10 leading causes
of death around the globe and caused more deaths than HIV

Abbreviations: TB, Tuberculosis; M. tuberculosis, Mycobacterium tuberculosis;

BCG, Bacille-Calmette-Guérin; M. smegmatis, Mycobacterium smegmatis; M.

bovis, Mycobacterium bovis; M. avium, Mycobacterium avium; FLD’s, First
line drugs; SLD’s, Second line drugs; STR, Streptomycin; INH, Isoniazid;
PZA, Pyrazinamide; RIF, Rifampicin; FQ, Fluoroquinolone; AMK, Amikacin;
KAN, Kanamycin; CAP, Capreomycin; RFB, Rifabutin; CLO, Clofazimine; CLR,
Clarithromycin; THZ, Thiacetazone; BDQ, Bedaquiline; DMD, Delamanid; EMB,
Ethambutol; POA, Pyrazinoic acid; VIM, Viomycin; LZD, Linezolid; SZD,
Sutezolid; DCS, D-cycloserine; PRM, Pretomanid; BTZ, Benzothiazinone; ETH,
Ethionamide; PAS, Para-aminosalicylic acid; MDR-TB, Multidrug resistance
tuberculosis; XDR-TB, Extensively drug resistance tuberculosis; TDR-TB,
Totally drug resistance tuberculosis; HIV, Human-immunodeficiency virus;
WHO, World health organization; MIC, Minimum inhibitory concentration;
TEM, Transmission electron microscopy; AFM, Atomic force microscopy;
MGIT96, Mycobacteria Growth Indicator Tube; LPA, Line probe assay;
MODS, Microscopic observation drug susceptibility assay; AFB, Acid-fast
bacilli; SNP, Single nucleotide polymorphisms; ETL, Electron-transparent
layer; EOL, Outer electron-opaque layer; TNF-α, Tumour necrosis factor
alpha; RRDR, RIF-resistance determining region; ACP, Enoyl-acyl carrier
protein; DPPR, Decaprenylphosphoryl-5-phosphoribose; PDIM, Phthiocerol
dimycocerosate; QRDR, Quinolone resistance determining region; dUMP,
deoxyuridine monophosphate; dTMP, deoxythymidine monophosphate.

in 2015 and 2016. Monoresistance to STR in M. tuberculosis
was first reported in 1947-48 (Crofton and Mitchison, 1948).
To overcome drug resistance development, initially, combined
therapy including INH and para-aminosalicylic acid (PAS) along
with STR, and subsequently addition of pyrazinamide (PZA)
and rifampicin (RIF) had been practiced. However due to
poor physician prescription, and/or poor patient adherence,
and/or poor drug quality/supply, and factors not commonly
encountered or well known, drug resistance can be acquired
and escalated to involve both RIF and INH–MDR-TB (Frieden
et al., 1993). In 2006, Centres for Disease Control and Prevention
(CDC) and WHO jointly reported XDR-TB (MDR-TB with
additional bacillary resistance to any fluoroquinolone (FQ) and at
least one of the three second-line injectable drugs [i.e., amikacin
(AMK), kanamycin (KAN), and capreomycin (CAP); Gandhi
et al., 2006]. In the recent past, XDR strains of M. tuberculosis
when tested to be resistant against rifabutin (RFB), clofazimine
(CLO), dapsone, clarithromycin (CLR), and thiacetazone (THZ)
alongside conventional first-line drugs (FLD) and second-line
drugs (SLD), were proposed as “XXDR-TB” in Italy (Migliori
et al., 2007). The term “TDR-TB” was proposed by Iranian
researchers to describe the “XXDR-TB” (Velayati et al., 2009).
Later, TDR-TB was also reported in India (Udwadia et al., 2012)
and South Africa (Klopper et al., 2013).

In addition, two new drugs bedaquiline (BDQ) and delamanid
(DMD) were also found to be ineffective against TDR-TB
(Maeurer et al., 2014). Moreover, molecular analysis identified
the mutations in the genomic sequence are the core cause of
drug-resistant TB. MDR and XDR-TB are extremely serious
disease worldwide as these can progress to TDR-TB with
seemingly highermortality than cancer by 2050 (Roca et al., 2015;
Furin et al., 2016). WHO report of 2016 publicized the global
extent of TB/HIV, MDR-, XDR-, and TDR-TB (Table 1). The
collected data suggests the burden of TB in India is significantly
higher than previously estimated, and slightly rising trends
for the North Korea and the Philippines were also noticed.
Moreover, India, China and the Russian Federation accounted
altogether for 45% of the total RIF-resistant/MDR-TB burden.
By the end of 2015, a total of 7579 XDR-TB cases were reported
from 74 countries, which were more than twice the sum of
2014 report (WHO, 2016). The CDC stated in 2013 that XDR-
TB patients have been identified in most of the regions of
the world, including the United States. Interestingly, Australia
was comparatively protected from DR-TB because of its strict
public health policies as nearly 90% of TB cases occurred in the
immigrant communities (Toms et al., 2015).

CLINICAL DIAGNOSIS OF DR-TB

M. tuberculosis is a slow growing mycobacterium, which results
in prolonged duration of drug susceptibility test (DST) on solid
media from 4 to 6 weeks whereas in liquid media from 1 to 2
weeks. The lack of rapid diagnostic tools can be proposed as
a risk factor for the prevalence of MDR-, XDR-, and TDR-TB,
because the use of inefficient drugs during the initial treatment
phase may promote the appearance of drug-resistant profiles. In
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this context, theWHO recommend the rapid andmore advanced
in vitro growth monitoring system, MGIT 960, as well as nucleic
acid amplification method, Xpert MTB/RIF for early diagnosis
of PZA-resistant and RIF-resistant TB, respectively (Lawn et al.,
2013). Other devices using line probe assay (LPA) technology
are now available, like Genotype MTBDRplus for rapid analysis
of MDR-TB (Jacobson et al., 2013) and its advanced version
Genotype MTBDRsl (Barnard et al., 2012) to diagnose XDR-TB.

New approaches have also been reported, like FASTPlaque-
response bacteriophage assay (Minion and Pai, 2010),
microscopic observation drug susceptibility assay (MODS)
(Peter et al., 2016), use of dyes to monitor bacterial growth
(Coban et al., 2016), sequencing and hybridization, reverse
hybridization, direct sequencing (Deggim-Messmer et al., 2016),
TB Biochip platform (Xue et al., 2016) and other molecular
approaches. Each method was proposed to provide faster as well
as more reliable results for early detection of drug-resistance.
An important consideration is the cost and the infrastructure
requirements of each technique, as this is the key factor that will
ultimately limit their clinical use in many regions around the
world.

RESISTANCE CAUSING MECHANISMS

Drug-resistant TB is mainly associated with chromosomal
mutation mechanisms, in particular single nucleotide
polymorphisms (SNP). The resistance causing factors that
affect the mutation rate can be divided mainly into two
groups; (i) cellular mechanisms, for example, inefficiency of
mismatch repair, microsatellites, inadequate translations and
error-prone DNA polymerases and (ii) external stress factors,
including absence of rapid diagnostic facilities, improper
anti-TB drugs prescribing practices, host environment and
exposure to smoking or pollution (McGrath et al., 2014).
Additionally, clinical outcomes of antibiotic combinations
may also be influenced by inter-individual heterogeneities
in drug pharmacokinetic and pharmacodynamics (Srivastava
et al., 2011). Poor adherence of TB patients and costs required
to achieve complete cure are probably the two main factors
responsible for emergence of drug-resistance.

Indeed, most of the MDR-/XDR-TB patients had been treated
previously either with ineffective anti-TB drugs or for suboptimal
duration, resulting in an incomplete sterilization of the lungs
and re-growth of “persisters” that became more resistant to the
drugs which had been formerly practiced and turned them into
XDR-/TDR-TB, respectively (Dalton et al., 2012). According to
another study, development of drug resistance is mainly because
of spontaneous mutations in drug targets which ensure the
survival of TB bacilli at very low pH through induction of acid
resistance, drugs adaptations, inactivity or degradation of drugs
through enzymes encoded by genes ofM. tuberculosis, molecular
simulation of drug targets, and epigenetic drug tolerance (Jenkins
et al., 2009; Smith et al., 2013).

Some previous anti-TB drugs are also found to be ineffective
in preventing mycolic acid synthesis in DR-TB bacilli due to
mutations in drug targets (Telenti et al., 1993; Ramaswamy
and Musser, 1998; Gillespie, 2002; Watanabe et al., 2002).
Therefore, other new targets should also be considered to control

the pathways of drug resistance by new and more effective
antituberculars. However, two new drugs, DMD and pretomanid
may have better action on cell wall synthesis (Stover et al., 2000;
Gler et al., 2012). Besides this, the role of efflux-pumps in drug-
resistance in TB should not be underestimated, as reported for
INH (Machado et al., 2012) and indicated by recent reports
involving the membrane transporter MmpL5 in resistance to
BDQ (Hartkoorn et al., 2014). Finally, concomitant bacterial
infections and lack of new pharmacophore could be additional
causes for the rapid emergence of MDR/XDR and TDR-TB
(Srivastava et al., 2011; Vadwai et al., 2011; Machado et al., 2012;
Dharmadhikari et al., 2013; Grossman et al., 2014; Lange et al.,
2014). It is also worth noticing that the term “resistance” should
be used carefully becausemisconception ormisapplication of this
may devise an idea that resistance is a binary phenotype, whereas
it can be evaluated at multiple levels, i.e., low, moderate and
high-level drug resistance (Böttger, 2011).

DR-TB AND COMORBIDITIES

Several factors are associated with a worsening of TB infection.
These include HIV (Das and Horton, 2010), diabetes mellitus
(Jeon and Murray, 2008), cancer (Vento and Lanzafame, 2011),
solid organ transplantation (Skrahina et al., 2012), renal disease
(Wu et al., 2013) tumor necrosis factor alpha (TNF-α) antagonist
treatment (Kisacik et al., 2016), alcohol abuse (Stoffels et al.,
2013), tobacco use (Glickman and Schluger, 2016), air pollution,
malignancies and an aging population (Negin et al., 2015). The
development of TB disease is estimated to be 26- to 31-fold higher
in people living with HIV than those without HIV infection in
2015 (WHO, 2016). In 2015, more than 28% of TB deaths were
HIV positive, which describes a strong link between the two
infections (HIV andM. tuberculosis).

A major feature of HIV infection is the chronic T-cell
activation and progressive loss of CD4+ T-lymphocytes, which
predispose the host to active TB. Depletion of CD4+ T-cells in
HIV subjects with latent TB infection disrupts the steadiness and
structure of TB granulomas in the lung, thereby promoting the
progression of infection to disease by 20-fold (Geldmacher et al.,
2012). Recently, the emerging facts indicated that clinical findings
including lower lung field lesions, cavities, and acid-fast bacilli
(AFB) smear positivity were at higher frequencies among TB
patients having comorbidity with diabetes mellitus and suffered
increased risk of treatment failure, relapse, and death (Carreira
et al., 2012;Workneh et al., 2016). TheWHO report signifies both
TB and HIV infections were influenced by the increased burden
of diabetes mellitus in Sub-Saharan African countries (WHO,
2016).

MOLECULAR TARGETS RELATED DRUG
RESISTANCE MECHANISMS IN
MDR-/XDR-/TDR-TB

Whole-genome sequencing markedly increase the detection
capability to find out the mutations in molecular targets which
play significant role in development of resistance against anti-
TB drugs and lead toward MDR/XDR/TDR-TB (Figure 1).
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FIGURE 1 | Proteins/RNAs/genes related to anti-TB drugs. 2’-O-methyltransferase TlyA (tlyA), Ribosomal RNA 16S (rrs), 30S ribosomal protein S12 RpsL (rpsL), 50S

ribosomal protein L3 RplC (rplC), arabinosyltransferases EmbABC (embABC), DNA topoisomerase II /DNA gyrases GyrA, GyrB (gyrA, gyrB), RNA polymerase

β-subunit RpoB (rpoB), catalase-peroxidase KatG (katG), alkyl hydroperoxidase C AhpC (ahpC), NADH dehydrogenase Ndh (ndh), enoyl-acyl-carrier

protein-reductase InhA (inhA), β-ketoacyl ACP synthase KasA (kasA), Monooxygenase EthA (ethA), Transcriptional regulatory repressor protein EthR (ethR),

Pyrazinamidase/nicotinamidase PZase PncA (pncA), 30S ribosomal protein S1 RpsA (rpsA), GpsI (polynucleotide phosphorylase, gpsI) and Pnpase (Rv2783c), ClpC1

(ATP-dependent protease ATP-binding subunit, clpC1), Conserved protein (Rv0678, Rv0678), folate synthase FolC (folC), nonclassical transpeptidase (LdtMt2),

D-alanyl-D-alanine ligase DdlA (ddlA), transmembrane transport protein MmpL3 (mmpL3), Cell division protein FtsZ (ftsZ), dTDP-4-dehydrorhamnose 3,5-epimerase

RmlC (rmlC), Acetyl/propionyl-CoA carboxylase (β-subunit) AccD6 (accD6), Deazaflavin-dependent nitroreductase Ddn (ddn), Mycolic acid synthase PcaA

(cyclopropane synthase) (pcaA), CTP synthetase for Pyrimidine biosynthesis PyrG (pyrG), Serine/threonine-protein kinase PknG (pknG), Two component sensor

histidine kinase DevS (devS), Malate synthase GlcB (glcB), ATP synthase C chain AtpE (atpE), MEP cytidylyltransferase IspD (ispD), Polyketide synthase Pks13

(pks13), Fatty-acid-AMP ligase FadD32 (fatty-acid-AMP synthetase) (fadD32), Hypothetical protein (Rv3788), ubiquinol-cytochrome C reductase QcrB (qcrB).

Concurrently, it also facilitates in rapid and precise identification
of virulence factors of pathogen and can be used to explore
the pathways of disease transmission (Gilchrist et al., 2015).
Though, antimicrobial resistance and bacterial virulence have
been considered as different aspects but there is a composite
relationship between antibiotic resistance and virulence as
they share few common characteristics. A detailed study by
Beceiro et al. (2013) has been published to explain how
bacterial virulence and fitness can be affected by drug resistance
and the relationship between resistance and virulence can be
influenced by different genetic mechanisms (e.g., co-selection
and compensatory mutations). Several observational studies
have verified that emergence of drug resistance and increased
virulence often arise almost simultaneously; but, their genetic
association has been relatively ignored (Schroeder et al., 2017).
However, uncovering the complexities of genetic modifications

and drug resistance mechanisms may recognize the new drug
targets which ultimately provides the more opportunities for
discovery and development of new anti-TB drugs (Vincent et al.,
2012). This review mainly considers the molecular targets and
mutations involved in altering the metabolic activities to develop
drug resistance which directs toward severe resistant strains ofM.
tuberculosis.

M. tuberculosis H37Rv has a genome comprising 4,411,532
bp with high GC contents (65.9 %) containing around 4,000
protein-coding genes as well as 13 pseudogenes, 45 tRNA genes, 3
rRNA genes, 30 ncRNA genes, and 2 miscRNA genes, indicating
a high protein coding percentage (91.2%) as gene density is
measured 0.91 genes per Kb, so the average length is 1,002
bases per gene (Data collected from, http://genolist.pasteur.
fr/TubercuList). Mutations are very important in determining
the transmissibility of specific genotypes (de Vos et al., 2013).
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Molecular and epidemiological data assists to evaluate the
transmission rate of resistance genotypes (Dye et al., 2002;
Cohen et al., 2003) which actually report that fitness rate may
be affected by epistasis, the phenotypic effect of a mutation
depends on the presence or absence of other mutations in
the same genome (Borrell and Gagneux, 2011). In fact, drug
resistance based on genetic mutations is more challenging which
leads toward unknown resistance mechanisms (Zhang et al.,
2013). A summary of different molecular targets and the related
drugs is presented in Table 2. Each target is briefly described
below.

rpoB
RpoB is the target of RIF, a derivative of rifamycin. RpoB
catalyzes the transcription of DNA into mRNA by using the four
ribonucleoside triphosphates as substrates. InM. tuberculosis RIF
binds with β-subunit of the RNA polymerase, encoded by rpoB,
and inhibits the elongation of messenger RNA, thus interfering
with transcription (Carlos andMartin, 2013; Piccaro et al., 2014).
RpoB has a gene length of 3519 bp and conformational changes
caused by mutations in rpoB can lead to RIF-resistance (Telenti
et al., 1993). Ninety-six percent of RIF-resistance occurs within
the “hot-spot region” (of 81 bp), also known as RIF-resistance
determining region (RRDR), covering codons 507–533 of rpoB
gene (Ramaswamy et al., 2003). Several studies have reported
mutations in codons 516, 526 and 531 are most commonly found
in RIF-resistant isolates (Ocheretina et al., 2014; Thirumurugan
et al., 2015).

In particular, mutation in the rpoB gene at 531 codon (serine
to leucine) is highly significant as it confers cross-resistance
to rifabutin (Mboowa et al., 2014; Thirumurugan et al., 2015;
Aye et al., 2016). whereas mutations at codons 516, 518, 526,
and 529 are associated with low-level resistance to RIF and
conserved susceptibility to other rifamycins, e.g., rifabutin or
rifalazil (Cavusoglu et al., 2004; Tan et al., 2012). However,
compensatory mutations were also identified in rpoA and rpoC
encoding respectively for α and β’ subunits of RNA polymerase
(Comas et al., 2012). These compensatory mutations could be
important for reinstating the fitness and emergence of MDR
strains, and their transmissibility in vivo (Brandis and Hughes,
2013). Further studies are required to better understand their
specific roles.

katG and inhA
Mutations in katG and inhA are the main cause of resistance to
INH in M. tuberculosis. KatG has a molecular mass of 80,572.8
Da and gene size of 2,223 bp while InhA has 28,527.8 Da
molecular mass and 810 bp gene size, respectively. katG encodes
multifunctional enzymes that exhibit both catalase-peroxidase
and peroxynitritase activities, the former being important for
activating the prodrug, and the latter in association with
pathways involving reactive nitrogen and oxygen intermediates
(Zhang et al., 1992). On the other hand, AhpC, SodC, KatG,
and TpX are recognized as essential for virulence of the M.
tuberculosis (Forrellad et al., 2013). NADH-dependent enoyl-acyl
carrier protein (ACP)-reductase, encoded by inhA, is involved
in the biosynthesis of mycolic acids and participates in the

second reductive step in fatty acid biosynthesis (Rozwarski et al.,
1998; Vilchèze et al., 2006). Mutational changes in these two
genes, katG and inhA, are mainly associated with the resistance
mechanism of INH (Ramaswamy et al., 2003).

Conversely, mutations in Rv0340-0343, fadE24, efpA, and
kasA were identified in both INH-resistant and INH-susceptible
strains, so their association with INH-resistance requires further
clarification (Vilchèze et al., 2007). Among the katG mutations,
S315T is considered as themost pervasivemutation that accounts
for 40∼94% resistance in MDR strains and results in reducing
the ability of KatG to convert INH into isonicotinic acid, a
precursor for the formation of INH-NAD adduct (Bantubani
et al., 2014; Seifert et al., 2015; Aye et al., 2016). In addition,
another newly reported katG mutation L101R identified in
clinical isolates, changing an hydrophobic leucine to hydrophilic
arginine, possibly involved in alteration of the conformation
of binding protein near the active site and inhibited its bio-
activation (Datta et al., 2016).

The second main cause of resistance to INH is due to
mutations in the promoter region of inhA, resulting in the
overexpression of inhA. The most frequently observed mutation
in inhA regulatory region at position −15C/T is more generally
associated with low level resistance to INH (MIC < 1µg/ml)
(Banerjee et al., 1994; Fenner et al., 2012; Aye et al., 2016).
Moreover, double mutations at −8T/C, −15/T (Zhang and Yew,
2015), and −17C/T (Müller et al., 2011) in the inhA promoter
region were also found to be associated with INH-resistance.
Some recent studies have described that a mutation in the
regulatory region of inhA, together with a mutation in inhA
coding region, results in high-level resistance against INH as well
as cross-resistance against the structurally related ethionamide
(Machado et al., 2013).

embB and embC
EmbB and EmbC have molecular masses of 118,021 Da, and
117,490 Da, respectively, and gene sizes of 3,297 bp, 3,285 bp,
respectively. Mutations in embB and embC cause resistance
against ethambutol [EMB; dextro-2,2′-(ethylenediimino)-
DI-1-butanol], through restricting the action of drug to
cease the biosynthesis of mycobacterial cell wall. In M.
tuberculosis, the genes embCAB, are organized as an operon
that encodes arabinosyl transferases, involved in the synthesis
of arabinogalactan. (Mikusová et al., 1995). EMB plays intrusive
role in biosynthesis of arabinogalactan in the cell wall to convert
multiplying bacilli into a bacteriostatic phase (Wang et al.,
2010). Mutations in the embCAB operon were described to cause
alterations in the drug-protein binding site (Xu et al., 2015).
Numerous studies concluded that a mutation at codon306 in
embB was the cause of EMB-resistance (Shi et al., 2011a; Yoon
et al., 2013; Moure et al., 2014).

It was also reported that mutations in genes of the
decaprenylphosphoryl-beta-D-arabinose (DPA) biosynthesis and
utilization pathway genes, Rv3806c and Rv3792, combined with
mutations in embB and embC genes increased theMICs ranges of
EMB, depending on mutation type and number (Shi et al., 2011a;
Safi et al., 2013). A strong association was also noticed between
the Met306Val and Met306Leu at emb306 and EMB-resistance
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(Zhang et al., 2014), which suggests the usefulness of the
embB306 mutation to serve as potential molecular markers for
EMB resistance. However, in 30% EMB-resistant M. tuberculosis
strains there was no mutation in embB, alluding to the need
to intensively search for other mechanisms of EMB resistance
(Shen et al., 2007; Perdigão et al., 2009). Interestingly, in another
study, 70% mutations were found in 306, 406 or 497 codons,
13% mutations outside the three regions between codons 296
and 426 and 15% mutations in the embC-embA intergenic
region among the total 98% of mutations in the embCAB locus
(Brossier et al., 2015). Recently, mutations in embB along with
mutations in ubiA, encoding for a decaprenylphosphoryl-5-
phosphoribose (DPPR) synthase associated with arabinogalactan
synthesis pathway, were associated with high level of resistance
to EMB (Tye et al., 2015).

pncA, rpsA, panD, clpC1, and Rv2783c
Pyrazinamide (PZA) is an important front-line anti-TB drug.
In M. tuberculosis, resistance to PZA is mainly associated with
pncA, rpsA, and panD. However, some other proteins such as
ppsA encoding polyketide synthase involved in phthiocerol
dimycocerosate (PDIM) synthesis, cell division protein FtsH,
TetR family transcriptional regulator (3R)-hydroxyacyl-ACP
dehydratase subunit HadC, phosphate ABC transporter
permease protein PstC2 and transmembrane transport protein
MmpL4 found to be responsible for PZA resistance (Zhang et al.,
2017). Pyrazinamidase (Pzase), encoded by the 561-bp pncA,
converts the pro-drug PZA into pyrazinoic acid (POA, its active
form). PZA resistance in M. tuberculosis is most commonly
associated with mutations in the whole open reading frame or
82–262 bp regulatory region of pncA gene (Juréen et al., 2008).

POA interrupts the bacterial membrane activities. POA and
its n-propyl ester may have the ability to constrain the fatty acid
synthase type I in replicating M. tuberculosis bacilli, ineffective
efflux pump also may result in accumulation of protonated
POA during acidic conditions resulting in bacterial cell damage
(Scorpio and Zhang, 1996; Zimhony et al., 2007; Shi et al., 2011b,
2014; Njire et al., 2016). The 481-amino acid-long 30S ribosomal
protein S1 is encoded by rpsA. It plays a significant role in mRNA
translation (involving a short shine-dalgarno (SD) purine-rich
sequence), and in trans-translation, a unique process that utilizes
transfer-messenger RNA (tmRNA) molecule to rescue stalled
ribosomes. POA was also associated with disruption of the
trans-translation process through binding to the 30S ribosomal
protein S1 (RpsA) (Shi et al., 2011b). In the work of Shi et al.
(2011b), deletion of alanine, resulting from a GCC deletion at
438 bp (C-terminus) of rpsA, was found in PZA-resistant strains
lacking mutations in pncA gene. Such mutation was thought to
induce resistance against POA and, accordingly, increased level
of resistance were observed after overexpression of rpsA (Shi
et al., 2011b).

Later, many studies presented disparate results about the
mutations in rpsA in both PZA-resistant and PZA-susceptible
isolates (Bhuju et al., 2013; Maslov et al., 2015). However,
only synonymous mutations were reported in rpsA (A636C and
G960A) for both PZA-resistant and PZA-susceptible clinical
strains (Alexander et al., 2012). In another study, mutations in

rpsA gene were found in 3/52 PZA-resistant and 1/108 PZA-
susceptible clinical isolates (Tan et al., 2014). This absence
of clinical isolates presenting rpsA mutations may indicate a
strong fitness cost associated with suchmutations, althoughmore
investigations are required to fully understand the link between
RpsA and the activity of PZA. The third gene panD, of 420 bp in
size, is putatively involved in pantothenate biosynthesis through
converting L-aspartate into beta-alanine (Shi et al., 2014). Some
studies found mutations in panD gene of PZA-resistant isolates
lacking mutations in pncA and rpsA (Pandey et al., 2016).

Among the three genes identified so far as potentially linked
with resistance to PZA, i.e., pncA, rpsA, and panD, the most
frequent mutations (>80%) were found to occur in the pncA
gene (Xia et al., 2015; Xu et al., 2016). Recently, a new target of
PZA clpC1 (Rv3596c) was identified, encodes an ATP-dependent
ATPase which is involved in protein degradation by forming
a complex with protease ClpP1 and ClpP2 (Zhang et al.,
2017). ClpC1 is an 848-amino acids containing protein and the
mutation (G296T) change amino acid G99D cause resistance to
PZA. Interestingly, mutations in clpC1 has also been reported
as a resistance factor against three new cyclic peptide antibiotics
including cyclomarin A (Schmitt et al., 2011), lassomycin at the
N-terminal repeat region at Q17R, R21S, and P79T (Gavrish
et al., 2014) and ecumicin at L92S or F or L96P sites (Gao
et al., 2015). The three new drug candidates appear to bind at
the different sites of the ClpC1. The gene Rv2783c encoding a
bifunctional enzyme was indicated as a new target very recently
(Njire et al., 2017). Rv2783 was proved to be able not only to
catalyze metabolism of RNA and single-stranded DNA, but also
to metabolize ppGpp, an important signal transducer involved in
the stringent response in bacteria.

rpsL, rrs, gidB, eis, and tlyA
The rpsL gene is very small, only 375-bp, while rrs gene is much
larger, with 1,537 bp but both are associated with resistance
to STR. The rpsL encodes 30S ribosomal protein S12 RpsL
involved in the initiation step of RNA translation, while rrs
encodes 16S rRNA. Mutations in rpsL and rrs are known to cause
resistance against STR (Finken et al., 1993), the first anti-TB drug
discovered. STR is an aminoglycoside and targets the actively
growing bacteria by hindering the translation of protein synthesis
(Chakraborty et al., 2013). More precisely, STR interacts with
formyl-methionyl-tRNA to bind the 30S subunit of the ribosome
at the ribosomal protein S12 encoded by rpsL gene and also at 16S
rRNA encoded by rrs gene, preventing normal functioning of the
ribosome (Sharma et al., 2007).

The most commonly reported mutation in rpsL is the
replacement of lysine into arginine at positions 43 and 88.
Regarding rrs, mutations around nucleotides 530–915 make M.
tuberculosis strains highly resistant to STR (Jagielski et al., 2014;
Zhao et al., 2014). Additionally, a 675 bp gene, gidB, encoding for
a conserved 7-methylguanosinemethyltransferase specific for the
16S rRNA, was found to confer intermediate-level of resistance
toward STR by conferring the A80Pmutation to the gene product
GidB (Perdigão et al., 2014). Generally, mutations in the rpsL
gene covers around 80% of STR-resistance (Jnawali et al., 2013).
More precisely, the mutations at codons 43 and 88 in rpsL
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gene were identified in more than 60% of STR-resistance cases,
while 17% contained rrs mutations and 14% were observed with
mutations in gidB, in a panel of 161 clinical isolates (Smittipat
et al., 2016).

Some STR-resistant M. tuberculosis strains also conferred
cross-resistance with kanamycin (KAN) and amikacin (AMK).
The mutation at the codon A1401G in the rrs gene in particular
was associated with high-level resistance to KAN and AMK,
along with cross-resistance to capreomycin (CAP). Whereas
mutations C1402T or G1484T were also associated with CAP
resistance in addition cross-resistance with KAN or viomycin
(VIM) (Du et al., 2013; Sowajassatakul et al., 2014). Similarly,
mutations at position 1,400, 1,401, and 1,483 bp in the rrs gene
were linked with high-level resistance to both KAN and AMK
in KAN-resistant strains (Ajbani et al., 2011; Yuan et al., 2012).
Moreover, mutations in the promoter region of the whiB7 gene,
with a role in transcriptional mechanisms, were shown to be
associated with resistance to an array of antibiotics, and increased
expression of the efflux enhanced by atpE and the eis promoter
region was also observed (Reeves et al., 2013).

Further, eis and tlyA (1,209 bp and 807 bp in size, respectively)
were also found to have putative roles in resistance. eis encodes
an aminoglycoside acetyltransferase and mutation at position
−10 and −35 of the eis promoter has been associated with
the low-level resistance to KAN (Ajbani et al., 2011; Yuan
et al., 2012; Du et al., 2013; Reeves et al., 2013; Sowajassatakul
et al., 2014). tlyA encodes rRNA methyltransferase, specific
for 2′-O-methylation of ribose in rRNA. Expression of tlyA
gene (commonly A1408G) affects both drug susceptibility and
fitness cost of drug resistance through methylation mechanisms
(Freihofer et al., 2016). However, another study did not find
any mutation in the tlyA gene (Du et al., 2013). Besides,
overexpression of Rv0148 protein play a vital role in three-fold
increase in MIC of AMK and two-fold of KAN (Sharma et al.,
2015). While overexpression of ferritin (Rv3841/bfrB) showed an
alternate behavior, there was two-fold increase in MIC of AMK
and three-fold of KAN (Sharma et al., 2016). Regarding to above
discussed genes and their role in development of resistance, it is
important to note that KAN and AMK are aminoglycosides and
CAP and VIM are cyclic peptide antibiotics, they have similar
structures and bind on the same location in the ribosome, at the
interface of the small and large subunits (Stanley et al., 2010).
The similarity of the mechanisms of actions and their resistance
development simplifies understanding to some extent.

gyrA and gyrB
gyrA and gyrB are the two main genes with mutations linked
to resistance against fluoroquinolones (FQ’s). gyrA is 2517-bp
long while gyrB gene is 2,028-bp. Mutations in the quinolone
resistance-determining region (QRDR) of gyrA (74–113 codons)
and gyrB (codon 500–540) in M. tuberculosis are largely
responsible for generating the resistance to FQ’s (Pantel et al.,
2012; Nosova et al., 2013). Two subunits α and β each of gyrA
and gyrB, that encode topoisomerase II (DNA gyrase) catalyzing
the supercoiling of DNA, furnishes the most important target
of FQ action (Aubry et al., 2004). The most commonly found

mutations at position Ala-74, Gly-88 Ala-90, Ser-91, and Asp-
94 of gyrA generally result in high-level resistance against FQ (Li
et al., 2014).

A natural polymorphism at position 95 (Ser or Thr) in gyrA
is not related to FQ’s-resistance since it is also found in FQ-
sensitive strains (Nosova et al., 2013). Usually, mutations in gyrB
(10–15%), being less commonly found among clinical isolates,
induce low-level resistance to FQ’s (Cui et al., 2011). However,
the synchronized mutations in both gyrA and gyrB, such as
Ala543Val (gyrB)-Asp94Asn/Asp94Gly (gyrA) and Asn538lle
(gyrB)-Asp94Ala (gyrA) persuaded very high resistance against
FQ’s (Long et al., 2012). An interested study identified that
presence of mutations T80A and A90G in gyrA led to
hypersusceptibility to several quinolones (Aubry et al., 2006).
Similarly, most of the mutations in the gyrA Asn538Asp and
Asp500His in gyrB are shown to be associated with cross-
resistance among the FQs, whereas in gyrB the mutation
Arg485His does not confer any resistance (Nosova et al.,
2013). One intriguing study found a M. tuberculosis strain with
Asn533Thr mutation in gyrB showing susceptibility to ofloxacin
(OFX) but resistance to moxifloxacin (MOX) and gatifloxacin
(Von Groll et al., 2009).

Proteomic comparative study enlightened the 11 proteins
(Rv1080c, Rv1827, Rv2623, Rv1636, Rv0952, Rv1932, Rv0009,
Rv0054, Rv2889c, Rv3418c, and Rv3914) that were overexpressed
in the presence of OFX andMOX. Among them, Rv1636, Rv2623,
and Rv1827 were reported with unidentified functions.Molecular
docking and InterProScan investigation explored the interaction
of conserved domain of hypothetical proteins with these both
drugs which possibly directs the inhibition of functions of these
proteins that might be overexpressed to repress this effect (Lata
et al., 2015b).

In another study, the same author reported 14 proteins
with more intensities in OFX resistant isolates as compare to
susceptible. Interaction of conserved domains and motifs of
hypothetical proteins (Rv3551, Rv2744c, Rv0148, and Rv2140c)
and OFX was revealed throughmolecular docking, these findings
indicated the role of these proteins in resistance mechanisms as
well as prospective drug targets (Lata et al., 2015a). Drug efflux
mechanisms or changes in the membrane permeability to agents
might constitute alternative resistance mechanisms regarding FQ
resistance in M. tuberculosis (Escribano et al., 2007). A study
corroborating such ideas has found that 30% of FQ’s-R strains
do not harbor any mutation in the QRDRs of both gyrA and gyrB
genes (Alvarez et al., 2014). In a recent study by Pucci et al., M.
tuberculosis GyrB inhibitors (SPR-720, SPR-750) have proved to
be attractive for developing novel drugs against TBwithout cross-
resistance to known quinolones and showing very good activity
in vivo.

ethA and ethR
ethA and ethR are associated with resistance to ethionamide
(ETH) (2-ethylpyridine-4-carbothioamide) and prothionamide
(2-propylpyridine-4-carbothioamide) which are important drugs
for the treatment of MDR-TB and TB meningitis in both adults
and children (Thee et al., 2016). The 1,470-bp long ethA encodes
the monooxygenase EthA which bio-activates the pro-drug ETH
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into its active form (Grant et al., 2016). EthA is negatively
regulated by the transcriptional repressor EthR (Carette et al.,
2011). ETH is derived from nicotinic acid having a similar
structure to INH. The action of ETH is to interrupt mycolic
acid synthesis by establishing an adduct with NAD that inhibits
the enoyl-ACP reductase InhA (Mori et al., 2017). Mutations in
ethA/ethR, as well as mutations in inhA or its promoter cause
the resistance to both INH and ETH (Carette et al., 2011).
Accordingly, −15C to −15T mutation in the promoter region
of inhA and S94A (serine to alanine) and I194T (isoleucine to
threonine) mutations in the gene product InhA were found to
confer high-level resistance against INH and ETH in MDR-TB
(Machado et al., 2013). Furthermore, mshA, a gene encoding a
glycosyltransferase involved in mycothiol biosynthesis, has also
been considered as a possible resistance target for ETH (Vilchèze
et al., 2008).

thyA and folC
The 792-bp long thyA, encoding thymidylate synthase A,
has an important role in deoxyribonucleotide biosynthesis, by
providing the sole de novo source of dTMP through conversion
of deoxyuridine monophosphate (dUMP) to deoxythymidine
monophosphate (dTMP). Interacting with folate metabolism
is essential, especially involving tetrahydrofolate as a “methyl”
donor. In an interesting study, mutations in thyA gene were
identified by transposon mutagenesis were associated with
resistance to PAS (Rengarajan et al., 2004). Some studies have
affirmed Thr202Ala in thyA as the most common mutation
associated with PAS-resistance, though a few susceptible
isolates containing the same mutation have also been observed
(Meumann et al., 2015). According to recent studies, the
1464-bp long folC gene (encoding FolC-dihydrofolate synthase/
folylpolyglutamate synthase), with various missense mutations
were found to confer resistance to PAS in laboratory isolates
of M. tuberculosis. The main function of FolC, the bifunctional
enzyme, is to convert folates into polyglutamate derivatives, in
simplistic terms. Bacteria require folate for the biosynthesis of
glycine, methionine, formyl-met-tRNA, thymidylates, purines
and pantothenate. In 85 MDR-TB clinical isolates, mutations in
folC were identified in five PAS-resistant isolates (Zhao et al.,
2014). In another study, only 37% of PAS-resistant strains
had mutations in thyA, suggesting that other mechanisms of
resistance to PAS would need to be explored (Mathys et al., 2009).

rplC and rrl
rplC and rrl genes have been associated with different levels of
phenotypic resistance to Linezolid (LZD) and Sutezolid (PNU-
100480, SZD) in M. tuberculosis (Makafe et al., 2016; Zhang
et al., 2016). rplC gene has 654 bp in length and encodes
the 50S ribosomal L3 protein, and may contribute in the
synthesis of the ribosomal peptidyltransferase. Whereas, rrl is
3138 bp long and encodes 23S ribosomal RNA. LZD and SZD
belonging to the oxazolidinone class, act by fixation of an
early step in protein synthesis, through binding of the assembly
initiator protein directly near the 3′-end of 23S rRNA, where
nucleation of the assembly of the 50S subunit is performed
(Williams et al., 2009). However, recently, the mutation T460C

in rplC of LZD-resistant strain (Cys154Arg) has been repeatedly
shown to be of considerable importance (Williams et al., 2009;
Beckert et al., 2012; Makafe et al., 2016; Zhang et al., 2016).
Moreover, in vitro selected LZD-resistant mutants with G2576T
and G2061T mutations in rrl gene had MICs of 16–32µg/ml,
while susceptible strains without mutations showed MICs of
4–8µg/ml (Hillemann et al., 2008; Zhang et al., 2016). The
mutations in these two genes are associated with only 29.4% of
LZD-resistance inM. tuberculosis (Islam et al., 2017). So, further
resistance mechanisms need to be explored.

Rv0678 and atpE
The 498-bp Rv0678 encodes a conserved protein with amolecular
mass of 18,346.7 (Da). Some recent studies recommended
that mutations in the transcriptional regulator of Rv0678
up-regulated MmpL5, a multi-substrate efflux pump, causing
resistance not only to CLO (a riminophenazine compound)
but also to BDQ, a diarylquinoline (Andries et al., 2014).
Some studies suggested the outer membrane of M. tuberculosis
as the possible target of CLO (Yano et al., 2011). The main
factor for resistance to CLO other than mutations in the
transcriptional regulator of Rv0678 is not yet fully characterized
(Hartkoorn et al., 2014). The atpE gene is known to encode the
subunit C of the ATP synthase, AtpE (lipid-binding protein)
(dicyclohexylcarbodiimide-binding protein), a complex structure
that generates the ATP needed by the mycobacterial cell.

Mutations in the 246-bp long atpE gene (Rv1305) are thought
to be related to the resistance to BDQ with the most frequently
detected mutations including A63P and I66M (Andries et al.,
2005; Koul et al., 2007). BDQ has a favored specificity toward
the mycobacterial ATP synthase, as compared to mitochondrial
ATP synthase in exerting its therapeutic action (Haagsma et al.,
2009), but the mutations in AtpE (A63P and I66M) disturbs such
inhibition against bacterial ATP synthase C. However, out of 53
strains of M. tuberculosis only 15 displayed mutations while 38
strains lacked mutations in atpE or even in the F0, F1 operons
(Huitric et al., 2010), which strongly implicates that some other
resistance mechanisms against BDQ might be present. Recently,
mutations in pepQ (Rv2535c, a putative Xaa-Pro aminopeptidase)
were proposed to be able to confer cross-resistance between BDQ
and CLO. Whereas mutations in Rv0678 and pepQ were noticed
at a similar rate in a wild-type population treated with BDQ
or CLO in mice. Mutations in Rv0678 and pepQ regulate the
significant mechanisms of clinical resistance to BDQ and CFZ
(Almeida et al., 2016).

alrA, cycA, and emr37
alrA encodes D-alanine racemase AlrA, required for the
conversion of L-alanine to D-alanine (Palomino and Martin,
2014). D-alanine ligase inhibits the production of peptidoglycan
conductive to cell wall formation in bacteria. D-cycloserine
(DCS) is a time-honored oral bacteriostatic anti-TB drug used
in treatment of TB, especially MDR-TB and XDR-TB (Zhang
and Yew, 2015). The absolute target of DCS in M. tuberculosis
is still not fully identified. However, according to some prior
studies, overexpression of AlrA triggered resistance to DCS
in recombinant mutants of Mycobacterium smegmatis (Cáceres
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et al., 1997). Interestingly, a very recent study reported that
loss-of-function mutations in ald (Rv2780), encoding L-alanine
dehydrogenase, were also associated with resistance to DCS
(Desjardins et al., 2016).

Another gene cycA, of 1,671 bp in size, encodes a D-alanine
transporter. The point mutation in cycA has been considered a
possible cause for resistance inM. bovis against DCS (Chen et al.,
2012). Low cell wall permeability and the expression of emr37,
a gene that collates methylase at a specific site in the 23S rRNA,
hindering the binding of the antibiotic has been ascribed as the
key factor of resistance to macrolides leading four to eight-fold
rise in MIC values (Andini and Nash, 2006).

ddn, fgd1, and fbia/B/C
ddn has a gene size of 456 bp and encodes deazaflavin-dependent
nitroreductase, while fgd1 with a size of 1,011 bp encodes F420-
dependent glucose-6-phosphate dehydrogenase Fgd1. fbiA/B/C is
a complex/operon of three genes with 996, 1,347, and 2,571 bp
gene sizes, respectively. These three genes are mainly required
for coenzyme F420 production for the biosynthesis of protein
FbiA, FbiB, and FbiC sequentially. ddn, fgd1, and fbiA/B/C
gene products were proposed as the targets of DMD and
pretomanid (PA-824, PRM). DMD is a derivative of nitro-
dihydro-imidazooxazole and acts by impeding the synthesis of
mycolic acid in a distinct fashion compared to INH, as it only
inhibits methoxy- and keto-mycolic acid synthesis while INH
also inhibits α-mycolic acid (Matsumoto et al., 2006; Palomino
and Martin, 2014). Mutations in ddn, fgd1, and fbiA/B/C have
been proposed to be amechanism of resistance toDMDand PRM
inM. tuberculosis (Shimokawa et al., 2014).

A very recent study reported mutations in the fbiA and fgd1
genes associated with M. tuberculosis resistance to DMD in a
patient with formidable drug-resistant TB (Bloemberg et al.,
2015). PRM is a nitroimidazole derivative with activity against
both latent TB and active TB as tested under aerobic and
anaerobic conditions (Stover et al., 2000). PRM is a prodrug
that needs a metabolic activation principally by a deazaflavin
(cofactor F420)-dependent nitroreductase (Ddn) (Manjunatha
et al., 2006). It also acts by inhibiting mycolic acid synthesis.
A very recent assay of drug metabolism genes found potential
resistance to PRM, and detected mutations frequency higher
than those previously reported (Stover et al., 2000; Haver et al.,
2015). However, further studies are essential to better delineate
the mechanisms underlying bacillary resistance.

mmpL3
Mutations in mmpL3 were attributed to resistance in M.
tuberculosis against SQ-109 (1,2-ethylenediamine), a synthetic
analog of EMB (Tahlan et al., 2012). The 2,835-bp MmpL3
is a transmembrane transport protein presumably involved
in fatty acid transport. SQ109 acts by interfering with the
assembly of mycolic acids into the bacterial cell wall, resulting
in accumulation of trehalose monomycolate, a precursor of the
trehalose dimycolate. Similarly other cell wall inhibitors such
as INH and EMB, SQ-109 induces the transcription of iniBAC
operon required for efflux pump functioning (Boshoff et al.,
2004). Its synergistic effects with BDQ in vitro and interactions

with SZD were also observed. Additionally, mutations in
the mmpL3 gene of spontaneously generated SQ-109-resistant
mutants has suggested mmpL3 as the target of SQ-109 by virtue
of the transporter mechanism discussed above (Grzegorzewicz
et al., 2012). InM. tuberculosis strains resistant to INH, EMB and
SQ109, there is an up-regulation of ahpC, signifying a possible
role of this gene in the development of resistance against these
drug(s) (Jia et al., 2005).

dprE1 and dprE2
dprE1 (Rv3790) and dprE2 (Rv3791) encode
decaprenylphosphoryl-beta-D-ribose 2′-oxidase and
decaprenylphosphoryl-D-2-keto-beta-erythro-pentose
reductase, respectively. These genes encode proteins that
catalyze the two-step epimerization of decaprenylphosphoryl
ribose (DPR) to decaprenylphosphoryl arabinose (DPA) in the
arabinan synthesis pathway, which is essential for building the
bacterial cell wall (Kolly et al., 2014). dprE1 and dprE2 were the
possible targets of 1,3-benzothiazin-4-one or benzothiazinone
(BTZ) (Makarov et al., 2014). BTZ is activated in the bacteria
by reduction of an essential nitro group to a nitroso derivative,
which can react with a key cysteine residue in DprE1 and form
a covalent adduct (Trefzer et al., 2010). In spontaneous BTZ-
resistant mutants, amino-acid Cys387 of DprE1 was replaced by
Ser or Gly. On the other hand, in M. avium, which is naturally
resistant to BTZ, amino-acid Cys387 was replaced by an Ala.
An alternative BTZ-resistance mechanism has recently been
described in M. smegmatis. Overexpression of nitroreductase
NfnB indeed inactivated the drug by reducing its critical nitro-
group into an amino-group. This was facilitated by a common
amino acid stretch between NfnB and DprE1 (Manina et al.,
2010). M. tuberculosis, however, seems to lack nitroreductases
which enables it to inactivate this drug. Nevertheless, this finding
could be important for development of new BTZ analogs with
improved activity.

NOVEL THERAPEUTIC DRUG TARGETS
AND MOLECULAR MECHANISMS

There are some new findings about therapeutic drug targets
of new anti-TB drugs. Very recently, VCC234718, a molecule
found to be very active against M. tuberculosis with growth
inhibition activity. In a VCC234718-resistant mutant, a Y487C
resistance-conferring substitution was identified in the inosine
monophosphate dehydrogenase, GuaB2, which was subsequently
recognized to be the prime molecular target of VCC234718
(Singh et al., 2017). Similarly, another study reported a potential
promoter mutation in upstream of guaB2 in a non-cytotoxic
indazole sulfonamide resistant mutant (Park et al., 2017).

Conversely, 11 eukaryotic-like serine/threonine protein
kinases (STPKs) were observed in M. tuberculosis, which are
considered as key components in cell growth, signal transduction
and pathogenesis. An interesting study discovered the binding
proteins in M. tuberculosis for all of the STPKs, and constructed
the first STPK protein interaction (KPI) map that includes
492 binding proteins and 1,027 interactions. Functional
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investigations confirmed that PknG regulates cell wall integrity
through peptidoglycan (PG) biosynthesis, e.g., MurC (Wu et al.,
2017). A better understanding of biochemical pathways in M.
tuberculosis is essential for the development of new and efficient
chemotherapeutics.

Two important enzymes, isocitrate lyase (ICL) and malate
synthase (MS) play vital role in regulation of glyoxylate shunt,
a pathway required by M. tuberculosis to metabolize fatty
acids (FAs). ICL may facilitates in survival of M. tuberculosis
during the acute or chronic phases of infection through
physiologic activities apart from fatty acid metabolism. MS
mediates growth and survival on fatty acids through its potential
ability to simultaneously detoxify a metabolic byproduct arising
from the initial assimilation of acetyl coenzyme A (acetyl-
CoA), glyoxylate, while assimilating a second molecule of
acetyl-CoA. Depletion of MS during acute or chronic phase
infections kills TB bacilli. These studies recommend MS as
a potential drug target in M. tuberculosis (Puckett et al.,
2017).

The cytoplasmic phases in peptidoglycan biosynthetic
pathway are catalyzed by theMur (A-F) enzymes. The imperative
role of Mur enzymes in cell integrity and the minimum
availability of their complements in eukaryotes highlighted
them as promising anti-TB drug targets (Eniyan et al., 2016).
Besides these, several other potential targets have also been
proposed, such as, MbtA—involved in the iron metabolism
of M. tuberculosis; cytochrome b subunit (QcrB) and type II
NADH dehydrogenase—involved in energy generation; fatty
acid synthases (FASs) and polyketide synthases (PKSs) involved
in cell wall biosynthesis (Fernandes et al., 2015). Phenyl-diketo
acid (PDKA) predicted to be the inhibitor for malate synthase
(glcB) that characterize fatty acid metabolism (Krieger et al.,
2012). Cyclospropane synthase (pcaA) involved in mycolic acid
synthesis, presumed to be the significant target of sinefungin,
thiacetazone, s-adenosyl-N-decylaminoethyl (Vaubourgeix
et al., 2009). Furthermore, polyketide synthase (pks13) and
acyl-AMP ligase (fadD32) are also responsible in mycolic
acid synthesis, however, they are considered as the imperative
targets of Cerulenin; Thiopene and 4,6-diaryl-5,7-dimethyl
coumarin, respectively (Gavalda et al., 2009; Stanley et al., 2013;
Wilson et al., 2013). Propanamide [5-methyl-N-(4-nitrophenyl)
thiophene-2- carboxamide and 3-phenyl-N-(4-piperidin-1-
ylphenyl) carbamothioyl] was approved as an efficient inhibitor
against CTP synthase (pyrG) pyrimidine which is responsible to
regulate metabolic processes (Mori et al., 2015).

Similarly, in another study Rhodanine analogs provided
promising results by inhibiting mAGP complex synthesis
directing through dTDP-keto-deoxyglucose epimerase (rmlC)
(Ren et al., 2015). 4-diphosphocytidyl-2-Cmethylerythritol
synthetase (ispD) involved in isopentenyl diphosphate
biosynthesis assumed to be inhibited by Domiphen bromide
(Gao et al., 2012). Consequently, shortening the TB therapy,
simplifying DS-TB as well as DR-TB regimens and increasing the
cure rates are the prime goals of newly developed or repurposed
compounds (Brigden et al., 2014).

CONCLUDING REMARKS

In conclusion, DR-TB (MDR, XDR, and TDR) is an intensifying
health crisis around the globe, mainly distressing economically
active young adults and responsible for high mortality rate
regardless of HIV status (Dheda et al., 2014). The genetic
modifications underlying the profound drug resistance of M.
tuberculosis immensely require insight investigations to unravel
the complex pathways which hamper not only the clinical
application of available drugs but also the development of
new anti-TB drugs. The frequency of drug resistance continues
toward upset level when TB regimens are practiced without
fully exploration of resistance mechanisms. Likewise, the absence
of effective drugs is the prime reason for rapid emergence
of DR-TB. Hopefully the new knowledge along with vigilant
understanding of alterations in genomics of drug targets and drug
resistance mechanisms inM. tuberculosiswould be tremendously
helpful in development of new and highly effective anti-TB
drugs.
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