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There is great interest in safe and effective alternative therapies that could benefit patients

with inflammatory bowel diseases (IBD). L-arginine (Arg) is a semi-essential amino acid

with a variety of physiological effects. In this context, our aim was to investigate the

role of dietary Arg in experimental colitis. We used two models of colitis in C57BL/6

mice, the dextran sulfate sodium (DSS) model of injury and repair, and Citrobacter

rodentium infection. Animals were given diets containing (1) no Arg (Arg0), 6.4 g/kg

(ArgNL), or 24.6 g/kg Arg (ArgHIGH); or (2) the amino acids downstream of Arg: 28 g/kg

L-ornithine (OrnHIGH) or 72 g/kg L-proline (ProHIGH). Mice with DSS colitis receiving the

ArgHIGH diet had increased levels of Arg, Orn, and Pro in the colon and improved body

weight loss, colon length shortening, and histological injury compared to ArgNL and

Arg0 diets. Histology was improved in the ArgNL vs. Arg0 group. OrnHIGH or ProHIGH

diets did not provide protection. Reduction in colitis with ArgHIGH diet also occurred

in C. rodentium-infected mice. Diversity of the intestinal microbiota was significantly

enhanced inmice on the ArgHIGH diet compared to the ArgNL or Arg0 diets, with increased

abundance of Bacteroidetes and decreased Verrucomicrobia. In conclusion, dietary

supplementation of Arg is protective in colitis models. This may occur by restoring overall

microbial diversity and Bacteroidetes prevalence. Our data provide a rationale for Arg as

an adjunctive therapy in IBD.
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INTRODUCTION

Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease
(CD), remains a major public health problem (Torres et al., 2017; Ungaro et al., 2017). There are
nearly 2 million people in the USA afflicted with IBD, and its prevalence continues to increase
in the USA (Shivashankar et al., 2017) and dramatically worldwide, especially in India and China
(Singh et al., 2017). Both UC and CD severely compromise the quality of life of affected individuals
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and IBD represents a major risk for development of cancer
since 20% of these patients can develop colitis-associated
carcinogenesis (Bernstein et al., 2001; Terzic et al., 2010).

The etiology of IBD is undoubtedly multifactorial and is
thought to result from the complex interplay between genetic
susceptibility (Liu and Stappenbeck, 2016), the gut microbiota
(Frank et al., 2007), and environmental factors (Kaser et al.,
2010), resulting in a dysregulated mucosal immune response. In
this context, biologic therapies for IBD, which include anti-TNFs
(Sandborn et al., 2012), anti-IL-12/23p40 (Mannon et al., 2004),
anti-integrins (Engel et al., 2018), and others have been deployed
to limit the chronic colonic inflammation. However, these agents
induce remission in only half of patients, are very expensive, and
may have many side effects. Alternative therapies that would be
safe, well-tolerated, cost-effective, and rationally-based that could
beneficially impact IBD patients would be ideal.

Epithelial and myeloid cells in the inflamed intestinal mucosa
play an important role in the inception, chronicity, and severity
of IBD (Torres et al., 2017; Ungaro et al., 2017). These cells
develop a non-specific innate immune response to microbiota
components that favor acute inflammation and stimulate the
initiation of an adaptive immune activation. Inducible enzymes
involved in the transport and metabolism of L-arginine (Arg) are
altered in patients with IBD and in murine models of colonic
inflammation, and play a critical role in the regulation of the
inflammatory processes. We have found that expression of the
Arg transporter, solute carrier family 7 member 2 (SLC7A2,
also known as cationic amino acid transporter 2) is reduced
in the colonic mucosa of patients with active UC or CD, and
that colon tissue Arg levels are inversely correlated with disease
severity (Coburn et al., 2016). Moreover, we have reported
that mice lacking the gene Slc7a2 exhibit more severe dextran
sulfate sodium (DSS)-induced colonic injury and innate and
Th17 response than wild-type animals (Singh et al., 2013), and
also develop increased colitis-associated carcinogenesis (Coburn
et al., 2018), suggesting that Arg uptake is important to dampen
inflammation and carcinogenesis.

L-Arg is a substrate for four enzymes, namely nitric oxide
(NO) synthase (NOS), arginase, glycine amidinotransferase
(GATM), and arginine decarboxylase (Morris, 2004). Although
clinical and experimental investigations have shown that the
inducible isoform of NOS, NOS2, is expressed in the inflamed
mucosa in IBD patients (Rachmilewitz et al., 1995) or in animals
with experimental colitis (Hokari et al., 2001), the role of
NO in colitis remains a subject of controversy. Studies have
shown that the level of NO is correlated with disease severity
(Krieglstein et al., 2001), whereas other have demonstrated
that NO has protective effects in colitis (Yoshida et al.,
2000). Arginase and GATM are essential enzymes that exhibit
important roles in colitis (Gobert et al., 2004; Turer et al.,
2017). Arginase metabolizes Arg into urea and L-ornithine (Orn)
whereas GATM converts Arg into creatine and Orn (Morris,
2004). Orn is converted into the polyamine putrescine by
ornithine decarboxylase (ODC); then the two other polyamines,
spermidine, and spermine, are sequentially generated from
putrescine (Pegg, 2016). Additionally, the enzyme arginine
decarboxylase cleaves Arg into CO2 and agmatine, which is

then converted to putrescine by agmatinase (Morris, 2004). In
mice infected with the intestinal pathogen C. rodentium, we
have found that the arginase/ODC metabolic pathway protects
mice from colitis (Gobert et al., 2004; Hardbower et al.,
2017). Furthermore, Orn can also be converted by ornithine
aminotransferase into L-proline (Pro), which is a precursor in
collagen synthesis and thus supports wound healing (Singh et al.,
2012). All together, these data suggest that the enhancement of
Arg metabolism may protect from colitis.

The most common dietary sources of Arg are meat, fish,
dairy products, and nuts (Visek, 1986; Hu et al., 1998) and Arg
supplementation is generally considered to be safe (Collier et al.,
2005; Shao and Hathcock, 2008). Because it acts as a vasodilator
through NO synthesis, Arg is used as a complementary medicine
to help in the treatment of hypertension (Dong et al., 2011).
Clinical investigations have also shown that Arg ameliorates
glucose metabolism and insulin sensitivity in type 2 diabetes
(Lucotti et al., 2006). Hence, in the current report, we analyzed
the effect of specific diets containing various amount of Arg in
two models of experimental colitis. We show that depletion of
L-Arg is detrimental in both models, whereas an Arg-rich diet
protects animals from injury and inflammation. Surprisingly, the
beneficial effect of Arg is not dependent on the neosynthesis of
Orn or Pro. Rather, we found that Arg supplementation restores
the diversity of the intestinal microbiota.

MATERIALS AND METHODS

Diets and Experimental Models of Colitis
The regular 5L0D chow was obtained from LabDiet. The
customized amino-acid-defined AIN-76A diet, in which the
protein casein was replaced with equivalent amounts of purified
amino acids, was purchased from Bio-Serv. These different diets
are described in Table 1.

All the animals were bred in our animal facility. Age-matched
C57BL/6 male mice (6–7 weeks old) maintained on the 5L0D
diet were given the AIN-76A ArgNL diet for 7 days prior to the
induction of two models of colitis (Singh et al., 2016; Gobert
et al., 2018): (i) Animals were treated or not with 2.5% DSS (mol.
wt. 36,000–50,000; TdB Consultancy) in the drinking water for
5 days; DSS was then removed and mice were kept for 5 more
days on regular drinking water and on AIN-76A diet containing

TABLE 1 | Amino acid concentration in the diets used in the study.

Diet Arg (g/kg) Orn (g/kg) Pro (g/kg) Calories (kcal/g)

5L0D 6.4 ND 18 4.09

AIN-76A Arg0 0 ND 18 3.77

AIN-76A ArgNL 6.4 ND 18 3.79

AIN-76A ArgHIGH 24.6 ND 18 3.86

AIN-76A OrnNL 6.4 ND 18 3.79

AIN-76A OrnHIGH 6.4 28 18 3.90

AIN-76A ProNL 6.4 ND 18 3.79

AIN-76A ProHIGH 6.4 ND 72 4.01

ND, not detectable.
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different concentrations of Arg, Pro, or Orn. (ii) Mice fed the
AIN-76A diet containing different concentrations of Arg were
infected by oral gavage with 0.1ml of LB broth containing 5× 108

C. rodentium DBS100 (Barthold et al., 1976) under exponential
growth phase or with broth, and euthanized after 14 days after
being maintained on each of the three different Arg diets.

In both models, mice were weighed and monitored daily, and
those that showed extreme distress, became moribund, or lost
more than 20% of initial body weight were euthanized. Feces were
collected during the time course of colitis. After sacrifice, colons
were removed, measured, cut longitudinally, cleaned, weighed,
and Swiss-rolled for histology. Three proximal and distal 2mm
pieces were used for amino acid analysis, polyamine analysis, or
determination of C. rodentium colonization by culturing serial
dilution of ground tissues on Luria-Bertani agar plates (Singh
et al., 2016; Gobert et al., 2018).

Assessment of Histological Injury
Swiss-rolled colons were fixed in formalin and embedded in
paraffin, and 5µm sections were stained with hematoxylin
and eosin (H&E) and examined in a blinded manner by
gastrointestinal pathologists (M.B.P. and M.K.W.). For DSS
colitis, inflammation severity (0–3) and inflammation extent (0–
3) were each multiplied by the percent involvement (1 = 0–25%,
2= 25–50%, 3= 50–75%, and 4= 75–100%) and added together
to yield the inflammation score (0–24); the parameter of crypt
damage (0–4) was also multiplied by the percent involvement
to yield an epithelial injury score (0–16). These scores were
then added together to yield the histological injury score (0–
40) (Singh et al., 2011, 2013; Coburn et al., 2012; Gobert et al.,
2018). For C. rodentium colitis, the histologic injury score (0–
21) was the sum of acute and chronic inflammation (0–3 for
each) scores multiplied by extent of inflammation (0–3) plus the
epithelial injury score (0–3), as described (Singh et al., 2011, 2016;
Hardbower et al., 2017; Gobert et al., 2018).

Quantification of Amino Acids
Frozen tissues were homogenized in 0.1M trichloroacetic acid
containing 10−2 M sodium acetate, 10−4 M EDTA, and 10.5%
methanol (pH 3.8). After centrifugation at 10,000 g for 20min,
supernatants were used for protein assay using BCA and
for LC/MS.

To prepare internal standards, 50 µl stock solutions of each
amino acid (5 ng/µl) were diluted with 200 µl acetonitrile
and 100 µl each of 500mM Na2CO3 and 2% isotopically
labeled benzoyl chloride (13C6-BZC) in acetonitrile. After 2min,
the reaction was stopped by the addition of 200 µl of 20%
acetonitrile in water containing 3% sulfuric acid and 400 µl
water. These solutions were diluted 100 X with 20% acetonitrile
in water containing 3% sulfuric acid tomake the working internal
standard solution used in the sample analysis.

Cell extracts or cell supernatants (5 µl) were diluted in
acetonitrile (20 µl), 500mM Na2CO3 (10 µl), and 2% benzoyl
chloride in acetonitrile (10 µl). After 2min, the reaction was
stopped by the addition of 20 µl of the internal standard solution
and 40 µl water.

Liquid chromatography was performed on a 2 × 50mm,
1.7µm particle Acquity BEH C18 column (Waters Corporation)
using a Waters Acquity UPLC. Mobile phase A was 0.15%
aqueous formic acid and mobile phase B was acetonitrile.
Samples were separated by a gradient of 98–5% of mobile phase
A over 11min at a flow rate of 600 µl/min prior to delivery
to a SCIEX 6500+ QTrap mass spectrometer. The ratio of the
peak height of the endogenous amino acids was compared to
the peak height of the isotopically-labeled internal standards for
quantitation. All data were analyzed using MultiQuant Software
Version 3.0 (SCIEX).

Quantification of Polyamines
The concentration in colon tissues of the three biogenic
polyamines putrescine, spermidine, and spermine was
determined by mass spectrometry as described (Hardbower
et al., 2017; Gobert et al., 2018).

Measurement of Cytokines and
Chemokines
Colon tissues were lysed in Cell Lytic Mammalian Tissue Lysis
Extraction Reagent (Sigma) and analyzed using the 32-analyte
MILLIPLEX MAP Mouse Cytokine/Chemokine Magnetic Bead
Panel (Millipore Sigma) on a FLEXMAP 3D instrument
(Luminex) as reported (Coburn et al., 2018; Singh et al.,
2018). Data were standardized to tissue protein concentrations
measured by the BCA Protein Assay Kit (Pierce).

Immunostaining
Immunofluorescent staining for NOS2, arginase-1 and the
macrophage marker CD68 was performed on the colon tissues
as described (Singh et al., 2018) using a rabbit polyclonal anti-
NOS2 (Novus Biological; 1/100), a goat polyclonal anti-arginase-
1 (Santa Cruz; 1/100), and a rabbit polyclonal anti-mouse CD68
Ab (Boster Biological, 1/100), respectively.

Analysis of the Composition of Intestinal
Microbiota
Colonic feces were collected from mice after euthanasia and
were lysed using bead beating with the QIAGEN TissueLyser II.
Genomic DNA was extracted using the QIAGEN Powersoil kit.

Amplicons in the V4 hypervariable region of 16S rRNA
genes were amplified with MyTaq polymerase master mix
(Bioline). In this step, amplicons of each sample were differently
barcoded with primers 515F/806R (Kozich et al., 2013).
ZymoBIOMICS (Zymo) positive controls and extraction and
PCR negative controls were run alongside the samples. PCR
products were run on 1.2% TAE agarose gels to verify reaction
success. Amplicons were cleaned and normalized with the
SequalPrep Normalization Plate Kit (Invitrogen). Samples were
pooled and cleaned with 1X Ampure XP Beads (Beckman
Coulter). Sequencing was performed on an Illumina MiSeq
with 2 × 250 bp reads. Sequences were processed with
mothur and aligned to the SILVA database release 123 and
taxonomically classified with the Ribosomal Database Project
classifier 11 (Pruesse et al., 2007; Cole et al., 2009). Non-bacterial
sequences and chimeric sequences detected by UCHIME were
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removed. Operational Taxonomic Unit (OTU) clustering was
performed with VSEARCH, using abundance-based greedy
clustering (Rognes et al., 2016).

Statistics
All the data shown represent the mean ± SEM. Data that
were not normally distributed according to the D’Agostino &
Pearson normality test were log transformed. Statistics for the
Luminex analysis was performed using the two-stage-step-up
method of Benjamini, Krieger, and Yekutieli that correct for
multiple comparisons by controlling the False Discovery rate
(Q < 0.05). The relative abundance of the phyla, families, and
genus in Arg0, ArgNL, and ArgHIGH groups was analyzed by
the Kruskal-Wallis test and the multiple comparison testing
was performed using the Uncorrected Dunn’s test. Microbiome
richness was estimated with the Chao1 and ACE indices, and
alpha-diversity was estimated with Hill numbers N1 and N2
which are, respectively, the exponential of the Shannon index
and inverted Simpson index. A beta diversity dissimilarity matrix
(Bray-Curtis) was computed over the multiple rarefactions and
the permutation-based ANOVA (PerMANOVA) was used to
test for associations between microbial profiles and arginine
treatment. Rarefaction followed by richness, alpha-diversity,
and beta-diversity calculations were repeated 400 times, and
the results were averaged. Detailed methods of estimating
microbiome richness and alpha- and beta-diversity has been
previously described (Shilts et al., 2016). In all other experiments,
the Student’s t test or ANOVA with the Tukey test were
used to determine significant differences between two groups
or to analyze significant differences among multiple test
groups, respectively.

RESULTS

Arg Supplementation Improves
DSS-Induced Colitis
To assess the effect of Arg dietary regimens on colonic
inflammation, we fed mice with Arg0, ArgNL, or ArgHIGH diets
during the recovery period, after DSS treatment. Mice began
losing weight during the 5 days of DSS treatment (Figure 1A).
However, body weight loss was significantly improved with the
ArgHIGH diet compared to animals on the Arg0 or ArgNL diets.
Mice on the Arg0, ArgNL, or ArgHIGH regimens without DSS
treatment did not have differences in body weight throughout
the course of the experiments (Figure S1). The shortening of the
colon, which is an indicator of disease severity in DSS-treated
mice (Singh et al., 2018), was improved in mice on the ArgNL or
ArgHIGH diet compared to those fed the Arg0 diet, and was also
improved on the ArgHIGH diet when compared to the ArgNL diet
(Figure 1B). Lastly, we observed decreased overall histological
injury scores in DSS-treated mice receiving the ArgHIGH diet
compared to mice with Arg0 or ArgNL diets (Figure 1C). H&E-
stained sections of the distal colon of control mice showed
no inflammation and no change between the animals on the
different Arg diets (Figure 1D). The colon of DSS-treated
mice exhibited severe inflammatory infiltrates (neutrophils and

lymphocytes), crypt loss, and ulceration (Figure 1D). All these
parameters were improved with the ArgHIGH diet (Figure 1D).

Amino Acid Profiling in Response to the
Different Arg Diets
After 5 days of DSS followed by 5 days of the special diet
regimens, the concentrations of the amino acids related to Arg
metabolism (Morris, 2004) were determined in the serum and
the colon by mass spectrometry. We analyzed (1) Arg; (2) Orn
that is principally generated from Arg by the enzyme arginase;
(3) Pro that results from the conversion of Orn by ornithine
aminotransferase; (4) L-citrulline (Cit), the product of the
conversion of Arg by NOS; and (5) L-lysine (Lys), an amino acid
that competes with arginine for the same transport system. In the
serum, the concentration of these amino acids was not affected by
the treatment of the mice with DSS (Figure 2A); however, Arg,
Orn, Pro, and Lys concentrations in the colon were significantly
increased in animals with DSS colitis compared to control mice
(Figure 2B). As expected, serum Arg was increased in mice on
the ArgNL diet compared to animals receiving Arg0 diet, and
was further enhanced on the ArgHIGH diet (Figure 2A); this
was observed in both untreated mice and DSS-treated animals
(Figure 2A). In the colon, the increase in Arg concentration was
observed only in animals that were given DSS (Figure 2B). Orn
and Pro were also enhanced in the serum of ArgHIGH-treated
mice (Figure 2A); but only Orn concentration was significantly
higher in the colonic tissue of mice treated with DSS and fed the
ArgHIGH diet compared to the Arg0 diet (Figure 2B). In contrast,
Cit and Lys concentrations were not significantly affected by the
various Arg diets (Figures 2A,B).

Because (1) Orn concentration was increased in DSS-
treated mice and in mice fed the ArgHIGH diet and
(2) Orn is the substrate of ODC that synthesizes the
first polyamine putrescine, we determined polyamine
concentrations in the colonic tissues. Levels of putrescine
and spermidine, but not spermine, were increased in colitic
mice compared to control animals (Figure 2C), but the
different Arg regimens had no effect on tissue polyamine
content (Figure 2C).

Supplementation of the Diet With Orn or
Pro Does Not Protect From DSS Colitis
Since we found that Orn and Pro concentrations were increased
in the serum and/or colon of DSS-treated mice fed the ArgHIGH

diet, we reasoned that Arg might exert its protective effect in
DSS colitis through the synthesis of these two amino acids.
To test this hypothesis, mice were treated with DSS and then
fed OrnNL, OrnHIGH, ProNL, or ProHIGH diets (Table 1). The
loss of body weight (Figure S2A), the reduction of colon length
(Figure S2B), and the histological damage (Figure S2C) induced
by DSS was not improved in mice that were given OrnHIGH or
ProHIGH diets compared to animals receiving OrnNL or ProNL

regimens, respectively. These results imply that Arg protects mice
independently of Orn or Pro synthesis.
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FIGURE 1 | Effect of Arg on DSS colitis. C57BL/6 mice were treated with 2.5% DSS for 5 days and then kept for 5 more days under conditions of Arg0, ArgNL, or

ArgHIGH diets. (A) Body weights were monitored daily and are presented as percentage of initial body weight. (B) Colons were harvested and measured. (C,D) Colons

were Swiss-rolled and stained with H&E (D) and scored for histologic injury (C); the histologic injury score of mice without DSS was 0. Scale bar, 50µm. In all panels,

*P < 0.05, **P < 0.01, and ***P < 0.001 compared to DSS-treated mice on the Arg0 diet; §P < 0.05 vs. DSS-treated mice on the ArgNL diet, by ANOVA with the

Tukey test.

Arg Supplementation Improves C.
rodentium-Induced Colitis
To determine whether Arg is protective in another model of
colitis, we used the pathogen C. rodentium to infect C57BL/6
mice. Animals infected with C. rodentium on the Arg0 diet
did not gain weight during the 14 days of infection, whereas
the mice fed ArgNL or ArgHIGH diets increased their body
weight to the same degree as uninfected animals (Figure 3A
and Figure S1). C. rodentium burden was significantly less in
mice receiving ArgNL or ArgHIGH diets compared with mice on
the Arg0 diet (Figure 3B). Moreover, the histologic damage was
attenuated in infected mice on the ArgHIGH diet compared to C.
rodentium-infected mice on the two other regimens (Figure 3C).
H&E staining of the colons of mice infected with C. rodentium
exhibited an effacement of the brush border, hyperplasia, severe
mucosal inflammation, and submucosal edema compared to
uninfected mice (Figure 3D). However, these abnormalities

were less present in animals that were given the ArgHIGH

diet (Figure 3D).

Alteration of the Mucosal Immune
Response by Arg
Next, we investigated the levels of chemokines/cytokines in
the colon tissues in response to colitis and the different Arg
diets. As shown in Table 2, we found that there were 15
analytes upregulated in both DSS and C. rodentium colitis,
including innate immune cell-associated cytokines (G-CSF, IL-
1β, TNF-α, LIF, and IL-6), chemokines (CCL2, CCL5, CCL11,
CXCL2, CXCL8, CXCL9, MIP-1α, and MIP-1β), and Th1 (IFN-
γ) and Th17 (IL-17) cytokines (Table 2). Among these analytes
upregulated in colitis, the levels of G-CSF, CCL2, and CXCL2
were significantly reduced in mice on the ArgHIGH diet in the
DSS model (Table 2). In addition, the concentrations of G-CSF,
IL-1β, CCL2, and IL-6 in the colon of mice infected with C.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 March 2019 | Volume 9 | Article 66

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Singh et al. Arginine Availability, Colitis, and Microbiota

FIGURE 2 | Amino acid and polyamine profiles during DSS colitis. (A,B) Concentration of amino acids in the serum (A) and in the colon (B) of mice. (C) The

concentration of putrescine, spermidine, and spermine was determined by LC/MS in the colonic tissues. In all panels, #P < 0.05, ##P < 0.01, and ###P < 0.001

denote significant differences compared to animals not treated with DSS; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 compared to DSS-treated mice on

the Arg0 diet; §P < 0.05 and §§§P < 0.001 vs. DSS-treated mice on the ArgNL diet, by ANOVA with the Tukey test.

rodentium and receiving the ArgNL diet or the ArgHIGH diet were
also significantly reduced compared to infected animals that were
given the Arg0 diet (Table 2). These data suggest that the innate
response of the colonic mucosa is the main component of the
immune response dampened by Arg supplementation.

We then assessed the protein expression of NOS2 and
arginase-1 in colonic macrophages. These two enzymes use
Arg as a substrate and are the prototypical markers of M1
and M2 macrophages, respectively. Overall, we found increased
NOS2+/CD68+ cells in the colonic mucosa of mice treated
with DSS or infected with C. rodentium compared to control
animals (Figure 4A). In both models, NOS2 protein expression
was reduced in mice treated with the ArgHIGH diet (Figure 4A).
Arginase-1 was also induced in mice with DSS or C. rodentium
colitis compared to untreated animals, but its expression was not
affected by Arg treatment (Figure 4B).

The AIN-76A Diet Disturbs the
Composition of the Gut Microbiota
Because mice were maintained under the special AIN-76A diet
during the experiments, we first analyzed the composition of
their microbiota under this regimen. The feces of mice (6–
8 weeks old) fed the regular 5L0D chow were first collected;
animals were then given the AIN-76A ArgNL diet for 7 days
and the feces of these mice were also collected. Sequencing of
V4 region of 16S rRNA showed that the fecal microbiota of the
mice that were given the 5L0D regimen was dominated by the
Bacteroidetes and Firmicutes phyla (Figure 5A). However, the
prevalence of the Bacteroidetes phylum was markedly reduced
when mice were fed the AIN-76A diet, whereas the abundance
of Verrucomicrobia was significantly increased (Figure 5A). The
relative abundance of Firmicutes, Actinobacteria, Tenericutes,
and Proteobacteria was not affected by the change in diet. This
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FIGURE 3 | Outcome of C. rodentium infection in response to Arg. C57BL/6 mice were infected with C. rodentium. (A) Body weights were measured every day and

are presented as percentage of initial body weight. (B) After 14 days, C. rodentium colonization in the colon was assessed by plating serial dilutions. (C,D) Colons

were Swiss-rolled and stained with H&E (D) and scored for histologic injury (C). Scale bar, 50µm. In all panels, *P < 0.05, **P < 0.01, and ***P < 0.001 compared to

DSS-treated mice on the Arg0 diet; §P < 0.05 vs. DSS-treated mice on the ArgNL diet, by ANOVA with the Tukey test.

profound modification of the composition of the gut microbiota
was also confirmed at the family and genus level: The prevalence
of Porphyromonadaceae and Prevotellaceae, which belongs to the
Bacteroidetes phylum, was significantly reduced (Figure 5B); in
contrast, the genus Akkermansia (Derrien et al., 2004), which
is the sole cultivated representative of the Verrucomicrobia
phylum, was more abundant in mice receiving the AIN-76A diet
compared to those fed with the 5L0D chow (Figure 5B).

Arg Supplementation Affects the Gut
Microbiome Diversity
It has been reported that the composition of the microbiota
can modulate the development of colitis (Gobert et al., 2016;
Johnston et al., 2018). We thus analyzed the composition of the
intestinal microbiota in mice fed for 5 days with Arg0, ArgNL,
or ArgHIGH diets. Thirty-one mouse fecal samples were retained
for microbial analysis. Sequencing analysis performed on fecal
DNA generated an average of 28,190 high-quality, taxonomically
classifiable 16S rRNA gene sequences with mean read lengths
of 243 nt. Feeding the animals the diets containing various

amount of Arg had no effect on the total number of bacteria
in the colonic feces (Table 3). There was also no significant
difference in estimated OTU richness between the three groups,
as determined by the Chao1 and Ace metrics (Table 3). However,
based on the one-way ANOVA test of the Shannon diversity
index and the Simpson index, we found that the diversity of
the intestinal microbiota was significantly enhanced in mice that
were given the ArgHIGH diet compared to the two other regimens
(Table 3), suggesting that the relative abundance of the gut
microbiota bacterial species is enhanced by Arg supplementation.
Visualization of the beta diversity distance matrix using principal
coordinate analysis (PCoA) showed that there were significant
structural differences in the gut bacterial community between
mice fed Arg0, ArgNL, and ArgHIGH diets (Figure 6).

At the phylum level, the fecal microbiota of the mice
used in these experiments was dominated by Bacteroidetes,
Verrucomicrobia, and Firmicutes. However, animals treated with
the ArgHIGH diet harbored significantly more Bacteroidetes
and less Verrucomicrobia than mice on Arg0 or ArgNL diets
(Figure 7A). This was confirmed at the family level, since
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FIGURE 4 | Regulation of NOS2 and arginase-1. NOS2, arginase-1, and CD68 were immunodetected in colonic tissues from C57BL/6 mice ± DSS or C. rodentium

± Arg0, ArgNL, or ArgHIGH diets. In each panel, CD68 is depicted in red, NOS2 (A) or arginase-1 (B) in green, and the nuclei in blue; CD68+NOS2+ and

CD68+ARG1+ cells are shown in yellow. The data shown are representative photomicrographs of at least 3 animals per condition. Scale bar, 50µm.
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TABLE 2 | Concentration of cytokines and chemokines in the colona.

Control DSS C. rodentium

Arg0 ArgNL ArgHIGH Arg0 ArgNL ArgHIGH Arg0 ArgNL ArgHIGH

G-CSF 0.7 ± 0.1 0.6 ± 0.2 0.7 ± 0.1 592.3 ± 185* 938.2 ± 333.2** 295.5 ± 128.2§ 63.1 ± 14.4**** 10.2 ± 4.1***§§§ 27.2 ± 11.3****§

GMCSF 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.6 ± 0.3 0.5 ± 0.3 0.1 ± 0.1 3.7 ± 1.0 1.2 ± 0.6 1.0 ± 0.3

MCSF 0.4 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 1.1 ± 0.5 1.0 ± 0.4 1.0 ± 0.3 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1

IL-1α 63.5 ± 18.9 96.3 ± 13.9 81.4 ± 9.6 69.5 ± 4.2 82.7 ± 7.7 49.6 ± 11.5 57.2 ± 7.4 94.8 ± 10.1 63.1 ± 9.3

IL-1β 0.9 ± 0.1 0.7 ± 0.1 2.1 ± 1.0 28.21 ± 17.9** 13.1 ± 4.8*** 11.9 ± 5.6 93.3 ± 38.9** 22.6 ± 11.1*§ 11.1 ± 3.0*§

IL-2 2.8 ± 0.5 2.8 ± 0.5 1.8 ± 0.3 2.3 ± 0.5 2.7 ± 0.6 1.2 ± 0.3 1.2 ± 0.1 2.1 ± 0.1 1.5 ± 0.2

IL-3 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

IL-4 0.5 ± 0.2 0.4 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.3 ± 0.1

IL-5 0.4 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 0.9 ± 0.4 0.2 ± 0.1 0.3 ± 0.1

IL-6 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 78.5 ± 21.3**** 165.5 ± 64.7**** 68.1 ± 28.1****§ 75.6 ± 31.2**** 4.8 ± 2.0**§§§ 32.6 ± 15.1**§

IL-7 1.5 ± 0.2 2.5 ± 0.3 2.8 ± 0.2 2.2 ± 0.5 2.1 ± 0.5 3.3 ± 0.4 2.5 ± 0.2 2.5 ± 0.2 3.6 ± 0.4

IL-9 634.2 ± 76.7 400.6 ± 54.7 290.1 ± 30.6 741.5 ± 90.9 898.3 ± 250.8 400.5 ± 29.9 296.3 ± 24.4 362.5 ± 21.2 304.1 ± 36.7

IL-10 1.8 ± 0.2 1.4 ± 0.3 1.9 ± 0.5 5.3 ± 1.0 5.8 ± 1.0 2.6 ± 0.6 2.0 ± 0.2 2.1 ± 0.3 2.1 ± 0.3

IL-12p40 0.8 ± 0.1 0.7 ± 0.1 0.5 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.8 ± 0.1 0.7 ± 0.1 0.5 ± 0.1

IL-12p70 1.1 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 0.7 ± 0.1

IL-13 1.4 ± 0.1 1.2 ± 0.1 0.9 ± 0.1 6.3 ± 4.4 9.1 ± 4.0 11.7 ± 4.8 5.4 ± 2.0 4.7 ± 1.6 2.9 ± 0.7

IL-15 1.6 ± 0.1 1.7 ± 0.3 2.2 ± 0.5 4.1 ± 0.5 3.5 ± 1.1 0.8 ± 0.5 3.4 ± 1.1 2.8 ± 0.5 4.9 ± 1.6

IL-17 0.6 ± 0.2 1.1 ± 0.1 1.3 ± 0.3 8.8 ± 1.8**** 35.0 ± 10.9**** 10.3 ± 5.7* 13.4 ± 2.5**** 12.02 ± 2.7*** 6.9 ± 0.9***

LIX 0.9 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 1.4 ± 0.7 20.1 ± 14.6 3.5 ± 3.0 7.9 ± 2.1 9.9 ± 8.1 8.2 ± 6.7

LIF 0.8 ± 0.2 0.7 ± 0.1 0.7 ± 0.1 6.7 ± 1.3**** 6.5 ± 1.2**** 6.1 ± 1.5**** 28.5 ± 3.3**** 19.0 ± 2.4**** 21.0 ± 4.1****

CXCL9 70.5 ± 29.2 436.6 ± 169.4 1380 ± 905 2840 ± 704.5**** 6275 ± 1479**** 5070 ± 640.5**** 7574 ± 642.1**** 7184 ± 1559**** 7371 ± 655.2****

CXCL8 9.4 ± 2.7 14.5 ± 1.5 14.1 ± 0.4 152.6 ± 29.6**** 293.6 ± 100.6*** 112.1 ± 40.2** 123.7 ± 16.6**** 80.4 ± 23.9*** 99.2 ± 23.6***

CCL2 5.2 ± 0.3 4.3 ± 0.2* 3.4 ± 0.2 16.2 ± 7.2* 12.8 ± 5.8 7.7 ± 4.6 32.9 ± 8.2*** 4.7 ± 0.9§§§ 17.9 ± 8.7§

MIP-1α 3.9 ± 1.1 4.7 ± 1.3 2.8 ± 0.7 28.9 ± 5.7** 27.6 ± 8.7** 16.2 ± 6.4* 31.4 ± 4.0** 30.6 ± 7.3*** 21.5 ± 4.1**

MIP-1β 1.8 ± 0.1 1.4 ± 0.1 1.2 ± 0.1 45.6 ± 6.7**** 123.6 ± 69.9**** 57.5 ± 23.1**** 50.9 ± 8.2**** 62.4 ± 11.2**** 42.2 ± 7.1****

CXCL2 11.7 ± 0.6 8.3 ± 0.4 7.1 ± 0.8 445.7 ± 165.2*** 700.6 ± 433.9*** 322.2 ± 207.3*§ 214.0 ± 47.1*** 107.0 ± 31.2** 123.2 ± 51.0**

CCL5 4.1 ± 0.3 4.1 ± 0.3 5.5 ± 0.6 31.8 ± 5.8**** 45.9 ± 10.1**** 20.1 ± 4.2*** 25.3 ± 5.9*** 21.2 ± 3.8** 29.7 ± 9.1***

VEGF 194.1 ± 22.2 118.4 ± 99.5 83.9 ± 10.7 66.2 ± 8.2 66.2 ± 9.6 59.1 ± 15.8 98.2 ± 8.2 66.6 ± 12.3 69.6 ± 8.2

IP10 46.9 ± 2.2 58.1 ± 6.0 84.8 ± 24.6 208.4 ± 79.6 2238 ± 1100** 838.4 ± 300.5* 6902 ± 657.6 4561 ± 1322 4516 ± 1239

IFN-γ 1.9 ± 1.2 3.5 ± 0.6 4.3 ± 0.7 5.1 ± 0.7* 19.7 ± 6.8 3.1 ± 0.6 70.4 ± 13.0**** 29.1 ± 9.4* 33.4 ± 10.7*

TNF-α 0.4 ± 0.1 0.3 ± 0.1 0.2 ± 0.1 3.2 ± 1.0** 3.7 ± 1.2**** 3.3 ± 1.3*** 9.1 ± 1.0**** 4.9 ± 1.3*** 6.7 ± 1.8****

CCL11 295 ± 27.8 370.6 ± 53.4 594.2 ± 106 1379 ± 274.3**** 1217 ± 80.2*** 1185 ± 273.2* 1402 ± 272*** 893.9 ± 187** 924.3 ± 140.9

aValues are expressed in pg/mg protein.

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. Arg-matched controls. §P < 0.05, §§§P < 0.001 compared to the DSS-treated mice or C. rodentium-infected mice in the Arg0

group; n = 4 mice in the Control group and 6 mice for DSS and C. rodentium groups.

mice on the ArgHIGH diet harbored more Bacteroidaceae and
Bacteroidetes, and less Verrucomicrobiaceae than animals on
Arg0 or ArgNL diets (Figure 7B).

At the genus level, the most abundant bacterial genera
detected were Porphyromonadaceae, Barnesiella, Odoribacter,
Bacteroides, and Akkermansia (Figure 8), with Barnesiella and
Bacteroides being more abundant and Akkermansia less present
in animals on the ArgHIGH diet (Figure 8).

DISCUSSION

Complementary and alternative medicines and/or adapted diets
may supplement conventional therapies and improve symptoms
of IBD patients. Herbal medicine or mind/body interventions

have been tested in these patients and appear to display
some benefits (Langhorst et al., 2015), but further strategies
demonstrating a physiological impact are needed. In this study,
we showed that the treatment of mice with an Arg-rich diet is

protective in both DSS and C. rodentium colitis. The beneficial
role of Arg supplementation in the drinking water has been

reported in rats with trinitrobenzine-sulfonic acid colitis (Al-

Drees and Khalil, 2016) and in C57BL/6 mice with DSS colitis
(Coburn et al., 2012; Andrade et al., 2016), but the present
data demonstrate for the first time that Arg supplementation in
the diet is protective in two models of colonic inflammation.
Importantly, it is unlikely that the very small caloric difference
between the Arg0, ArgNL, and ArgHIGH diets (only 0.05% higher
for ArgNL vs. Arg0, and 1.8% higher for ArgHIGH vs. ArgNL)
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FIGURE 5 | Analysis of the microbiome during diet change. C57BL/6 mice on the 5L0D diet were switched to the AIN-76A ArgNL regimen for 7 days. Feces were

collected before the diet change (5L0D) and after the period on the AIN-76A ArgNL diet (AIN-76A). The percentage of each phylum (A) and genus (B) is shown. Mice

1–5 and 6–10 were distributed in two different cages. ****P < 0.0001 denote significant differences between the 5L0D and AIN-76A groups, determined by the

Student’s paired t test.

can explain the clinical improvement observed with the Arg-
rich regimen because (i) DSS-treated mice were given the special
diets for only 5 days after the DSS treatment, (ii) there was
no significant weight gain in control mice fed the Arg-rich
diet compared to the Arg0 diet, and (iii) the OrnHIGH and

ProHIGH diets, which contain more calories than the ArgHIGH

diet, did not protect mice from DSS colitis. Finally, it has been
described that the daily intake of Arg in healthy humans is
estimated to be around 3–4 g/day (King et al., 2008; Coburn et al.,
2016; Mirmiran et al., 2016), which corresponds to ∼0.04 g of
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TABLE 3 | Effect of Arg diets on alpha diversity of gut microbiota.

Arg0 ArgNL ArgHIGH

Bacterial abundancea 12.9 ± 0.1 13.2 ± 0.1 13.1 ± 0.2

RICHNESS ESTIMATORS

Chao1 209.2 ± 12.4 232.9 ± 7.0 222.1 ± 13.8

Ace 208.0 ± 11.6 231.9 ± 7.0 222.3 ± 12.3

DIVERSITY ESTIMATORS

Shannon 18.1 ± 3.8 17.2 ± 1.5 28.2 ± 3.7*,§

Simpson 4.9 ± 0.7 5.7 ± 0.5 13.2 ± 1.9****,§§§

aValues expressed as Log (number of total bacteria/g feces); n = 5 mice.

*P < 0.05, ****P < 0.0001 compared to Arg0 and §P < 0.05, §§§P < 0.001 compared to

ArgNL using Tukey’s multiple comparisons test; n = 7–12 mice.

FIGURE 6 | Effect of Arg on gut microbiota structure. Mice were fed for 7 days

with AIN-76A ArgNL diet and then with the Arg0, ArgNL, or ArgHIGH regimens

for 7 more days. After sequencing, the PCoA plot of microbial species

abundance using the different Arg diet as grouping variable, based on the

Bray-Curtis distances, was established. The significance between the groups

was determined by PerMANOVA; n = 7–12 mice per group.

Arg/kg/day, and that this consumption is not altered in patients
with active UC (Coburn et al., 2016). Based on the food intake
of C57BL/6 mice (Bachmanov et al., 2002) and the murine
metabolic rate (Demetrius, 2005), we calculate that the ArgNL diet
used in the current study corresponds to an intake of ∼0.18 g
of Arg/kg/day. These data indicate that the usual dietary intake
of Arg in most regular mouse chow is about 4-fold higher than
a typical human diet. This may explain why we observed some
protection with the ArgNL diet as it reflects an increase compared
to human consumption. Our data also suggest that when patients
have diminished dietary intake, such as with IBD exacerbations,
the loss of Arg availability may be deleterious, as in our Arg0

diet condition. We further highlight here that Arg consumption
could be substantially increased in IBD patients, since 10 g/day
is usually well-tolerated without side effects (Collier et al., 2005;
Shao and Hathcock, 2008).

The serum and colon amino acid profiling developed in our
study first demonstrated that Arg concentration in the serum
mimics Arg intake in both healthy animals or in mice with
colitis. Conversely, Arg content in the colon was not affected

by Arg diet in control mice, but was significantly lower in DSS-
treated mice on the Arg0 diet compared to animals receiving
diets containing Arg. These data suggest that, although Arg is
considered a non-essential amino acid, a lack of Arg uptake
by colitis patients may affect Arg concentration at the site of
inflammation andmay worsen the disease since we have reported
that low colitis tissue Arg levels have been shown to be associated
with elevated disease activity index (Coburn et al., 2016). We also
found that the concentration of Orn in the serum and colon of
DSS-treated mice was affected by the various Arg diets, which is
in accordance with the fact that the enzyme arginase is induced
in mice with colitis (Gobert et al., 2004) as well as in patients
with CD or UC (Coburn et al., 2016). Note also that Orn can
be synthesized from Arg by the activity of GATM (Turer et al.,
2017); to date, there is no evidence that GATM is induced in
the intestine of mice or patients suffering from IBD. However,
Gatm−/− mice exhibit exacerbated colitis and a decrease of
creatine synthesis by enterocytes (Turer et al., 2017), which likely
means that these animals may have reduced Orn content in the
intestine. These data thus suggest that both arginase and GATM
are probably involved in the synthesis of Orn in the colon in
response to increasing concentration of Arg. Orn is a substrate
for the synthesis of polyamines and Pro (Morris, 2004; Pegg,
2016). Although we observed that the polyamine putrescine and
spermidine were increased in the colon of animals with DSS
colitis, we did not find an effect of Arg diet on their concentration.
However, the concentration of Pro, which supports cell migration
and colonic epithelial restitution in vitro (Singh et al., 2012),
was dependent on the increased content of Arg in the diet
of control mice. In this context, we sought to determine
the effect of Orn and Pro supplementation on DSS colitis.
No significant protective effect of these two amino acids was
observed, indicating that Arg supplementation inhibits colitis
independently of the arginase/GATM/OAT metabolic pathway.

Furthermore, we have shown that the Arg transporter SLC7A2
has a deleterious effect on C. rodentium colitis by favoring Arg
uptake by enterocytes and Arg-dependent bacterial adherence
(Singh et al., 2016), whereas we found here that Arg treatment
protects animals from C. rodentium-induced colitis. These
conflicting data further suggest that the protective effect of an
Arg-rich diet may occur independently of Arg metabolism by
host cells.

Hence, we hypothesized that Arg may affect the composition
of the intestinal microbiota, which in turn can result in an
improvement in colitis. First, we analyzed whether the specific
AIN-76A diet changes the composition of the microbiome
since we used this diet to vary Arg supplementation. Mice on
the regular 5L0D diet exhibited a classical gut microbiome,
characterized by a prevalence of Bacteroidetes and Firmicutes
phyla. Surprisingly, when the diet was switched for the AIN-
76A ArgNL diet, which contains the same amount of Arg as the
5L0D, an increased prevalence of Verrucomicrobia, and of its
main representative Akkermansia, and a concomitant decreased
dominance of Bacteroidetes were observed. Because the reduced
prevalence of the species Akkermansia municiphila has been
correlated with the development of various diseases (Gobert et al.,
2016; Derrien et al., 2017), understanding how the AIN-76A
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FIGURE 7 | Analysis of the gut bacterial community composition. Variation in bacterial community composition at phylum (A) and family (B) levels is expressed as a

percentage of the total community. *P < 0.05, **P < 0.01 denotes significant difference vs. Arg0 group; §P < 0.05, compared to the ArgNL group; statistics were

performed using ANOVA with the Tukey test.

diet supports the emergence of this bacteria and the effect of
this regimen on these pathophysiological conditions deserves
further investigation.

Then, we assessed the effect of Arg in mice on the AIN-
76A diet. Overall, the diversity, but not the richness, of the
gut microbiota was increased in animals on the ArgHIGH diet,
and the lowest diversity was observed in mice on the Arg0

diet. From these data, we propose that the restoration of
microbial diversity in the intestine using Arg supplementation
contributes to the protection against colitis. Supporting this
concept, a loss of diversity has been reported in the fecal
and mucosal microbiome of IBD patients (Frank et al., 2007;
Willing et al., 2010). The increase in the Bacteroidetes abundance
with Arg supplementation is particularly interesting as (i) the
prevalence of bacteria belonging to this phylum is low in
patients with active CD (Seksik et al., 2003; Wang et al.,
2018) and UC (Frank et al., 2007; Lepage et al., 2011;
Walker et al., 2011), as well as during DSS colitis (Hudcovic

et al., 2009; Nagalingam et al., 2011), and (ii) non-toxigenic
Bacteroides fragilis protects mice from experimental colitis by
inhibiting Th17 cells through the release of polysaccharide
A (Mazmanian et al., 2008).

Whether the dysbiosis of the gut microbiota is the primary
etiology of intestinal inflammation or simply a collateral response
to the pathophysiological/immunological changes that occurs
in IBD patients remains unknown. However, numerous studies
have highlighted that diversity of the intestinal microbiota and
increased prevalence of Bacteroidetes protect from colitis. In
this context, our data emphasize that Arg supplementation
could be a valuable complementary medicine for IBD patients
by restoring Bacteroidetes presence and overall microbial
diversity. It is now of interest to determine how Arg intake
affects the microbiota, either by directly modifying trophic
exchanges of the gut microbiota, or indirectly through the
metabolism of Arg by host cells, which in turn may affect
intestinal commensals.
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FIGURE 8 | Composition of the gut microbiota at the genus level. Variation in bacterial community composition at genus levels expressed as a percentage of the total

community. *P < 0.05, **P < 0.01 denotes significant difference vs. Arg0 group; §P < 0.05, compared to the ArgNL group; statistics were performed using ANOVA

with the Tukey test.
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