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Influenza A viruses (IAVs) are important human and animal pathogens with high impact

on human and animal health. In Denmark, a passive surveillance program for IAV

in pigs has been performed since 2011, where screening tests and subsequent

subtyping are performed by reverse transcription quantitative real-time PCR (RT-qPCR).

A disadvantage of the current subtyping system is that several assays are needed

to cover the wide range of circulating subtypes, which makes the system expensive

and time-consuming. Therefore, the aim of the present study was to develop a

high-throughput method, which could improve surveillance of swine influenza viruses

(swIAVs) and lower the costs of virus subtyping. Twelve qPCR assays specific for

various hemagglutinin and neuraminidase gene lineages relevant for swIAV and six

assays specific for the internal genes of IAV were developed and optimized for the

high-throughput qPCR platform BioMark (Fluidigm). The qPCR assays were validated

and optimized to run under the same reaction conditions using a 48.48 dynamic array

(48.48DA). The sensitivity and specificity was assessed by testing virus isolates and

field samples with known subtypes. The results revealed a performance of the swIAV

48.48DA similar to conventional real-time analysis, and furthermore, the specificity of

swIAV 48.48DA was very high and without cross reactions between the assays. This

high-throughput system provides a cost-effective alternative for subtyping of swIAVs.

Keywords: swine influenza virus, subtyping, surveillance, real-time PCR, high-throughput real-time PCR,

diagnostics

INTRODUCTION

Swine influenza is a respiratory disease caused by multiple subtypes of influenza A virus (IAV).
The genome of IAV consists of eight segments, which code for different virus proteins. Subtype
classification of IAV is based on the encoded surface glycoproteins hemagglutinin (HA) and
neuraminidase (NA), and so far, 16 different HA and nine different NA subtypes have been
described together with two recently discovered bat-derived subtypes, H17N10 and H18N11
(Cheung and Poon, 2007; Wu et al., 2014). Influenza A virus contains further six “internal” gene
segments which encode basic polymerase 2 (PB2), basic polymerase 1 (PB1), acidic polymerase
(PA), nucleoprotein (NP), matrix (M1, M2), and non-structural proteins (NS1, NS2). These
segments and their translation products have an essential role in the virulence and host specificity
of a given IAV and can also impact the risk of transmission to humans (Bi et al., 2015).
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The predominant swine IAV (swIAV) subtypes globally are
H1N1, H3N2, and H1N2, which all show considerable diversity.
The genetic and antigenic characteristics of IAVs in pigs differ
depending on their geographic locations (Kuntz-Simon and
Madec, 2009; Simon et al., 2014). In Europe, the dominant H1N1
swIAV is of avian origin, referred to as avian-like swine H1N1
(H1avN1av), which was introduced from waterfowl to pigs in
the late 1970s (Pensaert et al., 1981; Simon et al., 2014). The
dominant genotype of H3N2 virus in European pigs is the H3N2
(H3swN2sw) virus that was introduced in 1984. The HA and NA
genes of the H3swN2sw are of human origin, while the other six
gene segments are of avian (H1avN1av) descent (Castrucci et al.,
1993). In 1994, an H1N2 reassortant was isolated for the first
time in United Kingdom and has subsequently been detected
in many European countries. This human-like reassortant swine
H1N2 (H1huN2sw) virus comprised the HA gene from a human
seasonal H1N1 virus, the NA gene from the H3swN2sw virus
and internal genes from the H1avN1av virus (Alexander et al.,
1998). The dominating European H1huN2sw virus has never been
detected in Denmark, however, a new reassortant H1avN2sw,
containing the HA gene from the H1avN1av virus and the NA
gene from H3swN2sw, was found in Denmark in 2003 (Trebbien
et al., 2013). This avian-like H1N2 (H1avN2sw) virus has become
established in Denmark and other European countries (Trebbien
et al., 2013; Simon et al., 2014) and is now the most prevalent
subtype circulating in Danish pigs. In 2009, a new human
pandemic strain [A(H1N1)pdm09] entered the global swine
population and is now enzootic in swine globally. Furthermore,
an increasing number of reassortants between the predominant
enzootic swIAVs and the A(H1N1)pdm09 virus have been
observed, making subtyping of swIAV a very complex task
(Starick et al., 2011; Watson et al., 2015). Furthermore, spillover
of seasonal human H3 (H3hu) segments and human N2 (N2hu)
have been observed in Danish swine (Breum et al., 2013; Krog
et al., 2017).

In Denmark, a passive surveillance program for swIAVs
has been conducted since 2011. A requirement for efficient
swIAV surveillance is highly sensitive and specific diagnostic
tests. Today, the swIAV screening test and subsequent subtyping
is performed by reverse transcription (RT) quantitative real-
time PCR (qPCR), where several different assays are needed
to cover the wide range of circulating subtypes, which make
detection and subtyping costly and time consuming. The aim
of the present study was to establish a high-throughput method
for detection and subtyping of swIAVs in Danish pigs. The
BioMark dynamic array (DA) (Fluidigm, South San Francisco,
USA) is capable of performing parallel qPCRs by combining e.g.,
48 samples with 48 assays or 96 samples with 96 assays in a
combinatorial manner inside the integrated fluidic circuit (IFC)
resulting in either 2,304 or 9,216 individual reactions in a single
run. Besides being able to process a high number of reactions
in a single run, the high-throughput qPCR BioMark system also
uses less sample and reagent volume compared to standard qPCR
platforms (Spurgeon et al., 2008). The present study describes
the design, optimization and validation of a swIAV 48.48DA; a
setup consisting of 18 qPCR assays targeting the different swIAVs
circulating in Europe.

MATERIALS AND METHODS

Samples
In the routine veterinary diagnostic laboratory at the National
Veterinary Institute in Denmark, oral fluid, lung tissue, and nasal
swabs are tested for swIAV from pigs with a history of respiratory
disease. The samples are tested by an in-house modified RT-
qPCR assay detecting the M gene (Trebbien et al., 2013). For
selected swIAV positive samples, virus is isolated inMadin-Darby
Canine Kidney (MDCK) cell cultures, followed by full genome
sequencing by Next Generation Sequencing (NGS) (Krog et al.,
2017). For validation of the swIAV 48.48DA a total of 32 field
samples from 2015 and 2016 (Table 1) and 29 virus isolates for
which full genome sequences were available were used (Table 2).

Primer and Probe Design
The swIAV 48.48DA was designed to include qPCR assays
targeting the different lineages of H1, H3, N1, and N2 circulating
in pigs in Europe. For the H1 subtypes the design aimed
at differentiating between the H1 lineages; H1av, H1 from
A(H1N1)pdm09 (H1pdm) and H1hu. For the H3 lineages the aim
was to differentiate between H3sw and H3hu. For the NA subtypes
N1 and N2 broadly reacting assays (N1B1, N1B2, N2B1, N2B2)
were included together with an assay specifically detecting the
A(H1N1)pdm09 lineage of N1 (N1pdm) and an assay specifically
detecting N2hu derived from the seasonal human H3N2, that
circulated in humans in the mid-1990s. Accordingly, N1pdm
positive viruses gave positive results with the N1B1, N1B2 and
N1pdm assays, while N2hu positive viruses gave positive results
with the N2B1, N2B2 and N2hu assays.

In addition, six qPCR assays specific for the internal genes
of A(H1N1)pdm09 (PB1pdm, PB2pdm, PApdm, NPpdm, Mpdm,
NSpdm) were included. Primers and probes were either selected
from previously published methods or designed in the present
study. The final sets of primers and probes consisting of 18
PCR assays, of which 12 were designed de novo, two were from
published literature, three were modified published assays and
one was an in-house assay. The modifications are highlighted
in bold in Tables 3, 4. New primer and probe sequences were
designed based on alignments comprising full-length sequences
of the eight gene segments from European swIAVs. The
sequences were retrieved from Influenza Research Database1 The
specificity of primers and probes was tested in silico by using
BLAST search (Altschul et al., 1990), while melting temperature
of the oligonucleotides was approximated using the online tool
“OligoCalc” (Kibbe, 2007). The RT-qPCR assays were tested on
the Rotor-Gene Q qPCR system (QIAGEN, Hilden, Germany)
using a panel of six strains of cultured viruses, representing
targets for one or more of the different primer and probe sets.
RT-qPCR assays were performed in a final volume of 25 µL
using QIAGEN OneStep RT-PCR kit (QIAGEN), with 5 µL of
5XQIAGENOne step RT-PCR buffer, 1µL of 10mMnucleotides
dNTP mix, 1.25 µL of 25mM MgCl2, 1 µL of 100µM primers,
0.25 µL of 30µM probe, 1 µL QIAGEN enzyme mix, 2 µL
RNA and 12.5 µL RNase-free water. Thermal cycling conditions

1http://www.fludb.org
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TABLE 3 | Primers and probes for detection of M, HA, and NA genes.

Primer/probe Sequence (5′-3′) Product size (bp) References

H1av Modified from (Henritzi et al.,

2016)aH1av-F GAAGGRGGATGGACAGGAATGA 139

H1av-R CAATTAHTGARTTCACTTTGTTGCTG

H1av-P FAM-TCTGGTTACGCAGCWGATCAGAAAA-BHQ1

H1hu 169 Primer: This study

H1hu-F GGWTGGTATGGTTATCATCAT Probe: (Bonin et al., 2018)

H1hu-R CTCGATTACAGAGTTCACC

H1hu-P FAM-CAGGGATCTGGCTATGCTGCAGAYC-BHQ1

H1pdm 87 In-house assay

H1pdm-F AGTTCAAGCCGGAAATAGCA

H1pdm-R CCCGGCTCTACTAGTGTCCA

H1pdm-P FAM-CCCAAAGTGAGGRATCAAGAAGGGAG-BHQ1

H3hu 93 This study

H3hu-F TGATGGAGAAAACTGCACACTA

H3hu-R CGTTCAACAAAAAGGTCCCATTTC

H3hu-P FAM-CACACTGAGGGTCTCCCAATAGAGCATCTA-BHQ1

H3sw 93 This study

H3sw-F TGATGGAGCAAATTGCACACTG

H3sw-R CGTTCAATGAAAAGGTCCCATTTC

H3sw-P FAM-CACAATGAGGGTCCCCTAATAGAGCGTCCA-BHQ1

N1B1 99 This study

N1B1-F CCTTGCTTCTGGGTTGAACTAATC

N1B1-R AGTGTCACTATTTACACCACAAAAGG

N1B1-P FAM-TGCTCCCGCTAGTCCAGATTGTGTTCTCTT-BHQ1

N1B2 126 Henritzi et al., 2016

N1B2-F AGRCCTTGYTTCTGGGTTGA

N1B2-R ACCGTCTGGCCAAGACCA

N1B2-P FAM-ATYTGGACYAGTGGGAGCAGCAT-BHQ1

N1pdm 102 This study

N1pdm-F CGAAATGAGTGCCCCTAATTATC

N1pdm-R CGATTCGAGCCATGCCAGTTA

N1pdm-P* FAM-[+C][+C]T[+G]ATTCT[+A]GTGAAATCA[+C]-BHQ1

N2B1 101 This study

N2B1-F TATTGATGAATGAGTTGGGTGTTCC

N2B1-R ATGCAGCCATGCTTTTCCATC

N2B1-P FAM-TGAACTGGACCATGCTATACACACTTGCCT-BHQ1

N2B2 116 Modified from (Henritzi et al.,

2016)a

N2B2-F AGTCTGGTGGACYTCAAAYAG

N2B2-R TTGCGAAAGCTTATATAGVCATGA

N2B2-P FAM-CCATCAGGCCATGAGCCTGWWCCATA-BHQ1

N2hu 92 This study

N2hu-F CTGGTATTTTCTCTGTTGAAGGC

N2hu-R CCASACTTCAKTTTCCTGYTTCC

N2hu-P* VIC-T[+C]A[+A]CTCYACATAAAAGCACC[+G]-BHQ1

M 204 (Loeffen et al., 2011)

M-F CTTCTAACCGAGGTCGAAACGTA

M-R CACTGGGCACGGTGAGC

M-P FAM-TCAGGCCCCCTCAAAGCCGA-BHQ1

aLetters in bold in the sequences indicate the modification compared to the published sequences.
*Locked Nucleic Acid positions are indicated in brackets.
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TABLE 4 | Primers and probes for detection of the internal pandemic genes of swIAVs.

Primer/probe Sequence (5′-3′) Product size (bp) References

PB2pdm

PB2pdm-F GATAGTAAGCGGGAGAGAC 128 This study

PB2pdm-R GCTGGTTTGCCCTATTGAC

PB2pdm-P FAM-GCTGAGGCAATAATTGTGGCCATGG-BHQ1

PB1pdm

PB1pdm-F CAAAGACTACAGATACACATATAG 124 This study

PB1pdm-R ATCTGATACTAATAGCCCTAC

PB1pdm-P FAM-GGGGAGACACACAAATTCAGACGAG-BHQ1

PApdm

PApdm-F GGTGAAAATATGGCACCAGAA 110 This study

PApdm-R TGCTAGAGATCTGGGCTC

PApdm-P FAM-GTAGACTTTGATGAYTGCAAAGATGTTGG-BHQ1

NPpdm

NPpdm-F ACGGTCAGCACTCATTCTG 117 This study

NPpdm-R ACCAGTGAGTACCCTTCC

NPpdm-P FAM-TCATGCCCACTTGCTACTGCAAGC-BHQ1

Mpdm

Mpdm-F CTGGCTAGCACTACRGCA 99 This study

Mpdm-R TACCATYTGCCTAGTCTGATTA

Mpdm-P FAM-CTCYATGGCCTCTGCTGCCTGT-BHQ1

NSpdm

NSpdm-F GAGGAAATGTCACGAGACTG 119 This study

NSpdm-R ACTGAAGTTCGCTTTCAGTAC

NSpdm-P FAM-TTCCATGACCGCCTGGTCCAATCG-BHQ1

were as follow: 50◦C for 30min, 95◦C for 15min followed by
40 cycles at 94◦C for 10 s, 54◦C for 30 s and 72◦C for 10 s.
The fluorescence signal was acquired at the 54◦C step in the
Green channel (470–510 nm). Data was analyzed with the Rotor-
Gene Q Series Software 2.3.1. (QIAGEN) with the following
parameter adjustments: dynamic tube normalization, on; noise
slope correction, on; ignore first cycle; outlier removal, 10%;
quantification cycle (Cq) threshold fixed, 0.01. All reactions were
run in duplicates and non-template control (nuclease-free water)
was included in each run.

Primers and the dual labeled probes were purchased from
Eurofins Genomics (Ebersberg, Germany), while Locked Nucleic
Acid (LNA) probes were from BioNordika (Herlev, Denmark).
Primers and probes were stored at−20◦C.

RNA Extraction
Viral RNA was extracted from cultured viruses, oral fluid, lung
tissue and nasal swab samples by RNeasy Mini Kit (QIAGEN)
according to the manufacturer’s instructions. Cell culture
supernatant, oral fluid and nasal swab samples were prepared
by mixing 200 µL material with 400 µL RLT buffer containing
β-mercaptoethanol (Sigma-Aldrich, Brøndby, Denmark). Lung
tissue samples were prepared by homogenization of 70mg lung
tissue in 1,400 µL RLT buffer containing β-mercaptoethanol
(Sigma-Aldrich) on a TissueLyser II (QIAGEN) at 30Hz in 3min.
The homogenate was centrifuged for 3min at 12,000 g, and RNA

was extracted from of 600 µL of the supernatant. Viral RNA was
eluted in 60 µL RNase-free water and stored at−80◦C.

cDNA Synthesis and Pre-amplification
cDNA synthesis and pre-amplification of the extracted samples
was performed in one step. Briefly, reaction volumes of 25µL
containing 1.50 µL of 10µM random hexamer (Invitrogen,
Carlsbad, California, USA), 0.75 µL primer mix (containing all
qPCR primers (200 nM each) listed in Tables 3, 4), 5 µL of 5X
QIAGEN One step RT-PCR buffer (QIAGEN), 1 µL of 10mM
nucleotides dNTP mix, 1.25 µL of 25mMMgCl2, 1 µL QIAGEN
enzyme mix, 3 µL sample and RNase-free water were prepared.
cDNA synthesis and pre-amplification were performed on a
T3 Thermocycler (Biometra, Fredensborg, Denmark) at 50◦C
for 30min followed by enzyme inactivation at 95◦C for 15min
followed by 24 cycles of 94◦C for 10 s, 54◦C for 30 s, and 72◦C for
10 s. The pre-amplified cDNA was stored at−20◦C.

Preparation of the 48.48DA and qPCR
Pre-sample mix was prepared using the following components
per sample; 3 µL TaqMan Gene Expression Master Mix (Applied
Biosystems, Foster city, USA) and 0.3 µL 20x Sample loading
reagent (Fluidigm, South San Francisco, USA). Pre-sample
mix (3.3 µL) was mixed with 2.7 µL pre-amplified cDNA.
Two different mixes of primers and probes with different
concentrations, was prepared for each assay by mixing 3 µL
primer/probe-stock (containing either 30µM of each primer

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 May 2018 | Volume 8 | Article 165

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Goecke et al. Subtyping of Swine Influenza Viruses

FIGURE 1 | Heat map showing the specificity of the qPCR assays included on the swIAV 48.48DA by testing six virus isolates with known subtype (based on full

genome sequencing). Top: The qPCR assays (Tables 3, 4) in two different primer/probe concentrations (indicated by the numbers two or four). Left: The virus isolates

and a Non-Template Control (NTC). Each square corresponds to a single real-time PCR reaction. Cq-values for each reaction are indicated by color; the

corresponding color scale is presented in the legend on the right. A black square is considered as a negative result.

and 6.8µM of probe or 33µM of each primer and 10µM of
probe) with 3 µL 2X Assay loading reagent (Fluidigm). qPCR
was performed in a BioMark 48.48DA (Fluidigm) combining
48 pre-amplified samples with 48 assays for 2304 individual
and simultaneous qPCR reactions. The 48.48DA was primed in
the IFC controller MX (Fluidigm) prior to loading of samples
and assays. Sample mix (4.9 µL), and primer mix (4.9 µL)
was dispensed into inlets on the 48.48DA, which was again
placed in the IFC controller for loading and mixing of the
48 samples and 48 assays. After approximately 55min the
48.48DA was ready for thermal cycling in the high-throughput
qPCR instrument BioMark (Fluidigm) with the following cycling
conditions: 15min at 95◦C, followed by 40 cycles at 94◦C for
10 s, at 54◦C for 30 s, and 72◦C for 10 s. Non-template controls
were included to control non-specific amplification and sample
contamination. Specificity and sensitivity of all assays were tested
against six virus isolates, representing targets for one or more
of the different assays and thus the virus isolates functioned as
both positive and negative controls for the individual primer
and probe sets. Data (Cq-values and amplification curves) were
acquired on the BioMark system and analyzed using the Fluidigm
Real-Time PCR Analysis software 4.1.3 (Fluidigm).

Validation of Sensitivity of the qPCR
Assays
To test and compare the performance and dynamic range of
the qPCR assays on the Rotor-Gene Q platform and on the
high-throughput qPCR BioMark platform, RNA 10-fold serial
dilutions from six different swIAV isolates were tested on
the Rotor-Gene Q, and the same RNA dilutions were cDNA
synthesized and pre-amplified and then tested on the BioMark.
Furthermore, 10-fold serial dilutions were made from the pre-
amplified cDNA from the six swIAV isolates and these were only
tested on the BioMark platform.

Verification of the Specificity of the swIAV
48.48DA
The performance of the swIAV 48.48DA was verified by testing
32 field samples (nasal swabs, oral fluid, and lung tissue samples)
and 29 virus isolates (Tables 1, 2). The full genome sequences

were known for the virus isolates (Supplementary Table 1), while
only the type of HA and NA genes were known for the field
samples. The field samples have previously been tested and
subtyped by an in-house multiplex RT-qPCR (modified from
Henritzi et al., 2016) for diagnostic purposes.

Data Availability Statement
The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

RESULTS

Specificity and Sensitivity of the qPCR
Assays
RNA obtained from a panel of six IAVs of subtype H1, H3, N1,
and N2 of avian, human, or porcine origin was used to evaluate
the sensitivity and specificity of the different sets of primers and
probes. The specificity of each assay was assessed from the Cq-
value obtained from their respective target in relation to any cross
reaction. For all qPCR assays, specific positive reactions were
registered and no cross reactions were observed (Figure 1). The
18 selected assays discriminated correctly between the different
linages of the HA gene (H1av, H1hu, H1pdm, H3hu, H3sw) and NA
gene (N1av, N1pdm, N2sw, N2hu). The qPCR assays specific for the
internal genes discriminated in all cases between the pandemic
and non-pandemic genes (Figure 1). Series of 10-fold diluted
RNA of the six virus isolates were tested on the Rotor-Gene
Q and on the swIAV 48.48DA to assess the relative analytical
sensitivity of the qPCR assays. Comparisons of the Cq-values
of the dilutions revealed that, in general, the dynamic range of
the assays was 2–5 log10 for the swIAV 48.48DA and four-six
log10 for the Rotor-Gene system (Table 5). For some of the assays
the undiluted sample was not tested due to too small amount
of available sample material. The dynamic range of the qPCR
assays was generally 1–2 log higher using the Rotor-Gene Q
compared to the swIAV 48.48DA. Ten-fold serial dilutions of
the pre-amplified cDNA resulted in similar dynamic range and
efficiency as the RNA dilutions for each of the qPCR assays (data
not shown).
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TABLE 5 | Relative sensitivity of qPCR assays on the Rotor-Gene Q platform and on the swIAV 48.48DA (BioMark platform).

Assays

Dilution H1av H1hu H1pdm H3hu H3sw M

Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark

10 14.20 17.29* 15.57 17.40 14.58 13.44 - 17.71 13.93 14.22 - 11.85

10−1 18.60 23.79 19.03 22.46 17.56 17.98 22.87 21.22 17.05 16.87 14.06 17.33

10−2 22.69 28.12 22.66 26.03 20.79 19.98 25.81 23.78 20.44 19.43 17.00 22.01

10−3 25.75 31.49 25.88 29.13 24.17 23.64 29.43 27.53 24.04 24.07 20.34 23.69

10−4 28.86 neg 29.30 neg 27.20 28.88 32.70 neg 28.16 28.27 24.09 27.81

10−5 32.66 neg 32.42 neg 30.97 neg 35.28 neg neg neg 27.53 29.45

10−6 neg neg neg neg 34.22 neg neg neg neg neg 29.96 neg

10−7 neg neg neg neg neg neg neg neg neg neg neg neg

Effectivity 0.89 0.80 0.98 0.80 1.01 0.88 1.07 1.04 0.91 1.01 1.02 0.84

Dilution N1B1 N1B2 N1pdm N2B1 N2B2 N2hu

Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark

10 18.09 15.15 19.14 17.21 18.04 16.24 14.54 15.53* 12.47 15.34 12.70 7.73

10−1 22.05 19.69 22.42 21.55 21.01 20.73 17.15 21.35 16.20 21.08 14.71 12.81

10−2 25.77 21.55 25.17 23.91 25.15 22.39 20.19 25.74 19.03 25.81 18.35 16.88

10−3 29.50 25.57 28.76 27.14 28.75 26.79 23.36 29.32 22.00 28.78 22.28 18.95

10−4 32.70 29.25 32.22 29.67 31.26 28.40 26.43 32.32 24.89 30.83 26.50 21.70

10−5 36.33 neg 35.76 neg neg neg 30.93 neg 29.31 neg 30.25 23.58

10−6 neg neg neg neg neg neg neg neg neg neg 34.42 neg

10−7 neg neg neg neg neg neg neg neg neg neg neg neg

Effectivity 0.89 1.01 1.00 1.02 0.96 1.07 1.04 0.89 1.04 0.82 0.89 1.11

Dilution PB2pdm PB1pdm PApdm NPpdm NSpdm Mpdm

Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark Rotor-Gene BioMark

10 15.32 13.79 - 19.67 - 18.49 - - - 16.45 13.81 12.58

10−1 20.13 16.78 22.08 22.91 17.88 21.76 18.22 17.25 17.26 20.35 16.82 17.14

10−2 25.27 19.31 24.62 25.85 22.12 24.67 21.59 20.97 20.30 23.26 20.62 20.16

10−3 27.6 22.35 27.74 29.02 24.94 28.27 24.88 25.09 23.80 26.06 24.46 24.36

10−4 29.95 26.87 31.53 32.14 28.19 32.56 29.11 27.68 27.16 28.18 27.93 28.07

10−5 neg 29.49 34.65 neg 32.61 neg 32.18 neg 30.64 neg 30.53 neg

10−6 neg neg 37.43 neg neg neg neg neg neg neg 33.67 neg

10−7 neg neg neg neg neg neg neg neg neg neg neg neg

Effectivity 0.87 1.00 1.07 1.09 0.93 0.94 0.92 0.89 0.98 1.06 0.98 0.82

Validation of the swIAV 48.48DA Chip
In order to validate the performance of the swIAV 48.48DA for
subtyping of swIAVs, a total of 29 well-characterized virus isolates
and 32 field samples were tested. The subtype of the samples had
previously been determined by either full genome sequencing
or multiplex RT-qPCR and the results obtained by the swIAV
48.48DA were compared to these findings (Tables 1, 2).

Of the 29 virus isolates, which have previously been full
genome sequenced, 27 showed identical results when the
subtyping was performed on the swIAV 48.48DA and by
sequencing (Table 2). For each of the remaining two isolates
there was a discrepancy for one of the genes. By full genome

sequencing, the M gene of A/Swine/Denmark/4790-1/2015 had
93% identity with both pandemic and non-pandemic M genes
of Danish swIAV strains (results not shown). The sample gave
a positive signal for Mpdm on the swIAV 48.48DA despite that
there were two mismatches in the primer and probe bindings
regions and was by that defined as Mpdm. The NP gene of
A/Swine/Denmark/03627-2/2015 was subtyped as being of non-
pandemic origin by the swIAV 48.48DA, while based on the
full genome sequence analysis the NP gene was found to be
pandemic. The sequence analysis also revealed one mismatch
in the binding site of the reverse primer and two mismatches
between the probe binding sites for the NPpdm assay. Thus, these
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FIGURE 2 | Heat map showing the results of a subset of the tested field samples on the swIAV 48.48DA. Top: The HA, NA, and M specific assays in two different

primer/probe concentrations (indicated by the numbers two or four). Left: number 11–44 (except for number 22) is the tested field samples in duplicates, number 47 is

a negative control for the cDNA-pre.amp setup and number 22 and 48 is Non-Template Controls (NTC). Each square corresponds to a single real-time PCR reaction.

Cq-values for each reaction are indicated by color; the corresponding color scale is presented in the legend on the right. A black square is considered as a negative

result.

mutations could explain the discrepancy between the results
obtained by sequencing and by test on the swIAV 48.48DA.
Another sample, A/Swine/Denmark/ 20566-1/2015, was found
to have the subtype H1pdmN2sw with pandemic internal genes
in both the full genome sequencing and when tested on the
swIAV 48.48DA. However, this sample also tested positive in the
assay specific for the H1av gene (Table 2). Retesting of the sample
on the Rotor-Gene Q in the H1av and H1pdm assays confirmed
these results, indicating that this sample contained two different
viruses.

Field samples (n = 32), consisting of nasal swabs, lung
tissue or oral fluid, were also analyzed on the swIAV 48.48DA
(Table 1). These samples had previously been subtyped by an in-
house multiplex RT-qPCR assay (modified from Henritzi et al.,
2016), thus only the HA and NA genes were known for these
samples. The heat map in Figure 2 shows the results of a subset
of the tested field samples in which the subtype for each of
the sample was clarified based on the Cq-value and on the
accuracy of the corresponding amplification curve. The swIAV
48.48DA and the multiplex RT-qPCR revealed the same HA type
for 30 of the samples. However, none of the qPCR methods
could define the HA subtype of sample A/Swine/Denmark/9079-
2/2016. Furthermore, the HA subtype was not defined by the
multiplex RT-qPCR for sample A/Swine/Denmark/6686-1/2015,

but it was successfully determined using the swIAV 48.48DA.
The sample A/Swine/Denmark/7988-2/2016 was found positive
in both the H1av and H1pdm assay by the swIAV 48.48DA, but
only positive for H1pdm in the multiplex RT-qPCR. Therefore,
this sample was further tested in the H1av and H1pdm assays on
the Rotor-Gene Q, where it was found positive in both assays
indicating infection with two different viruses. For the NA assays,
29 of 32 samples were found to have the same NA linage by both
qPCR typing methods. For the sample A/Swine/Denmark/6598-
1/2016 no signal was obtained in any of the NA assays on
the swIAV 48.48DA, while it was positive in the N2B2 assay
in the multiplex RT-qPCR. The sample was also tested in the
N2 assay on the Rotor-Gene Q, where it was found to be
weakly positive, with a Cq-value around 30. For the samples
A/Swine/Denmark/14170-2/2016 and A/Swine/Denmark/8938-
1/2015, no NA signal was obtained in the multiplex RT-qPCR,
while the swIAV 48.48DA detected a signal in the N2B1 and N2B2
assays and in the N1B2, respectively. The swIAV 48.48DA found
sample A/Swine/Denmark/7961-7/2016 to be of both N1pdm and
N2sw origin, while this sample was only positive in the N1pdm
assay when using the multiplex RT-qPCR. Additional test on the
Rotor-Gene Q found also this sample to be positive in the N2B1
assay—again indicating that the samples contained two different
viruses.
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TABLE 6 | Comparison of the number of positive findings using the gold-standard

test compared to the swIAV 48.48DA (BioMark) test (percentage in parentheses).

Genes Gold-standard test swIAV 48.48DA (BioMark)

H1av 32/61 (52.5%) 35/61 (57.4%)

H1pdm 26/61 (42.6%) 26/61 (42.6%)

H3sw 0/61 (0%) 0/61 (0%)

H3hu 1/61 (1.6%) 1/61 (1.6%)

N1 7/61 (11.5%) 8/61 (13.1%)

N1pdm 14/61 (23.0%) 14/61 (23.0%)

N2 34/61 (55.7%) 35/61 (57.4%)

N2hu 4/61 (6.6%) 4/61 (6.6%)

PB2pdm 19/29 (65.5%) 19/29 (65.5%)

PB1pdm 18/28 (64.3%) 19/29 (65.5%)

PApdm 19/29 (65.5%) 19/29 (65.5%)

Mpdm 20/29 (69.0%) 20/29 (69.0%)

NPpdm 20/29 (69.0%) 19/29 (65.5%)

NSpdm 19/29 (65.5%) 19/29 (65.5%)

In summary, when comparing the results for the swIAV
48.48DA with the sequencing and multiplex RT-qPCR results
for the virus isolates and field samples, fully matching subtyping
results (based on HA and NA genes) were obtained for 57 (29
virus isolates and 28 field samples) of 61 tested samples, and
three of the 57 samples also showed an additional subtype in the
analysis with the swIAV 48.48DA indicating a double infection.
Furthermore, when comparing the number of positive findings
in the gold-standard tests (sequencing and multiplex RT-qPCR)
with the swIAV 48.48DA test an agreement was observed for nine
of the tested genes, while a difference between 1.2 and 4.9 % was
observed for the rest of the genes (Table 6).

DISCUSSION

The BioMark high-throughput qPCR protocol for detection
and expanded subtyping of influenza virus in pigs described
in the present paper proved to be as specific and sensitive
as standard state-of the art diagnostic methods based on
“conventional” qPCR and sequencing. This new approach
makes it possible to combine multiple assays and samples
and run them simultaneously. It requires less labor and
pipetting, leading to an economical benefit. Another benefit
is the use of nanolitre volume chambers in the DA, in
contrast to conventional qPCR that uses microliter, thereby
decreasing the use of expensive reagents. The BioMark high-
throughput qPCR system has for years been widely used in
research studies i.e., for the study of innate immune response
to pathogens (Skovgaard et al., 2013). More recently, high-
throughput qPCR protocols using the BioMark platform have
also been designed as surveillance tools for tick-borne diseases
and for food- and waterborne pathogens (Ishii et al., 2013;
Michelet et al., 2014). Similar to the present study, Ishii et al.
(2013) found the system to offer highly sensitive and specific
simultaneous quantification of multiple food-and waterborne
pathogens in multiple samples (Ishii et al., 2013). The platform

is a flexible tool because it is easy to modify the assay panel
by adding or removing primers or probes when new pathogens
or new variants emerge (Ishii et al., 2013; Michelet et al.,
2014).

To our knowledge this is the first paper describing the use
of the BioMark high-throughput qPCR platform for detection
and subtyping of influenza viruses. In general, there was a high
degree of agreement for the results provided by multiplex RT-
qPCR or sequencing and the results generated by the swIAV
48.48DA. For a few of the tested samples, there was a discrepancy.
These differences could be explained by either co-infection with
two viruses or by mismatches in the primer/probe binding
regions. Thus, imperfect match between the target sequence
and the primer and/or probe sequences can result in a false-
negative signal even though the sample is positive for swIAV.
This emphasizes that the swIAV 48.48DA or multiplex RT-qPCR
protocols cannot stand alone as a subtyping method, but has
to be combined with a continuous surveillance by sequencing
of circulating swIAV isolates. Due to the high mutation- and
reassortant rate of IAVs (Simon et al., 2014) it is important to
do continuous sequencing of selected isolates because changes
will occur over time and it is necessary to adjust the PCR assays
accordingly. Sequencing is a very informative tool and it can
contribute with indispensable information about evolutionary
relationships based on similarities and differences between the
sequences. However, since the number of isolates that can
be sequenced is limited by practical and economic reasons,
the swIAV 48.48DA provides an excellent screening tool for
selection of atypical isolates for downstream characterization by
sequencing.

Pre-amplification of the RNA samples was needed because
of the very small sample volumes (<10 nL; Korenková et al.,
2015) in the reaction chambers. This is in accordance with
recommendations from the supplier and previous studies using
the BioMark protocols for the detection of i.e., water-borne
pathogens (Ishii et al., 2013). The supplier of the BioMark
platform recommends performing the cDNA synthesis and
pre-amplification as two separate steps. However, we managed
to change this into a one-step procedure by combining the
cDNA synthesis and pre-amplification, which further reduced
the analysis costs and the number of handling steps. A benefit
of this alteration is also the reduced risk of contamination
due the fewer handling steps. The swIAV 48.48DA was tested
against a panel of representative virus isolates in order to assess
the sensitivity and specificity. All the assays had an acceptable
PCR efficiency between 80 and 110%. Comparison of the assay
performance on the two qPCR platforms; Rotor-Gene Q and
BioMark, revealed only a minor difference in the dynamic range
and efficiency for all the assays. For a majority of the qPCRs, the
dynamic range was one-two log10 higher on the Rotor-Gene Q
platform compared to the BioMark. This might be a result of
the considerable lower reaction volume in the 48.48DA (<10
nL) compared to the tubes (25 µl) of the Rotor-Gene Q. No
cross reactions were observed for any of the assays on the swIAV
48.48DA, which testifies a high specificity. To test the specificity
in more detail, virus isolates and field samples, which have
previously been subtyped by sequencing or multiplex RT-qPCR,
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were tested on the swIAV 48.48DA. Again no cross reactions were
observed and the three field samples, which failed to provide a
signal in the HA or NA analysis in the multiplex RT-qPCR test,
were subtyped by the swIAV 48.48DA. This difference can be
explained by the ability of the swIAV 48.48DA to subtype weakly
positive samples (Cq-value of 30 or above in the M qPCR assay)
which cannot be subtyped using the standard multiplex RT-
qPCR protocol. The improved sensitivity of the swIAV 48.48DA
is related to the 24 pre-amplification cycles used prior to the PCR
step.

The heat map generated by the Fluidigm Real-Time PCR
Analysis software illustrates the raw Cq-values for each reaction,
which makes is feasible to quickly evaluate which subtype the
individual samples have (Figure 2). Using the swIAV 48.48DA
for the subtyping of swIAVs in surveillance programs, will make
the analysis more simple compared to the traditional subtyping
methods and it will give a more detailed subtyping of the samples
since the internal genes are included in the analysis.

In summary, the use of the swIAV 48.48DA will allow future
subtyping of many more influenza virus isolates for the same
resources and by that contribute to a more sensitive surveillance
program and provide the basis for an improved early detection
of new virus re-assortments and variants. The high sensitivity,
specificity and robustness of the test system may also provide an
opportunity for development of other similar chips i.e., for the
surveillance and diagnose of other veterinary pathogens. Work
is in progress on the development of a 48.48DA containing all

important swine pathogens for the use in future surveillance and
diagnostic programs in Danish swine herds.
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