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Leishmania biomarker discovery remains an important challenge that needs to be

revisited in light of our increasing knowledge on parasite-specific biology, notably

its genome instability. In the absence of classical transcriptional regulation in these

early-branching eukaryotes, fluctuations in transcript abundance can be generated by

gene and chromosome amplifications, which have been linked to parasite phenotypic

variability with respect to virulence, tissue tropism, and drug resistance. Conducting

in vitro evolutionary experiments to study mechanisms of Leishmania environmental

adaptation, we recently validated the link between parasite genetic amplification and

fitness gain, thus defining gene and chromosome copy number variations (CNVs) as

important Leishmania biomarkers. These experiments also demonstrated that long-term

Leishmania culture adaptation can strongly interfere with epidemiologically relevant,

genetic signals, which challenges current protocols for biomarker discovery, all of

which rely on in vitro expansion of clinical isolates. Here we propose an experimental

framework independent of long-term culture termed “reverse” epidemiology, which

applies established protocols for functional genetic screening of cosmid-transfected

parasites in animal models for the identification of clinically relevant genetic loci that then

inform targeted field studies for their validation as Leishmania biomarkers.

Keywords: Leishmania, biomarker discovery, reverse epidemiology, cosmid screen, functional genetics

INTRODUCTION

Biomarkers are defined as biological characteristics that are objective and quantifiable indicators for
responses to therapeutic interventions, or normal and pathogenic biological processes (Biomarkers
Definitions Working Group 2001, 2001). With respect to Leishmania infection, we can distinguish
direct biomarkers that are applied to determine parasite species and prevalence (e.g., parasite-
specific proteins, lipids, transcripts, genetic loci), and indirect biomarkers that correspond to
different correlates of the host anti-microbial response [e.g., adenosine deaminase (ADA) or
cytokines such as IL-10 or TNF] (Kip et al., 2015).

Direct Leishmania biomarkers can have either purely diagnostic value (e.g., kinetoplast (k)
DNA, ribosomal small sub-unit (SSU) RNA, HSP70 locus, carbohydrate antigens), or prognostic
value allowing for the prediction of treatment outcome or disease evolution (e.g., dissemination
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in cutaneaous leishmaniasis or development of post-kala-azar
dermal leishmaniasis in visceral leishmaniasis). However, despite
their potentially important impact on clinical management of
leishmaniasis, only few biomarker candidates with potential
prognostic value are described, most of which are linked to
drug resistance (Vanaerschot et al., 2012; Torres et al., 2013;
Hefnawy et al., 2017; Ponte-Sucre et al., 2017). The absence
of this class of markers is explained by various biological and
technical constraints, some of which are linked to Leishmania
genome instability that limits biomarker discovery and needs
to be considered in ongoing and future biomarkers discovery
campaigns.

In the absence of classical transcriptional regulation,
Leishmania often regulates transcript and protein abundance
by chromosome and gene copy number variations (CNVs)
(Dumetz et al., 2017; Prieto Barja et al., 2017), which can drive
environmental adaptation (Leprohon et al., 2009; Downing et al.,
2011; Rogers et al., 2011; Brotherton et al., 2013; Mukherjee
et al., 2013; Ubeda et al., 2014; Zhang et al., 2014; Laffitte et al.,
2016). Our recent demonstration that karyotypic fluctuations
and haplotype selection allow for fitness gain in culture reveals
the importance of Leishmania genome plasticity in short-term
evolutionary adaptation (Prieto Barja et al., 2017). Conceivably,
the highly dynamic genomic changes occurring during culture
adaptation challenge past and current protocols in Leishmania
biomarker discovery, which rely on adaptation and mass-
expansion of field isolates in culture prior to analysis, often
resulting in loss of epidemiologically relevant, genetic signals.
Here, by drawing from the current literature, we propose an
alternative strategy independent of long-term culture that is
based on functional genetic screening in relevant animal models.
Our review provides an overview on past functional screening
results and their documented success in revealing genomic
loci that are under environmental selection, and advocates
for Leishmania biomarker discovery by combining cosmid
selection and subsequent clinical validation, an experimental
framework we termed “reverse” epidemiology. In the following
we summarize studies that developed and applied cosmid-based
approaches to identify new Leishmania factors linked to parasite
pathogenicity, tropism and drug resistance, and discuss the
potential epidemiological relevance of these factors where
clinical data were available.

COSMID-BASED FUNCTIONAL GENETIC
SCREENING IN LEISHMANIA

Various genetic methods have been successfully applied in
the past to identify Leishmania genes or genetic markers that
are associated with disease outcome or clinical manifestation,
including whole genome sequencing (WGS) of isolates (Downing
et al., 2011; Rogers et al., 2011; Leprohon et al., 2015), random
amplification of polymorphic DNA (RAPD) (Bhattacharyya
et al., 1993; Schönian et al., 1996; Mkada-Driss et al., 2014),
or assessment of amplified fragment length polymorphisms
(AFLP) (Kumar et al., 2009, 2010a; Odiwuor et al., 2011;
Jaber et al., 2018). Likewise, cosmid-based functional screens

have been applied to discover clinically relevant loci. This
approach is based on the genetic transfer of a given cellular
phenotype (e.g., drug resistance) from a donor strain to a
recipient strain via transfection of a cosmid library. While
currently established WGS protocols for Leishmania biomarker
discovery have been applied on clinical isolates maintained in
long-term culture, causing potentially important bias, cosmid-
based approaches can directly reveal clinically relevant genotype-
phenotype relationships, especially when applied in situ in
infected animals. Even though this functional genetic approach
represents a powerful tool, this technology has not been applied
in a systematic way at larger scale to drive biomarker discovery.

The preparation and application of a cosmid library is
a complex procedure, where genomic DNA fragments of an
appropriate size are cloned into purified cosmid DNA and
packaged into phages for efficient bacterial transduction, which
allows for amplification of the library and assessment of
its genomic coverage prior to transfection into parasites by
electroporation. The generation of a first series of Leishmania
shuttle cosmid vectors and the validation of a protocol that allows
for genetic complementation and functional screening in these
parasites using genomic cosmid libraires was established in 1993
by Beverley and collaborators (Ryan et al., 1993a) followed by
Kelly and collaborators in 1994 (Kelly et al., 1994). Subsequently,
this protocol was applied in various studies for the identification
of Leishmania pathogenicity and drug resistance genes.

Cosmid-Based Identification of Novel
Leishmania Pathogenicity Factors
Key for Leishmania infectivity is the capacity of procyclic
promastigotes to undergo differentiation into infectious
metacyclic promastigotes able to resist to complement lysis
encountered inside the mammal host following parasite
transmission (Sacks and Perkins, 1984; Franke et al., 1985;
Howard et al., 1987). Parasite resistance has been largely
attributed to the surface glycolipid lipophosphoglycan (LPG),
a major Leishmania virulence factor essential for L. major
promastigote virulence (Späth et al., 2000, 2003a), that undergoes
important modifications during metacyclogenesis (Sacks et al.,
1990; Mcconville et al., 1992; Sacks, 2001). LPG biosynthetic
genes and their virulence functions have been genetically
identified combining cosmid screens with functional null mutant
analysis and virulence assessment in macrophages and mice.
LPG deficient mutants were generated by chemical mutagenesis,
isolated by their failure to agglutinate in the presence of lectin
(King and Turco, 1988), transfected with a cosmid library
prepared from L. donovani, and screened for restoration
of LPG expression using either lectin- or antibody-based
agglutination assays revealing the two first LPG biosynthetic
genes, a galactofuranose transferase encoded by the gene lpg1
(Ryan et al., 1993b), and an UdP galactose transporter encoded
by lpg2 (Descoteaux et al., 1995). The virulence functions of
both genes were confirmed in subsequent studies in L. major
lpg1 and lpg2 null mutants (Späth et al., 2000, 2003b). Few years
later, by combining cosmid library transfection and antibody
panning, Dobson et al. identifed genes encoding arabinosyl- and

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2 September 2018 | Volume 8 | Article 325

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Piel et al. Leishmania Biomarker Discovery by Functional Screening

galactosyltransferases that mediate developmental modifications
of LPG during metacyclogenesis (Dobson et al., 2003a,b).

Cosmid-based functional screening has also been applied to
gain insight into pathways that govern complement resistance
in promastigotes revealing genes that are likely linked to
metacyclogenesis. Based on the observation that decrease in
resistance to complement lysis is a consequence of long-term
maintenance in culture (Lincoln et al., 2004), Dahlin-Laborde
et al. used genomic DNA from animal-derived Leishmania
infantum (chagasi) promastigotes to construct a cosmid library
that was transfected into long-term cultured parasites. The
transfected parasites were subjected to complement lysis allowing
for the selection of seven different cosmids that conferred
increased complement resistance albeit at lower levels compared
to short-term cultured control parasites. In-depth analysis
of two cosmids revealed genomic fragments of L. infantum
chromosome 36 (Dahlin-Laborde et al., 2005), with two sub-
regions encoding, respectively, 5 and 13 genes shown to be
critical for the phenotype, including an ADP-ribosylation factor-
like protein and an ATP-dependent RNA helicase (Dahlin-
Laborde et al., 2008). Cosmid screens were further applied by
the Matlashewski team to identify virulence and visceralization
factors using libraries prepared with genomic DNA from L.
donovani transfected in L. major promastigotes. Transfectants
expressing the heterologous library were inoculated into mice by
tail vein or footpad injections and cosmids were recovered from
parasites that established infection in spleen (type I), skin (type
III), or both (type II). Subsequent analysis of individual ORFs by
transgenic expression and infection validated an ORF encoding
for an unknown protein and a 4.4 kb miniexon gene array on
chromosome 36 (Zhang and Matlashewski, 2004). Unlike in L.
major, overexpression of the miniexon region in L. braziliensis
led to complete virulence attenuation in a hamster model (de
Toledo et al., 2009), suggesting species-specific functions of this
array. This is further supported by the genetic divergence of this
array between new world and old world dermotropic species
(Fernandes et al., 1994), which is used as a diagnostic signal for
parasite genotyping (Serin et al., 2005; Ovalle-Bracho et al., 2016).

A final example documenting the power of cosmid-based
approaches in identifying putative Leishmania virulence factors
is represented by a complementation screen conducted using a
cosmid library derived from an attenuated HSP100 null mutant
that spontaneously recovered infectivity and/or pathogenicity
in mice, likely by the amplification of a compensatory locus
(Reiling et al., 2006). A screen conducted in mice using cosmid-
transfected HSP100 null mutants and subsequent validation
experiments revealed P46 as a new virulence factor (Reiling et al.,
2010). A follow-up study by Bifeld et al applied a phylogenetic
approach on 20 clinical isolates comparing P46 amino acid
sequences thus establishing a strong correlation between P46
isoforms and their geographical origin. Transgenic parasites
over-expressing three different P46 isoforms in a L. major lab
strain were co-injected in BALB/c and C57BL/6 mice. Selection
of different isoforms according to the mouse strain suggested
that the P46 genetic polymorphism may be linked to parasite
adaptation to genetically distinct, region-specific host reservoirs
(Bifeld et al., 2015; Table 1).

Cosmid-Based Identification of Leishmania

Drug Resistance Genes
Since 1999, screening of cosmid libraries has been used as a
gain-of-function strategy to identify drug resistance or drug
tolerance genes (reviewed in Clos and Choudhury, 2006).
Beverley and collaborators established the first proof-of-principle
of this approach culturing cosmid transfected L. major parasites
under pressure of the drugs methotrexate and tubercidin, which
resulted in the selection of the known resistance genesDHFR-TS,
PTR1, and TOR (Cotrim et al., 1999). The same study identified
a new gene encoding a 63 kDa hypothetical protein located on
chromosome 31 termed tubercidin-resistant protein (TRP) that
is conserved in Leishmania and co-localizes in the endoplasmic
reticulum in stationary phase promastigotes (Aoki et al., 2016).

Functional complementation has also been a powerful tool
for the identification of transporters that can alter drug efficacy.
The biopterin transporter bt1, previously named ORF G (Kundig
et al., 1999), and the miltefosine (MIL) transporter LdMT
(Perez-Victoria et al., 2003) were identified using Leishmania
tarentolae transfected with a heterologous L. mexicana cosmid
library selected under methotrexate pressure (showing that bt1
can confer resistance), and L. donovani MIL resistant parasites
transfected with a L. donovaniwild-type cosmid library subjected
to MIL selection (showing that a non-mutated LdMT can
restore susceptibility). Likewise, the cosmid approachwas applied
to screen for genes mediating resistance to two inhibitors
of ergosterol biosynthesis, terbinafine, and itraconazole, which
resulted in the selection of nine different cosmids, some of which
conferred cross-resistance to both drugs, and the identification
of squalene synthase 1 (SQS1) as an itraconazole resistance gene
(Cotrim et al., 1999).

This approach has been recently applied to directly identify
clinically relevant drug resistance loci by heterologous screening.
Clos and collaborators prepared cosmid libraries from antimony
SbIII/SbV resistant or SbIII sensitive/SbV resistant L. braziliensis
field isolates that were transfected into SbIII sensitive/SbV
resistant promastigotes. Culture under drug pressure selected
for cosmids carrying a genomic fragment of chromosome 20,
which also conferred drug resistance when transfected into L.
infantum (Nühs et al., 2014). A competition assay with full-length
or truncated derivatives of the cosmid insert validated ARM58
as a SbIII resistance gene. A more recent study performed by
the same group with cosmid-transfected L. infantum extended
this finding to the neighboring genes and defined a cluster of
three genes, ARM58, ARM56 (previously named ARM58rel),
and HSP23 at the telomere of the chromosome 34 that confer
increased resistance of intracellular amastigotes against SbV
(Tejera Nevado et al., 2016). Using a L. infantum cosmid library,
the same team revealed a protein termed P299 that conferred
increased resistance of intracellular amastigotes to MIL and
reduced promastigote sensitivity to MIL and SbIII, but not
pentamidin (Choudhury et al., 2008). Another gene—today
annotated as cysteine leucine-rich protein (CLrP, LinJ.34.0570)—
was revealed causing antimony resistance in L. tarentolae
transfected with a cosmid library prepared from arsenite and
SbIII resistant parasites (Brochu et al., 2004), and in L. infantum
axenic amastigotes (Genest et al., 2008). Brochu et al. also
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TABLE 1 | Genes identified by cosmid-based approach potentially linked to Leishmania pathogenicity.

Gene ID chr* Product Function Strain/Isolate References Validation**

lpg1 LmjF.25.0010 25 Beta galactofuranosyl

transferase

Galactofuranosyl

transferase implicated

in LPG biosynthesis

L. donovani L1S2D Ryan et al., 1993b Yes (Späth et al.,

2000)

lpg2 LmjF.34.3120 34 Lipophosphoglycan

biosynthetic protein 2

Transmembrane

transporter activity

L. donovani 1S/Cl2D Descoteaux et al., 1995 Yes (Späth et al.,

2003b)

sca2 LmjF.02.0180 2 Phosphoglycan beta

1,2 arabinosyltransferase

Galactosyltransferase

activity

L. major FV1 Dobson et al., 2003a No

sca1 LmjF.02.0220 2 Phosphoglycan beta

1,2 arabinosyltransferase

Galactosyltransferase

activity

L. major FV1 Dobson et al., 2003a No

scg1 LmjF.07.1170 7 Phosphoglycan beta

1,3 galactosyltransferase 1

Galactosyltransferase

activity

L. major FV1 Dobson et al., 2003b No

scg2 LmjF.21.0010 21 Phosphoglycan beta

1,3 galactosyltransferase 2

Galactosyltransferase

activity

L. major FV1 Dobson et al., 2003b No

scg3 LmjF.02.0010 2 Phosphoglycan beta

1,3 galactosyltransferase 3

Galactosyltransferase

activity

L. major FV1 Dobson et al., 2003b No

scg4 LmjF.36.0010 36 phosphoglycan beta

1,3 galactosyltransferase 4

Galactosyltransferase

activity

L. major FV1 Dobson et al., 2003b No

scg5 LmjF.31.3190 31 phosphoglycan beta

1,3 galactosyltransferase 5

Galactosyltransferase

activity

L. major FV1 Dobson et al., 2003b No

scg6 LmjF.25.2460 25 Phosphoglycan beta

1,3 galactosyltransferase 6

Galactosyltransferase

activity

L. major FV1 Dobson et al., 2003b No

Miniexon 36 Miniexon L. donovani 1S/Cl2D Zhang and Matlashewski,

2004

No

P46 LmjF.33.3060 33 46 kD virulence factor Unknown L. major 5ASKH Reiling et al., 2010 No

LmJF36.0790 -

LmjF.36.0840

36 Specific genes involved in

phenotype not identified

Not applicable L. infantum (chagasi) Dahlin-Laborde et al., 2005 No

LmJF36.0840 -

LmjF.36.0900

36 Specific genes involved in

phenotype not identified

Not applicable L. infantum (Chagasi) Dahlin-Laborde et al., 2008 No

LmJF36.3090 -

LmjF.36.3210

36 Specific genes involved in

phenotype not identified

Not applicable L. infantum (chagasi) Dahlin-Laborde et al., 2008 No

*chr, chromosome; **validation refers to loss of function studies establishing a direct link between the gene and parasite pathogenicity.

reported members of the HSP70 protein family as important
genes contributing to antimony tolerance, supporting recent
phylogenetic evidence that HSP70 family members may allow
parasite environmental adaptation with potential important
consequences for drug susceptibility (Drini et al., 2016).

Recent work by the Ouellette team coupled cosmid selection
and next generation sequencing for drug resistance and
drug target gene discovery, proposing a high-throughput
capable screening strategy the authors referred to as Cos-
Seq (Gazanion et al., 2016). Screening cosmid transfected L.
infantum against SbIII, amphotericin B, MIL, paramomycin or
pentamidin revealed 64 enriched loci, including 12 common
to at least two anti-leishmanial drugs, suggesting the existence
of multi-drug resistance genes. This study validated 6 known
and uncovered 7 new resistance genes in promastigotes,
including two new genes causing methotrexate resistance
both encoding for phosphatase 2C-like proteins (LinJ.34.2310
and LinJ.34.2320), one hypothetical protein with leucine-
rich repeats causing both pentamidin and paromomycin
resistance (LinJ.06.1010), a serine/threonine phosphatase causing
SbIII resistance (LinJ.12.0610), and phospholipid-translocating
ATPase (LinJ30.2270) and C-8 sterol isomerase (LinJ.29.2250)
that were revealed screening for MIL resistance (Table 2).

THE FRAMEWORK OF “REVERSE”
EPIDEMIOLOGY

The examples described above are testimony to the success
of cosmid-based, functional screening approaches to discover
genetic loci in Leishmania that are linked to parasite virulence,
tissue tropism, and drug resistance. However, even though
these loci may represent potential biomarkers with important
prognostic value, there are no dedicated, concerted efforts for
their validation in clinically relevant settings. One exception
includes CLrP, whose increased abundance on RNA and protein
levels were correlated with increased Sb resistance in field
isolates, albeit only a small number of isolates were used in
these studies (Kumar et al., 2010b; Das et al., 2015). For other
loci, clinical validation of the functional screening results can
be ambiguous, with for example the MRPA and PTR1 genes
of the H-locus having been either strictly, partially, or not
correlated to Sb resistance in different epidemiological studies
(Decuypere et al., 2005, 2012; Mittal et al., 2007; Mukherjee
et al., 2007; Mukhopadhyay et al., 2011). Such divergent
results may be explained by the polyclonal structure of parasite
field isolates and their geographic adaptation, with different
resistance mechanisms being selected in genetically distinct
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TABLE 2 | Genes identified by cosmid-based approach linked to Leishmania drug resistance or susceptibility.

Gene ID Product Function Drug Strain* Validation** References

TRP LmjF.31.2010 Turbicidin-resistant protein ER protein Tubercidin L. major No Cotrim et al., 1999

bt1 LmxM.34.5150 Biopterin transporter Folate/biopterin transport Methotrexate L. mexicana No Kundig et al., 1999

SQS1 LmjF.31.2940 Squalene synthase Ergosterol biosynth Itraconazole L. major No Cotrim et al., 1999

ARM58 LbrM20.0210;

LinJ.34.0220

58 kDa antimony

resistance marker

Response to drug SbIII L. braziliensis;

L. infantum

No Nühs et al., 2014;

Tejera Nevado et al.,

2016

ARM56 LinJ.34.0210 56 kDa antimony

resistance marker

Response to drug SbIII L. braziliensis;

L. infantum

No Nühs et al., 2014;

Tejera Nevado et al.,

2016

HSP23 LinJ.34.0230 HSP 23 Response to drug L. infantum No Tejera Nevado et al.,

2016

P299 LinJ.08.0630 P299 Response to drug Miltefosine/

SbIII

L. infantum Partially Downing et al.,

2011; Jeddi et al., 2014

Choudhury et al., 2008

CLrP LinJ.34.0570 Cysteine leucine rich

protein

Response to drug SbIII L. infantum Partially (Kumar et al.,

2010b; Das et al., 2015)

Genest et al., 2008

LdMT LdBPK_131590.1 Miltefosine transporter Phospholipid-translocating

ATPase

Miltefosine L. donovani Partially (Coelho et al.,

2012; Mondelaers et al.,

2016; Shaw et al., 2016;

Srivastava et al., 2017)

Perez-Victoria et al.,

2003

LinJ.34.2310 Phosphatase 2C-like

proteins

Catalytic activity Methotrexate L. infantum No Gazanion et al., 2016

LinJ.34.2320 Phosphatase 2C-like

proteins

Catalytic activity Methotrexate L. infantum No Gazanion et al., 2016

LinJ.06.1010 Leucine Rich Repeat,

putative

Protein binding Pentamidin/

paromomycin

L. infantum No Gazanion et al., 2016

LinJ.12.0610 Serine/threonine

phosphatase

Hydrolase activity and ion

binding

SbIII L. infantum No Gazanion et al., 2016

LinJ30.2270 Phospholipid-

translocating

ATPase

Transmembrane

transporter

Miltefosine L. infantum No Gazanion et al., 2016

LinJ.29.2250 C-8 sterol isomerase Isomerase Miltefosine L. infantum No Gazanion et al., 2016

*Strain used for the generation of the cosmid library; **biological validation in field isolates

isolates (Decuypere et al., 2012). This possibility is supported
by our recent demonstration that genetic mosaicism in an
individual L. donovani strain can drive polyclonal adaptation,
suggesting that different resistance mechanisms may co-exist
in sub-populations of any given isolate (Prieto Barja et al.,
2017). Such intra-strain specific, polyclonal fitness gain is further
supported by the cosmid selection of different genetic loci in
response to the same selection pressure applied on a single
parasite population in vitro or during animal infection (Cotrim
et al., 1999; Dahlin-Laborde et al., 2005; Gazanion et al., 2016).
Indeed, such clonal phenotypic variability in a given parasite
isolate has been recently documented in L. amazonensis, with
important differences in culture proliferation and pathogenic
potential observed in untransfected sub-clones or parasites
transfected with individual cosmids selected in vivo for increased
parasite infectivity (Espiau et al., 2017). Finally, other genes
associated with drug resistance or susceptibility identified in
cosmid screens failed to be validated in clinical studies such as
LdMT, whose mutations were correlated to MIL resistance in
promastigotes in culture but could not be associated with MIL
resistance or treatment failure in the field (Bhandari et al., 2012).

Likewise, PRP1 that has been implicated in vitro in resistance to
pentamidine with reported cross-resistance to SbIII, did not show
increased expression in Sb resistant field isolates (Decuypere
et al., 2005, 2012).

Drawing from these examples we propose an experimental
framework for the discovery of biomarker candidates by
combining functional genetic screens in relevant animal models
to reveal loci of interest, which then are validated by
dedicated clinical and epidemiological investigations (Figure 1).
In this approach, a cosmid library is prepared from parasites
freshly derived from clinical isolates that show a phenotype
of interest (donor strain). The gene(s) that express this
phenotype are identified by transfecting a relevant recipient
Leishmania strain and recovery of cosmids from transfectants
that gained the phenotype under investigation. These genes
can then be validated as biomarkers by quantitative PCR
analysis directly applied on clinical samples. Thus, in contrast
to classical biomarker discovery, where epidemiological field
studies establish a correlation between a clinical phenotype and
a genetic locus that then is validated in vitro or in animal
studies, the epidemiological protocol we propose is in reverse
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FIGURE 1 | Outline of the reverse epidemiology framework. Field isolates from infected humans or animal reservoirs showing a defined difference in clinical phenotype

(e.g., drug susceptibility) will be briefly expanded in culture, a cosmid library will be generated from the donor strain (in red) that shows the phenotype of interest (e.g.,

drug resistance), which then will be transfected into the recipient strain (in blue) that will be subjected to a gain-of-function screen in situ using experimental mouse or

hamster infection (in the presence of drug in our example). The selected gene(s) of interested (GOI) will be identified by next generation sequencing (NGS). Correlating

the identified genes with the clinical phenotype in dedicated epidemiological studies will then validate the new biomarker.

from lab-based studies back to the field. Even though this
approach has its drawbacks (e.g., clinical manifestations caused
by gene inactivation or gene deletion cannot be revealed),
it provides several interesting advantages that immediately
overcome important bottlenecks in Leishmania biomarker
discovery. First, it is independent of long-term culture that
can have an important impact on the parasite genome thus
interfering with epidemiologically relevant information. Second,

the screening is performed in situ in infected animals under
environmental constraints that correspond to the clinical
setting, thus allowing for the selection of physiologically highly
relevant loci. Third, large amounts of parasite can be recovered
from different tissues of the infected animals, which can
be subjected to direct and even single cell sequencing, thus
informing on mechanisms of polyclonal adaptation that may
be relevant to the field. Finally, this approach will overcome
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ethical concerns associated with applying direct genome
sequencing on human tissue samples as the cosmid-identified
loci will be studied in clinical samples by simple qPCR
analysis.

In conclusion, our reverse epidemiology approach exploits
genetic amplification for biomarker discovery and thus mimics
the very mechanism that has been linked to Leishmania genomic
adaptation and fitness gain in the field and in culture (Dumetz
et al., 2017; Prieto Barja et al., 2017). Cosmid-based functional
genetic screening in situ linked to clinical validation thus
represents a powerful framework that can fill an important gap
in the currently rather desolate state of Leishmania biomarker
discovery, which is challenged by the absence of robust protocols
for direct tissue sequencing of parasites in human clinical
samples, and the genetic bias caused by parasite long-term culture
applied in current epidemiological investigations.
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