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Pneumococcal infection is the most frequent cause of pneumonia, and one of the most

prevalent diseases worldwide. The population groups at high risk of death from bacterial

pneumonia are infants, elderly and immunosuppressed people. These groups are more

vulnerable because they have immature or impaired immune systems, the efficacy of

their response to vaccines is lower, and antibiotic treatment often does not take place

until the inflammatory response triggered is already overwhelming. The immune response

to bacterial lung infections involves dynamic interactions between several types of cells

whose activation is driven by intracellular molecular networks. A feasible approach to

the integration of knowledge and data linking tissue, cellular and intracellular events

and the construction of hypotheses in this area is the use of mathematical modeling.

For this paper, we used a multi-level computational model to analyse the role of cellular

and molecular interactions during the first 10 h after alveolar invasion of Streptococcus

pneumoniae bacteria. By “multi-level” we mean that we simulated the interplay between

different temporal and spatial scales in a single computational model. In this instance,

we included the intracellular scale of processes driving lung epithelial cell activation

together with the scale of cell-to-cell interactions at the alveolar tissue. In our analysis,

we combined systematic model simulations with logistic regression analysis and decision

trees to find genotypic-phenotypic signatures that explain differences in bacteria strain

infectivity. According to our simulations, pneumococci benefit from a high dwelling

probability and a high proliferation rate during the first stages of infection. In addition

to this, the model predicts that during the very early phases of infection the bacterial

capsule could be an impediment to the establishment of the alveolar infection because

it impairs bacterial colonization.
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INTRODUCTION

Pneumonia is a highly prevalent disease that kills almost 1
million children annually (McIntosh, 2002). The most frequent
cause of pneumonia is infection with a strain of Streptococcus
pneumoniae (S.p. or pneumococcus) (Sharma et al., 2007).
Elderly and immunosuppressed people are high-risk groups
because S.p. is an opportunistic pathogen (El-Solh et al., 2001;
Wong and Evans, 2017). Although its virulence is limited, the
pathogen achieves high morbidity because it is able to spread
from permanent reservoirs in the nasopharyngeal airways which
it colonizes asymptomatically in 15% of the general population
and in about 40% of children (Tuomanen and Masure, 1997;
Sjöström et al., 2006; de Lastours et al., 2016). Nasopharyngeal
colonies are also more resistant to antibiotics compared to
colonies in the lung (Perez et al., 2014), which makes controlling
or eradicating the disease in the population a highly complex
endeavor. Vaccination against S.p. is possible, but the efficacy
of the vaccine is low in the risk groups (children, the elderly,
and immunosuppressed people) due to the limited immune
response triggered by the vaccine in these groups (Sjöström et al.,
2006; Nguyen et al., 2017). Bacterial pneumonia begins with an
infection of the alveolar cavities, but nasopharyngeal colonization
precedes alveolar infection (Mandell, 2009). When the alveolar
infection is recognized by the host, the immune system triggers
an acute response culminating in substantial inflammation of
the surrounding tissue. The inflammation itself compromises
the alveolar gas exchange and potentially endangers the life of
the patient (Henriques-Normark and Tuomanen, 2013). The
disease can also worsen into septicaemia or bacterial encephalitis,
increasing the patient’s mortality risk (Henriques-Normark and
Tuomanen, 2013; Iovino et al., 2016). Under these circumstances,
optimum protection of high-risk patients would encompass
preventing or impeding the initial alveolar infection, i.e., at the
asymptomatic stage of the disease.

Streptococcus pneumoniae is able to generate an asymptomatic
biofilm structure with high antibiotic resistance in the
nasopharyngeal tissue (Simell et al., 2012; Perez et al., 2014).
This structure is a prerequisite for a successful infection of
the alveolar tissue (Simell et al., 2012). Nasopharyngeal co-
infections, for instance by Haemophilus influenzae, can lead to
immune stress on S.p. and thus trigger the release of bacteria
from the biofilm to the lower airways, from where they can
reach the alveoli and initiate infection (Chao et al., 2015). This
stage likewise involves phenotypic transition of the bacteria
from an unencapsulated, avirulent phenotype to a virulent one
with a capsule (Simell et al., 2012; Weiser et al., 2015). It has
been established that S.p. in the biofilm adopts a transparent
appearance due to the lack of a capsule, which makes them more
adherent but less invasive (Brueggemann et al., 2004; Kadioglu
et al., 2008). Further, some studies have found that encapsulated
bacteria are better able to colonize the alveolar surface and
other tissues (Brueggemann et al., 2004; Hammerschmidt et al.,
2005). Apart from the capsule (Jedrzejas, 2001), it has not
yet been established which specific virulence factors permit
S.p. to colonize the lower airways. Though gene expression
differences between the biofilm and the virulent phenotype have

been recorded (Lanie et al., 2007), the availability of these data
has not led to an understanding of the early stages of alveolar
infection.

When bacteria enter the alveolar lumen, they are exposed
to a set of immunological barriers that prevent or impede
infection. During initiation of the infection, the most relevant
barriers are the tightly sealed epithelium, the alveolar lining
fluid, and the alveolar macrophages (Sherman and Ganz,
1992). The epithelial cell layer with its tight junction-mediated
intercellular adhesion acts as a physical barrier (Knight and
Holgate, 2003). Furthermore, the epithelial cells are able to
recognize the pathogens and release chemokines and cytokines
that recruit and activate immune cells (Diamond et al., 2000).
The primary role of the chemokines thus produced, such as
MCP-1, is to attract resident alveolar macrophages to the site
of infection (Deshmane et al., 2009), but in later stages other
pro-inflammatory cytokines and chemokines recruit and activate
neutrophils, monocytes, and leucocytes from the blood (Craig
et al., 2009; Shi and Pamer, 2011; Hickey and Westhorpe, 2013).
In the lining fluid, there are many factors that can inactivate
pathogens, for instance complement proteins (Kadioglu and
Andrew, 2004; Martin and Frevert, 2005). Also, the lining
fluid acts as a means for the clearing of particles (including
pathogens) from the alveolus, as the fluid is continuously
produced and flows outwards toward the alveolar opening,
dragging suspended bacteria along (Lindert et al., 2007).
Finally, the macrophages serve as a mobile defense mechanism
against the first stages of bacterial infection (Moldoveanu
et al., 2008; Wilson et al., 2015). These cells follow and
phagocytise bacteria, eliminating them before the infection
becomes productive.

To recruit other immune cells, the resident cells in the
alveoli produce pro-inflammatory cytokines, such as IL-8 and
IL-1β, as well as chemokines (Standiford et al., 1990; Descamps
et al., 2012). The phagocytic function of alveolar macrophages is
then sequentially supplemented in later phases of the infection
by other phagocytic cells, namely neutrophils and monocyte-
derived macrophages (Mizgerd, 2002; Goto et al., 2004; Craig
et al., 2009). Much later, the adaptive immune system controls
the disease in a targeted manner.

The response to bacterial infection in the lung alveoli
involves interactions between several types of immune and
epithelial cells. The activation of key phenotypes in these cells
is driven by intracellular molecular networks, each of which is
distinctively activated in the course of the infection (Eberhardt
et al., 2016; Cantone et al., 2017). Interestingly, this biological
system contains multiple intracellular and paracrine positive
and negative feedback loops that regulate the immune response
(Hoffmann et al., 2002; Ashall et al., 2009). This type of regulatory
loop can generate counter-intuitive, non-linear behavior (Tyson
et al., 2003). Deriving hypotheses on the pathogenesis of lung
infection that acknowledge these different levels of regulation,
or integrating different types of experimental data accounting
for the pathogenesis, is a difficult and onerous task even for a
well-trained researcher.

A feasible approach to the integration of data linking tissue,
cellular and intracellular events, the derivation of hypotheses
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and experiment design is the use of mathematical model
simulations (Vera and Wolkenhauer, 2008; Cantone et al.,
2017). This approach proceeds by collection of biomedical
knowledge from publications and databases and its conversion
into a graphical representation that connects the relevant
processes, cells and molecules. On the basis of specific heuristic
rules, this representation is encoded in a mathematical model
that consists of equations, computational rules and other
mathematical entities. Quantitative experimental data are used
to characterize the mathematical model by assigning values to
the parameters in the model equations in a process termed
calibration. In a biomedical context, a calibratedmodel combined
with experimental data can be used to dissect the fine tuning of
regulatory pathways in immune cells or bacteria in the course
of infection (Shih et al., 2012; Ben-Jacob et al., 2014), find new
biomarkers for disease prognosis (Khan et al., 2017), analyse
the feasibility of conventional or personalized treatments or
detect new drug targets (Schoeberl et al., 2009; Passante et al.,
2013), and gain understanding of complex ecological interactions
between bacterial species during upper respiratory tract infection
(Lysenko et al., 2010; Margolis et al., 2010; Mukherjee et al.,
2014). In addition to this, models and their simulations can also
be used to generate new hypotheses about the molecular and
cellular pathophysiology of lung infection. Schultz et al. derived
a mathematical model, calibrated with quantitative time series
data, accounting for the interplay between macrophages and
lung epithelial cells during L. pneumophila infection. They used
simulation-based sensitivity analysis to conceive the hypothesis
of a paracrine mechanism of macrophage-secreted IL-1β able to
induce a prolonged degradation of the signaling factor IRAK-
1 in lung epithelial cells. This model-based prediction was then
corroborated with additional experiments (Schulz et al., 2017).

In line with this approach, we constructed, and characterized
with available experimental data, a multi-level mathematical
model derived to simulate the interactions between the host
and S.p. inside a single alveolus during the first 10 h of
infection. Previous work on multi-level modeling in the lung
has sought to understand some key molecular interactions in
fungal infections (Cilfone et al., 2013; Pollmächer and Figge,
2014, 2015; Oremland et al., 2016; Pollmächer et al., 2016).
Our model combines ordinary differential equations (ODE)
to simulate the activation of intracellular pathways in lung
epithelial cells and an agent-based model to simulate the
cell-to-cell interactions between bacteria, epithelial cells and
macrophages. We confirmed that our mathematical model has
predictive abilities by simulating the effect of removing some
components of the model and comparing it with experimental
observations. Next, we combined mathematical modeling-based
simulations with data analysis techniques to derive phenotypic-
genotypic signatures associated with bacterial infectivity. This
methodology is an extension and adaptation of a previous
workflow employed in the detection of cancer gene signatures
(Vera et al., 2013; Santos et al., 2016; Khan et al., 2017). With
our results, we constructed falsifiable hypotheses about the key
molecular and cellular events in the early phase of lung S.p.
infection and discuss them in the context of existing experimental
evidence.

MATERIALS AND METHODS

Description of the Multi-Level
Mathematical Model
Alveolar infection is a process that involves many elements
at different scales in time and space. Our model traces the
first 10 h of infection, in which the decision between abortive
and productive infection is made. We have chosen 10 h for
the simulations based on cytokine profile data from cultured
lung epithelial cells activated by S.p. (Schmeck et al., 2006),
which indicates a low concentration of cytokines before this
time. After 10 h, the production of cytokines such as IL-1β
increases, which modifies the activation profile of epithelial cells
and alveolar macrophages (Schmeck et al., 2006). The model
was implemented in MATLAB and the source code is available
online at www.jveralab.net/resources. We define the nominal
parametrization of our model as the situation of a healthy host
quickly eliminating an initial infection of the alveolar tissue
(see Results section and Table S1). The model simulates a
single alveolus composed of 121 equally-sized epithelial cells
(30µm side length). We consider three interconnected modeling
domains: (1) the lining fluid dynamics of the alveolus and
bacterial proliferation, (2) the movement of macrophages and
bacteria, and (3) the intracellular signaling inside epithelial cells
of the alveolus (Figure 1). A detailed mathematical description
of the model is included in Supplementary Material (Intracellular
signaling pathway and Tissue level scale of the model sections).

The two levels of the model are juxtaposed in Figure 1: the
intracellular level to the lower right and the tissue level to the
upper left.We have described in SupplementaryMaterial how the
scales are combined in our model using an alternating simulation
strategy (Tissue and cellular scales merging andmodeling section).

Alveolar Lining Fluid and Bacterial Growth
The inner alveolar surface is modeled as a two-dimensional
square-shaped landscape with two layers of lining fluid on top
(see Figure 1). The lower layer is stationary while the upper
layer flows continuously. The model assumes that the liquid is
produced at a constant rate at the center of the landscape and
flows radially toward the borders and finally out of the alveolus.
The velocity of the flow is calculated from in vivo measurements
(Lindert et al., 2007) (see Figure 1, upper panel, and Table S1).
As S.p. is an extracellular pathogen, it proliferates and moves in
the lining liquid on the alveolar surface. The movement follows
a memoryless random walk model. The doubling time for S.p.
is 200min (Jakubovics and Palmer, 2013) (see Supplementary
Material, Table S1), and the divisions occur asynchronously.

There is a certain probability of bacteria passing between
the two fluid layers in each time step. This probability value
was optimized in order to produce balanced solutions in the
nominal parametrization, such that bacteria neither immediately
pass out of the alveolus nor remain permanently at one site
(see Table S1). Bacteria in the stationary layer stay attached
to the epithelial cells and move slowly, but when they are
in the upper layer, their random walk is faster and they are
also dragged along by the flow (see Supplementary Material,
Table S1, sessile vs. floating). Additionally, bacteria trigger the
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FIGURE 1 | Graphical representation of the multi-level mathematical model of bacterial lung infection. The upper left panel displays processes at the tissue level of the

model. It incorporates two lining fluid layers between which bacteria can transition (light blue layers). In both layers, the bacterial cell wall sheds factors (small orange

particles) that attract nearby macrophages. In addition, when bacteria (red-orange oval) are attached to the epithelial cell layer (purple rectangles), they trigger the

release of chemokine (pink concentric ovals) from the host epithelial cells; these chemokines act as a secondary attractive stimulus to macrophages (large gray

structure). Bacteria can transition to the upper flowing layer (arrow-shaped blue layer), where they are moved by the flow toward the alveolar opening, and back again

to the lower layer to re-attach at another site. The bottom right panel displays the intracellular level, containing the signaling pathway of the epithelial cells for

production of the chemokine that attracts macrophages (MCP-1). For a more detailed scheme of the intracellular model, see Supplementary Material Figure S1.

production of MCP-1 in epithelia only when they are in the lower
layer (Figure 1). Bacteria in the flowing layer can be dragged
outside the modeled area; they are then supposed to have been
cleared and are removed from the simulated alveolus, counting
as “spread bacteria” (see Figure 2). These bacteria stop playing a
role in the infection processes in the alveolus of interest, but we
acknowledge that spread bacteria can enter other alveoli. We will
consider this effect in relation to later infection stages in future
improvements of the model.

Alveolar Macrophages
Resident macrophages perpetually patrol the alveolar lumen
to protect the lung from environmental agents and pathogen
infection (Marriott and Dockrell, 2007). It can be estimated
that in a single alveolus in physiological conditions, we can
find between one and five alveolar macrophages (Wallace et al.,
1992; Ochs et al., 2004) (see Supplementary Material, Table
S1). Macrophages are not affected by the liquid flow because
it is assumed that they move autonomously using pseudopodia
attached to the epithelial layer. They have an average diameter
of 21µm (Krombach et al., 1997). The model assumes that
unstimulated macrophages follow a random-walk movement
pattern if they are not attracted by any gradient. Once the
bacteria come into close contact with a macrophage, they remain
attached, and are subsequently removed from the simulation

(phagocytised). We use an exponential decay function to model
the removal of attached bacteria through phagocytosis, which is
consistent with experimental measurements of the quantification
of bacterial phagocytosis in vitro (Athamna and Ofek, 1988) (see
Supplementary Material, Table S1). If the number of attached
bacteria on a macrophage surpasses a defined threshold for 1min
or more (see Supplementary Material, Table S1), the macrophage
dies by apoptosis (Bewley et al., 2014). Apoptosis of macrophages
promotes bacterial clearance (Aberdein et al., 2013). Initially, this
threshold is set at 50 in accordance with the cellular surface ratio
of the bacteria to the macrophage (see Supplementary Material,
Table S1). However, our simulations analyse this parameter at a
wide range of possible values to study its effect (see sectionModel
simulations).

Macrophages are attracted to bacteria through two different

gradients: a long-distance gradient defined by the MCP-1

chemokine produced by activated epithelial cells, and a short-
distance gradient defined by factors such as peptidoglycans and
lipopolysaccharides released from the bacterial cell wall (Dauber
and Daniele, 1978; Dohlman and Goetzl, 1978; Fisher et al.,
1988) (see Figure 1, lower panel, at left). This part of the
model is as yet the least well-supported, because the role of
chemoattractant signals has not been established at the small
scale of a single alveolus. Nevertheless, previous in silico studies
have utilized similar local gradients (Charnick et al., 1991;
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FIGURE 2 | Workflow of the study.

Pollmächer and Figge, 2014). In order to decide whether to
include the chemoattractant signal in the model, we generated
a set of 50 parameter configurations with random perturbations
of the nominal parametrization within a 10% margin, and
simulated each with and without the chemoattractant signal,

respectively. We observed that only 1 (2%) of the solutions
with the chemoattractant signal, but 17 (34%) of the solutions
without the chemoattractant signal have more than 40 bacteria
after 10 h of simulation. We therefore decided to include the
local chemoattractant signal in our model in order to align the
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nominal parametrization with the predicted phenotypic response
of a healthy host.

In our model, macrophages detect the chemoattractant signal
of MCP-1 with an arbitrarily chosen threshold of 10−6 mM (see
Supplementary Material, Table S1). This value is relatively low,
but simulations show that it is not relevant to the results when
modified across several orders of magnitude (data not shown).
If a macrophage is as close to a bacterium as the length of
one epithelial cell (see Supplementary Material, Table S1), this
macrophage can detect the gradient of bacterial factors (Fisher
et al., 1988) and move directly toward the pathogen. In this,
we are assuming that, even when macrophages are exposed to
bacterial peptidoglycans and lipopolysaccharides, they will rely
only on the chemokine gradient for closing long-range distances.

Epithelial Cell Level and Chemokines
For the intracellular part of the model, we have adapted an ODE
model developed previously in our group (Schulz et al., 2017).
In the original model, epithelial cells respond to the detection
of Legionella via an NF-κB-mediated intracellular network. For
the present study, we assumed that the intracellular network
mediating NF-κB activation has the same structure, but we
substituted the original receptor that recognizes the bacteria and
the chemoattractant with TLR2 and MCP-1, respectively (TLR2)
(see Supplementary Material) (Deshmane et al., 2009). The TLR2
receptor recognizes bacterial lipoproteins and phosphorylates
IRAK1. The signal is released through activation of IKK, that
phosphorylates and promotes the degradation of the NF-κB
inhibitor IκBα (Koedel et al., 2003; Malley et al., 2003). When
the inhibitor is eliminated, NF-κB is imported into the nucleus
and activates the transcription of many pro-inflammatory genes,
including chemokines such as MCP-1 (Shyy et al., 1993; Wang
et al., 2000; Kim et al., 2006). MCP-1 is released from the cell to
the lining fluid and produces a gradient that attracts the alveolar
macrophages (Deshmane et al., 2009). The detailed description
of the intracellular model is available in the Supplementary
Material (Intracellular signaling pathway section). Each of the
121 epithelial cells runs its own instance of the ODE model
and is able to individually respond to bacteria by producing
and secreting MCP-1. The secreted MCP-1 diffuses through the
epithelial cell layer following Fick’s Law, generating a gradient
that the macrophages can detect. It is assumed that MCP-1
diffuses through the lower laminar layer of the lining fluid.
For a detailed explanation of the equations and parameters,
see the Intracellular signaling pathway section in Supplementary
Material.

Computational Workflow
In Figure 2, we explain the workflow we followed to obtain the
results, pursuing a strategy adapted from previous studies (Vera
et al., 2013; Santos et al., 2016). The aim of this workflow is to
group simulation results according to biological phenotypes and
by so doing to identify the influence of the model parameters
in these phenotypes. The workflow proceeds as follows: (1)
Conceptualization and construction of the mathematical model
based on current knowledge; (2) Execution of systematic
simulations in which the values of key model parameters are

perturbed; (3) Grouping of the solutions based on the phenotypic
response investigated; in this case, this was the predicted number
of bacteria at the end of the model simulation; (4) Logistic
regression analysis of the phenotypic groups in order to identify
key model parameter differences; and (5) Decision tree analysis
in order to identify phenotypic subgroups characterized by a
distinctive set of key parameter values.

Model Simulations
The nominal parametrization of the model is defined as the
closest reproduction of a physiological situation where S.p.
attempts to colonize the alveolar tissue of a healthy adult. To
obtain this parametrization, we assumed reasonable parameter
values for the model if we were unable to derive them from
the literature. In the Supplementary Material, Table S1 lists the
parameters and the scientific papers from which their values
were obtained. We focused on parameters that correspond to
factors with high variability in the epidemiology of pneumonia.
Different strains of S.p. display differences in bacterial doubling
time (doub), in capsule production (caps) and in the presence
of adherence receptors that influence the transition between
the dynamic and the stationary layer of the lining fluid (dwel).
The initial number of bacteria can also be highly variable
(nbac) (Brueggemann et al., 2004; Serrano et al., 2006; Shen
et al., 2006). To account for differences in immunological
conditions in the hosts, we consider differences in the number
of alveolar macrophages (nmac), and the macrophages’ state
of activation is reflected by their phagocytic activity (phag)
and their mobility (macm) (Saito et al., 2008; Descamps et al.,
2012). Finally, to account for the differing propensities of
macrophages to undergo apoptosis, the number of bacteria that
will trigger apoptosis in macrophages if ingested simultaneously
is modified (maxb). The remaining parameters at the tissue level
are assumed to remain constant between different hosts and
pathogens. The intracellular parameters selected account either
for mutations that affect protein or mRNA stability (kirak1deg,
kirak1pdeg, kikkdeg, kikkadeg, kmikbadeg, kikbaloss, kmmcp1deg,
and kmcp1deg) (Medvedev et al., 2003; Rose et al., 2003) or for
mutations that affect the activation of proteins (kirak1ph, kikkact,
and knfkbgain) (Boyd et al., 2012). To investigate the model, we
first defined an accessible range around the nominal value for
each of the selected parameters. We then obtained a high number
of uniformly random parametrizations within these constraints
and ran a simulation for each, and finally performed regression
analysis of the phenotypic outcome on the basis of the parameter
values.

We analyzed the parameters for the tissue level and the
intracellular level independently, as the timescales for each are
very different. For each analysis, we obtained a set of 2·104

solutions. As the model contains stochastic parts, we repeated
each run 10 times to obtain a measurement of the mean and
standard error of bacteria numbers at the end of the simulation
(10 h). We calculated the 95% confidence interval (CI) of the
number of bacteria based on the mean and standard error for
each solution. This confidence interval is used to group solutions
such that a solution belongs to the group high load if the lower
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boundary of the CI is above 10 and to low load if its upper
boundary is below or equal to 10.

All simulations were performed on a Dell PowerEdge R820
with 2 Intel Xeon E5-4650L CPUs and 128 GB main memory,
running Ubuntu 14.04.5 and MATLAB R2015b. A single
simulation took around 1min in our setup.

Logistic Regression
In our analysis, we compare high load to low load. Logistic
regression is advantageous in our situation because it
accommodates binary-valued outcomes (Lever et al., 2016).
The regression casts the model parameters as independent
variables and the binary distinction as the dependent variable.
The regression model is as follows:

logit
(

p
)

= ln

(

p

1− p

)

= β1x1 + · · · + βnxn,

where p is the probability of belonging to one of the defined
groups, which is transformed through the logit function into
a linear continuous variable between –∞ and +∞ that can
be predicted as a linear combination of the model parameters
(xn). The factors βn measure the influence of each parameter on
bacteria numbers. They can be positive or negative depending
on their correlation to the outcome. The absolute values of
the factors βn are considered in tests of significant differences
between groups of simulations.

The logistic regression analysis was performed using the
package glm in R (version 3.4.0).

Decision Tree Analysis
Logistic regression analysis is only able to calculate the influence
of each model parameter on the outcome of a binary variable
(e.g., high load vs. low load), but it cannot differentiate
subpopulations of solutions within one group of solutions. The
identification of subpopulations, however, would be particularly
interesting for our purposes because different strains of
pneumococci (represented by different model parametrizations)
may achieve successful infection using different strategies. To
address this question, we employed a decision tree analysis using
the package rpart in R (version 3.4.0). Trees are mathematical
objects that can separate multidimensional objects into disjoint
sets based on the separation of one dependent binomial variable.
In our case, the multidimensional objects are the parameter
configurations, and the dependent binomial variable to be
separated is the bacterial load (0 for low load and 1 for high load).
The sets defined by the tree are generated in such a way that
the average values of the bacterial load inside a single set present
the greatest differences while using the minimum amount of sets.
Each new set is generated by a partition of one of the parameters
into two parts (higher and lower than a defined value). The leaves
of the tree represent the sets obtained, which in our case are
interpreted as different strategies that the pneumococci might
follow in order to infect the alveolus (decision tree, see Figure 2).

RESULTS

Nominal Model Parametrization and
Validation
The model was tuned in such a way that, in the nominal
parametrization, an infection with an everyday number of
bacteria under the surveillance of a single resident alveolar
macrophage leads to simulations that consistently finish at 10 h
with a lower than initial bacterial load, here considered indicative
of successful immune control. An everyday number of bacteria
would correspond to a value lower than the minimum infectious
dose for S.p. This infectious dose in experiments on mice is
between 100 and 1,000 bacteria per alveolus (Orihuela et al.,
2003). The nominal solution considers a realistic situation in
a healthy individual in which frequent encounters with low
numbers of S.p. would not produce alveolar infection, for which
higher doses coming from nasopharyngeal colonization would be
required (Mandell, 2009). To increase confidence in the nominal
parametrization, we ran 100 simulations with the initial number
of bacteria (25) following a normal distribution of bacteria
concentration, with the mean at the center of the simulated
alveolus. The center of the alveolus corresponds to the point
opposite the alveolar entry, so the bacteria would accumulate
around this point when they invade the alveolus from the entry.
We observed complete clearance in 19 cases. The confidence
interval for the number of bacteria at the end of the simulation
is [7.9, 11.4] (CI 95%), and its upper boundary is less than half
the initial number of bacteria.

The left-hand column in Figure 3 shows a simulation of the
nominal scenario at 1, 3, 6, and 9 h after initiation of bacterial
infection, while the right-hand column is an instance of a
simulation with successful bacterial infection proceeding from
a higher number of bacteria (150 bacteria). By contrast, in the
nominal scenario the bacteria are cleared by the macrophage in
<6 h.

To confirm the model’s predictive abilities, we ran simulations
in which we removed the ability of macrophages to follow the
MCP1 chemo-attractant gradient and subsequently estimated
bacterial population size at the end of the simulation with and
without the MCP1 chemo-attraction (50 simulations each). We
found that our model simulations are in accordance with recently
published experimental data for wild-type and CCL2 knockout
mice infected with S. pneumoniae (Winter et al., 2009) (see
Figure S2).

Tissue-Level Processes Affecting Infection
Progression
In order to elucidate the tissue-level processes that may affect
the infection, we first selected a subset of biologically relevant
parameters at the tissue level (see sectionMaterials andMethods)
and randomly perturbed them while keeping all the other
model parameters at their nominal values. The simulations
were then run accordingly and the results classified into
groups. As described in the Materials and Methods section,
we performed 2·104 simulations by perturbing the relevant
parameter values following a uniform distribution inside the
intervals in Table 1). We ran 10 simulations for each solution to
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FIGURE 3 | Snapshots of simulation progression at 1, 3, 6, and 9 h (cf. rows from top to bottom) for the nominal model parametrization (A–D) compared to an

exemplary successful infection (E–H). (A) The simulation was initiated with 10 bacteria (red dots) and one macrophage (cyan circle). The lighter background color

around the bacteria represents the incipient production of MCP-1 from the epithelial cells (square domains in background) in this area. (B) The proliferating bacteria

stimulate an increased release of MCP-1 and the macrophage follows the gradient. (C) The macrophage starts phagocytising the bacteria; the production of MCP-1

decreases. (D) The macrophage finds the last remaining bacteria and clears the infection. (E) The simulation begins with 100 bacteria which almost immediately

trigger a strong chemokine release. (F) After 3 h and massive accumulation of MCP-1, the macrophage clears many bacteria. (G) The number of bacteria keeps

increasing, dispersing across the alveolus. (H) After 10 h, the bacteria have spread through a wide area on the alveolus. The macrophage is not fast enough to clear all

of them and the infection has become productive. Figure S3 provides a clearer representation of the small details of (H).
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TABLE 1 | Tissue-level parameter search space.

Parameter Multiplier

nbac: initial number of bacteria [10,100] times

nmac: initial number of macrophages [1,5] times

difk: diffusion constant of chemokines [0.1,10] times

antg: number of antigens recognized per bacterium [0.1,10] times

srfm: movement speed of bacteria on the surface [0.1,10] times

flom: movement of bacteria in lining fluid [0.1,10] times

radm: movement of lining fluid [0.1,10] times

doub: doubling time of bacteria [0.1,10] times

dwel: probability that bacteria will remain in the same phase [0.991,1.001] times

satr: saturation of bacterial growth [0.1,10] times

caps: kinetic constant for capsule production [0,2] times

macm: macrophage movement speed [0.1,10] times

phag: phagocytosis rate [0.1,10] times

maxb: maximum bacteria per phagocytosis [0.1,2] times

lpss: LPS sensitivity of macrophages [0.1,10] times

cytg: MCP-1 sensitivity of macrophages [0.1,10] times

All intracellular parameters (for details see Supp. Mat.) [0.5,2] times

The range is generated around the nominal value (see Supplementary Material, Table

S1), with the exception of the number of bacteria and macrophages (nbac and nmac),

and is represented as the factors by which the nominal value is multiplied. Note that the

explanation for the intracellular-level parameters is given in Supplementary Material.

account for stochasticity in the simulations. The solutions were
classified into two groups according to the lower boundary of the
confidence interval for the number of bacteria at the end of the
simulation: high load contained values higher than 10 bacteria
(5,853 solutions), while the remaining solutions were classified
as low load (14,174 solutions). The outcomes for both groups
are shown in Figure 4, where the high load group (red) shows
higher numbers of bacteria toward the end than the low load
group (blue).

Figure 5 shows the distribution of the parameter values after
transformation to logarithmic scale and linear projection from
their original range to the interval [0.1, 10]. The parameters nbac
and nmac were normalized without logarithmic transformation,
as their factor range was linear.

Next, we wanted to identify the parameters with significant
differences between the high and low bacterial load groups.
To this end, we applied logistic regression, a statistical method
specifically suited to accommodating binary-valued outcomes
like those investigated here (see details in section Materials and
Methods). The results indicate that six of the tissue-level model
parameters distinguish the two groups. They can be aggregated
as follows: (i) parameters related to bacterial phenotype (nbac,
doub, dwel, and caps) and (ii) parameters related to macrophage
phenotypes (nmac and macm). Regarding the first group,
the parameter dwel is a measure of bacterial adherence that
represents the dwelling probability, i.e., the probability that the
bacteria will stay attached in the lower fluid layer instead of free-
floating in the upper fluid layer until the next iteration. The values
of dwel are higher in the high load group (red) than in the low load
group (blue).

FIGURE 4 | Distribution of final bacteria numbers in the simulations

accounting for the influence of tissue level parameters. The figure shows the

evolution over time of the interpercentile range between the 5th and 95th

percentiles in the two groups: high load group in pink and low load in blue. The

solid lines in darker shades represent the median of each group.

Moreover, the parameter accounting for bacterial doubling
time (doub) is lower in the high load group, a result that was
expected under the assumption that highly proliferative bacteria
increase the chances of successful infection. The parameter nbac
determines the initial number of bacteria in the simulation. These
bacteria are randomly distributed through the alveolus following
a normal distribution centered in the middle of the alveolus,
and all of them are located in the upper layer of the lining fluid
at the beginning of the simulation. The logistic analysis shows,
unsurprisingly, a higher number of initial bacteria (nbac) in the
high load group.

The capsule represents themost important virulence factor for
the infectivity of S.p. In the model, capsule production follows
a saturation dynamic, and the parameter caps represents the
velocity of the bacteria in capsule production (caps is the time
taken to reach half the maximum capsule thickness). It has been
observed that differences in capsule thickness between different
strains arise from differences in the energy cost of capsule
monomer production (Weinberger et al., 2009). The model
reflects this specificity by tuning the parameter accounting for the
rate of capsule production. The analysis of the results indicates
differences between the populations of high load and low load
solutions for low values of caps (Figure 6). The capsule prevents
phagocytosis by the alveolar macrophages (AlonsoDeVelasco
et al., 1995), which is an indication of why the model predicts an
important role for capsule production in facilitating the infection.
However, the capsule also decreases bacterial adherence and
hence exposes the bacterium to the drag of the lining fluid
(Adamou et al., 1998). We modified the model to account for
this effect. The probability of transition from the flowing layer
to the stationary layer of the lining liquid decreases with higher
amounts of capsule. Specifically, if the amount of capsule is at
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FIGURE 5 | Box plots of tissue-level parameter value distributions in the two groups: high load group in red and low load in blue. Only the parameters revealing

significant differences according to the logistic regression analysis are shown.

FIGURE 6 | Histograms of tissue-level parameter values: high load group in red and low load in blue. The plotted values are the factors that multiply the value of the

nominal solution. The distribution of solutions for a different sample number is shown in Supplementary Material.

its maximum, the bacteria will not settle, and if the amount of
capsule is zero, the probability of settling will be at a maximum
(but different from 1). The logistic regression analysis was then

repeated with 2·104 more solutions, with 10 repetitions each
obtained with this new version of the model. When the trade-
off between protection against macrophages and removal by the
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lining fluid was considered, the impact of the capsule production
rate on infection is reduced by more than half (see Table S5).

According to our analysis, the decision on early bacterial
clearance is influenced by phenotypic features of themacrophage,
namely the number of macrophages and the movement of
macrophages (nmac and macm, respectively) (see Figure 6).
These two parameters attain higher values in the low load
group than in the high load group. Other macrophage-
related parameters, such as maxb (apoptosis propensity) and
phag (phagocytosis rate), did not display differences between
groups. The model predicts that during the early stages of
infection, the leading physiological parameters of macrophages
are their number and their velocity, and the phagocytosis
rate and propensity to apoptosis do not play an important
role.

Intracellular Processes Affecting Infection
Resolution
Regarding the intracellular level of the model, which accounts
for the regulatory pathway that activates lung epithelial cells, the
selected parameters were also randomly perturbed from their
nominal values while all the other parameters were kept at their
nominal values. In this way, we generated 2·104 parameter sets
used to perform simulations and classified them into groups
(Table 1; further details in section Materials and Methods). We
applied the same criteria for grouping the solutions as in the case
of tissue-level parameters. Six thousand one hundred and nine
solutions were grouped as high load and 15,448 solutions as low
load. The 5th and 95th percentiles of bacteria numbers in the
solutions thus grouped are shown in Figure 7.

Figures 8, 9 show the distribution of parameter values in both
groups of solutions. According to the logistic regression analysis
and Figure 8, the most relevant parameters distinguishing high
load from low load are the degradation rate of the MCP-1 mRNA

FIGURE 7 | Interpercentile range between the 5th and 95th percentiles for

final bacteria numbers of the intracellular-level solutions for the high load group

in red and low load (blue). The lines represent the median of each distribution.

(kmmcp1deg), the degradation rate of the active form of IKK
(kikkadeg), the degradation rate of the IκBa mRNA (kmikbadeg)
and the production of NF-κB (knfkbgain). All these parameters
together make for more than 70 % of the sum of the factors in
the logistic regression (Table S5, Supplementary Material). The
parameter kmikbadeg is higher in the high load group, and the
other three are higher in the low load group.

Decision Tree Analysis
When we applied the logistic regression to analysis of the
populations of solutions, the solutions were divided into only
two groups, which reduced the resolution of the analysis. To
obtain higher-resolution and more disjoint groups of solutions,
we used a decision tree analysis. In this type of statistical model,
multidimensional groups are separated into disjoint sets based
on the sequential partition of the available solutions. In our case,
the tree creates several groups of solutions distinguished by their
average bacterial load, in such a way as tomaximize the difference
in average bacterial load inside each set while minimizing the
number of sets. The leaves of the tree represent subpopulations
with different values for the model parameters, which can
be interpreted as different infection strategies employed by
pneumococci.

The decision tree analysis was performed at the tissue level
in order to find subpopulations in the high load solutions which
might account for different strategies employed by S.p. to infect
the alveolar tissue. We defined infectivity as the continuous
variable that fills the interval between the binary values of the
low load and high load groups, where high load translates to
a value of 1 and low load to one of 0. We denote “infection
phenotype” as that with mean infectivity equal to or higher than
0.5, and “no infection phenotype” as that with mean infectivity
lower than 0.5. The 20,027 solutions were analyzed using the
rpart package in R. Figure 10 displays a representation of the
results. In the leaves, the squared boxes at the bottom of the tree,
an infectious phenotype is denoted by red coloring while blue
indicates no infection. The intermediate branches are plotted in
both colors if the decision tree cannot clearly separate the two
outcomes.

Figures 10C,D shows a sketch of the subpopulations that
can be inferred from Figures 10A, B, respectively. This sketch
focuses only on three of the parameters (doub, dwel, and nbac).
Figures 10A,C correspond to the half of the tree that segregates
high macrophage velocity, while Figures 10B,D represent the
other half.

First, in Figures 10A,C, we can find three subpopulations (1–
3 in panel C). Subpopulation 1 represents bacteria with high
dwelling probability, in which infectivity is high if the number
of initial bacteria is high. Subpopulation 2 achieves very high
infectivity and is made up of highly proliferative bacteria with
intermediate dwelling probability. Subpopulation 3 combines
low proliferation and low dwelling probability, and achieves low
infectivity.

In Figures 10B,D, we observe four subpopulations. The first
of these achieves high infectivity and is defined by intermediate
to high proliferation and dwelling probability. If proliferation is
low but dwelling probability is intermediate, as in subpopulation
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FIGURE 8 | Distribution of the intracellular-level parameter values in the two groups: high load group in red and low load in blue. Only parameters with significant

differences between groups are shown.

FIGURE 9 | Histograms of the tissue level parameter values: high load group in red and low load in blue. We plotted the factors that multiply the value of the nominal

solution. The distribution of solutions for a different sample number is shown in Supplementary Material.

2, high infectivity results only if the initial number of bacteria
is high. Subpopulation 3 features the same constraint, i.e.,
dependence on the initial number of bacteria for high infectivity,

but it relies on high proliferation and low dwelling probability.
Finally, subpopulation 4 is characterized by low values of
dwelling probability and low infectivity.
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FIGURE 10 | Decision tree analysis on tissue-level parameter values in the combined low load and high load groups. Red represents a set of solutions whose average

infectivity is equal to or higher than 0.5, while blue stands for infectivity lower than 0.5. The intermediate steps (ovals) show both colors, as they cannot be classified

unanimously at this level. Solutions with high macrophage movement speed (A) are separated from those with low macrophage movement speed (B). The original

tree can be seen in Figure S4. (C,D) represent an alternative depiction of the subpopulations from (A,B), respectively. Three and four different subpopulations

respectively were identified depending on the range of values of dwel and doub. Blue boxes indicate low-infectivity subgroups, dark red boxes high infectivity

subgroups and light red boxes indicate subpopulations that achieve high infectivity if the criterion inside the box is met.

DISCUSSION

Streptococcus pneumoniae may prove a threat to life for

immunocompromised patients, children and elderly people. An

interesting strategy for the protection of these high-risk groups

would be preventative interventions that stop the infection in
its earliest stages, thus avoiding a systemic immune response;
such interventions could be administered during periods of
high infection risk (Cheng et al., 2015). Here, we propose
harnessing the predictive ability of a mathematical model on
the time course of infection in a single alveolus. The underlying
idea is to make efficient use of modeling and simulations in
order to conceive hypotheses on key physiological and bacterial
parameters that distinguish between a successful infection and
one rapidly cleared. Experiments can then be designed to test
these hypotheses. Multi-level models allow for the integration of
different temporal and spatial scales into a single mathematical
model. This is particularly interesting in our context because
alveolar infection involves interactions between the pathogen
and the host cells at both the tissue and intracellular levels. In

this work we have focused on the initial stages, an infection
phase that involves essentially three types of cells (bacteria,
epithelial cells, andmacrophages) and a well-defined intracellular
pathway.

Logistic regression analysis combined with systematic model
perturbations and simulations provides a method for ranking
model parameters and their associated processes in terms of their
significance for the outcome of an early alveolar infection. The
processes associated with the most important parameters could
be investigated as targets for drug modulation in a preventative
strategy.

At the tissue level, the most influential bacterial parameter
predicted by the model and the logistic regression is the
probability that the bacteria will remain in the same layer of
the lining fluid. Transition between layers can be seen as a
random process that alters the composition of the bacteria’s
capsule, thereby modifying adherence to the epithelial cells
(Hammerschmidt et al., 2005); the higher the probability of
this transition, the higher the turnover of the bacterial surface
receptors that modify its adherence. Our model simulations
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suggest that a low rate of change to bacterial adherence to
the epithelial cell surface is important for producing successful
infection. Interestingly, this model prediction correlates with the
function of a known S.p. virulence factor, the Pneumococcal
surface protein C, which is involved in adherence to the epithelial
surface (Iannelli et al., 2004).

It is important to highlight at this point that the model
assumes a trade-off for the bacteria between adherence and
clearance to the epithelial cell layer. Floating bacteria can be
easily removed from the alveolus by the lining fluid. Conversely,
attached bacteria can quickly be recognized by the epithelial
cells, which will then produce MCP-1 to attract macrophages
and promote clearance. Our model predicts that, during the very
early stages of alveolar infection, the accumulation of a minimal
biomass inside the alveolus by prevention of the lining fluid-
driven removal of bacteria is critical to a productive infection.
According to our simulations, this can be achieved by keeping
bacteria attached to the epithelial cell layer. This choice would
produce a more robust macrophage response through the MCP-
1 produced by the epithelial cells. For the bacteria, fine tuning
of the dwelling parameter can promote dispersion of the bacteria
through the alveolus in such a way that some bacteria clusters
could escape frommacrophages without being washed out by the
lining fluid.

In our analysis, increased proliferation of pneumococci
promotes infection of the alveolar tissue. This suggests that faster
growth can be beneficial for the establishment of infection. In
previous studies, it has been observed that the capsule production
efficacy can impose a delay in bacterial growth, and this effect
influences virulence (Hathaway et al., 2012); in our model we
observe a similar correlation via the effect of doubling time on
infectivity. The number of initial bacteria entering the alveolus is
another important parameter promoting infection. This is in line
with the observation that nasopharyngeal colonization precedes
alveolar infection. The experimental evidence in the literature
suggests that, in order to achieve successful bacterial infection
in the lung, pneumococci first need to accumulate in the higher
respiratory tract, to then be released to the lower respiratory
tissue (Mandell, 2009). Our simulations support this idea.

The capsule is a polysaccharide layer that protects bacteria
from phagocytosis by macrophages. Bacteria colonizing
the nasopharyngeal tissue produce low levels of capsule
(Hammerschmidt et al., 2005). The model includes the
hypothesis that, in order to invade the lung, bacteria trigger
capsule production to protect themselves from macrophages.
This hypothesis is supported by in vitro observations
(AlonsoDeVelasco et al., 1995). In line with this, we considered
in our model a dynamic ability of bacteria to produce capsule,
triggered upon invasion of the alveolus. The results suggest
that the adherence effect of the capsule could actually impair its
protective effect during the initial phases of infection. This result
may explain why some highly invasive strains of S.p. display
lower efficiency in capsule production (Weinberger et al., 2009).

Resident macrophages are the first immunological barrier
in the alveolar tissue; their task is to quickly clear invading
pathogens and remove other particles without activating other
branches of the innate and adaptive immune response. According

to our analysis, two parameters accounting for the features
of the alveolar macrophages play an important role in early
infection: the number of resident macrophages and their speed
of movement. Promisingly, these results provide an explanation
for the higher susceptibility of infants to pneumococcal infections
(O’Brien et al., 2009): in infants, alveolar macrophages tend to
be insufficiently mature (Saito et al., 2008), and this lack of
maturation impairs the movement of the resident macrophages
through the alveolar lumen.

Moving to the intracellular level of the model, one of the
most significant parameters in the analysis is related to the
molecular stability of the MCP-1 mRNA (kmmpc1deg), which
is consistent with some experimental observations (Rose et al.,
2003). The analysis shows that high stability of theMCP-1mRNA
increases bacterial numbers at the end of the simulation. From
the model (Figure 3), we can observe that local increases in
the production of MCP-1 can act as chemokine traps in which
macrophages are retained after they clear the bacteria cluster that
triggered MCP-1 production. This arises from the fact that the
rate of chemokine decay is much smaller than the velocity of
macrophages (which can also be observed in time-lapse videos
of the simulations available at http://sysbiomed-erlangen.weebly.
com/resources.html).

TABLE 2 | List of model predictions that are linked to published experimental

results.

Experimental observation References

INTUITIVE MODEL RESULT

Higher proliferation

increases infectivity.

Higher capsule production efficacy

correlates to virulence via faster

growth.

Hathaway et al., 2012

Higher number of

initial bacteria

increases infectivity.

In order to reach a high number of

invading bacteria in the lung,

pneumococci first accumulate in

the upper airways.

Mandell, 2009

Number and

movement of

macrophages affect

infectivity.

Lower ability of infants to resist

pneumococcal infection. Children

lack mature alveolar macrophages.

Saito et al., 2008

Several bacterial

subpopulations can

be identified with

different levels of

infectivity.

Difference observed in invasion

ability of Streptococcus

pneumoniae serotypes. It has been

observed that invasiveness is

inversely correlated with frequency

of commensal carriage.

Brueggemann et al.,

2004

COUNTER-INTUITIVE MODEL RESULT

Adherence to and

higher dispersion

through the epithelial

surface increases

infectivity.

Adherence protein Pneumococcal

surface protein C is a virulence

factor.

Iannelli et al., 2004

Capsule is an

obstacle to infection.

Evidence of reduction of capsule

production during first stages of

invasion.

Hammerschmidt

et al., 2005

The stability of the

MCP-1 mRNA is

higher in the high

load group.

MCP-1 expression and protein

production is increased in

inflammatory lung diseases.

Wang et al., 2000
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A second influential parameter is the stability of IKK, an
upstream kinase mediator in the NF-κB signaling pathway.
Specifically, this kinase phosphorylates and thus marks for
degradation IκB, a major inhibitor of NF-κB activation and
nuclear shuttling (Jacobs and Harrison, 1998). Strikingly, our
model predicts that high stability of the IKK protein increases
the success rate of early alveolar infection (Figure 8). Long-term
NF-κB activation provoked by a more stable IKK would increase
the duration of MCP-1 release after a transient stimulation.
This long-term signal would again trap the macrophages after
clearance of bacteria, thereby delaying the elimination of bacteria
at other sites.

The above two parameters were responsible for almost
half of the variability of the regression model. If we add
to them the production rate of NF-κB (knfkbgain) and the
degradation rate of the mRNA of the NF-κB inhibitor IκBa
(kmikbadeg), we see four parameters accounting for 70% of
variability. The degradation of the IκBa mRNA is higher in
the high load group, again increasing the duration of MCP-1
production because NF-κB cannot be re-sequestered efficiently
if the stability of the IκBa mRNA is low. Finally, the production
rate of NF-κB is lower in the high load group, a situation
that would represent a low intracellular total amount of NF-
κB. It has to be noted that this is the only parameter that
refers to a production rate rather than a degradation rate. Our
model simulations suggest that with a low total amount of
intracellular NF-κB, the system is not able to trigger MCP-1

production and promote rapid, macrophage-mediated control of
the infection.

Decision tree analysis is a methodology for finding
subpopulations within defined groups. In the context of
our analysis, we were looking for subpopulations of solutions
within the high load and low load groups. We obtained five
subpopulations with high infectivity and two with low infectivity
(Figures 10A–D). Interestingly, the subpopulations differ
depending on the macrophages’ state of maturation. If the
velocity of the macrophages is low we can differentiate four
subpopulations, but if velocity is high, we can observe only three.

Further, the number and nature of subpopulations identified
depend on the values of bacterial doubling time and adherence
(doub and dwel, respectively). The final outcome of the
subpopulations will also depend on the number of initial
bacteria (nbac). We note that all three parameters relate to
bacteria phenotypes. The decision tree analysis indicates that
the strategies available to the bacteria depend on a single
immunological parameter of the host, the velocity of their
macrophages (macm). If the host is immunocompetent and
has “quick” macrophages, the bacteria can only attain a highly
infective phenotype in one of two ways: either by having a very
high dwelling probability and a high initial number of colonizing
bacteria, or by having very high proliferation with lower dwelling
probability. Conversely, if the host macrophages move slowly,
three out of the four identified bacterial phenotypes achieve
high infectivity. In this case, a high number of bacteria can be

FIGURE 11 | Sketch of the modeling-based predicted strategies pursued by bacteria attempting to infect the alveoli. When the bacteria increase their proliferation

rate and decrease their capsule production, they can accumulate in the alveolus due to higher adherence to the epithelial tissue. The top left-hand diagram shows in

red 10 simulations with reduced capsule production (caps = 5 h) and increased proliferation (doub = 100min), compared to 10 simulations of the nominal solution in

blue (see section Materials and Methods). If the bacteria keep their initial upper-airway phenotype of low proliferation and capsule production, they are washed out by

the lining fluid and do not succeed in infecting the alveolus. The top right-hand diagram shows in red 10 simulations with increased capsule production (caps = 2 h)

and reduced proliferation (doub = 400min) compared to 10 simulations of the nominal solution in blue (see section Materials and Methods).
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reached for intermediate to high values of both proliferation
and dwelling probability, with a reduced need for high initial
numbers of colonizing bacteria. Analogously, if the initial
number of bacteria is high, a strain with low proliferation
and intermediate dwelling probability or with low dwelling
probability and high proliferation is able to establish a productive
infection. In our opinion, these subpopulations, distinguished
by only three bacterial parameters (dwel, doub, and nbac), can
explain observations of diversity in the infectivity of different S.p.
serotypes (Serrano et al., 2006).

In Table 2, we link our model predictions to published
experimental observations that support them, at least partially.
For example, our model simulations suggest that dwelling
probability and bacterial adherence play a key role in the
establishment of infection. Specifically, the model predicts
that adherence to epithelial cells facilitates bacterial infection.
Since the capsule decreases the adherence of pneumococci, we
hypothesize that the bacterial capsule is an obstacle during early
infection (Figure 11). The invading bacteria originate from the
upper airway colonies and are metabolically adapted to high
capsule production and low proliferation (Hathaway et al., 2012).
Our results indicate that, in order to succeed in infecting the
alveolus, the bacteria have to switch to a higher proliferative
profile and decrease capsule production to strengthen their
adherence to the epithelial cells. In line with this, Iannelli
et al. (2004) found in S.p. infection experiments with mice
that bacterial adherence factors such as pneumococcal surface
protein C can act as virulence factors, increasing the risk of
severe infection and sepsis (Iannelli et al., 2004), although the
authors did not succeed in fully unraveling the mechanism.
Our model predictions provide a mechanistic explanation for
Iannelli’s results. In our view, our hypothesis can be tested in
animal models using an antibody binding to one of the adherence
factors of the bacteria, such as pneumococcal surface proteins.
Preliminary studies have pointed to the utility of this approach
(Ferreira et al., 2009).

CONCLUSIONS

This paper proposes a multilevel mathematical model to the end
of unraveling pathogen-host interactions during the first 10 h

of alveolar invasion. Combining simulations and techniques of
statistical analysis, we identified various bacterial strategies for
infection of the lower airways. These predicted strategies explain
experimental differences observed in S.p. serotype infectivity.
We propose that certain human pneumococci isolate phenotypes
can be explained, at least in part, by differences in bacterial
proliferation rates and adherence capabilities. On the basis
of these findings, we hypothesize that interventions based on
decreasing the adherence of pneumococci to alveolar epithelial
cells would be able to protect high-risk populations before the
disease is established.
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