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Human immunodeficiency virus (HIV)-1 and hepatitis C virus (HCV) are major contributors

to the global disease burden with many experts recognizing the requirement of an

effective vaccine to bring a durable end to these viral epidemics. The most promising

vaccine candidates that have advanced into pre-clinical models and the clinic to eliminate

or provide protection against these chronic viruses are viral vectors [e.g., recombinant

cytomegalovirus, Adenovirus, and modified vaccinia Ankara (MVA)]. This raises the

question, is there a need to develop DNA vaccines against HIV-1 and HCV? Since the

initial study from Wolff and colleagues which showed that DNA represents a vector that

can be used to express transgenes durably in vivo, DNA has been regularly evaluated

as a vaccine vector albeit with limited success in large animal models and humans.

However, several recent studies in Phase I-IIb trials showed that vaccination of patients

with recombinant DNA represents a feasible therapeutic intervention to even cure cervical

cancer, highlighting the potential of using DNA for human vaccinations. In this review,

we will discuss the limitations and the strategies of using DNA as a vector to develop

prophylactic T cell-mediated vaccines against HIV-1 and HCV. In particular, we focus

on potential strategies exploiting DNA vectors to elicit protective localized CD8+ T cell

immunity in the liver for HCV and in the cervicovaginal mucosa for HIV-1 as localized

immunity will be an important, if not critical component, of an efficacious vaccine against

these viral infections.
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INTRODUCTION

Human immunodeficiency virus (HIV)-1 and hepatitis C virus
(HCV) are significant contributors to the global disease burden
with ∼36.9 million people living with HIV-1 and at least 71
million people persistently infected with HCV (WHO, 2017;
UNAIDS, 2018). Anti-retroviral therapy (ART) and direct acting
anti-virals (DAAs) have contributed significantly to prolonging
the lifespan and curing of HIV-1- and HCV-infected individuals,
respectively (Cihlar and Fordyce, 2016; Zhang, 2016), but the
annual HIV-1 and HCV incidences are still rising by millions.
Furthermore, only 17 million (<50%) people have access to
ART (Cihlar and Fordyce, 2016) and only 20% of patients are
diagnosed for HCV (WHO, 2017). Additional issues involving
drug resistance, reactogenicity associated with life-long ART
and the lack of universal access to testing and cost-subsidized
therapies minimize the ability of effective anti-viral drugs to end
the HIV-1 and HCV epidemics. Thus, there is an urgent need
to develop effective prophylactic vaccines to control the number
of new infections and reduce the burden of supplying ART and
DAA therapies to patients (Shin, 2016; Stone et al., 2016).

HIV-1 and HCV are rapidly mutating RNA viruses that
exhibit considerable genetic diversity (nine subtypes in the
major group of HIV-1 (German Advisory Committee Blood
SAoPTbB., 2016) and 8 genotypes (gt1-8) of HCV which include
at least 67 subtypes (Borgia et al., 2018) making immunity
that develops during natural infection mostly ineffective. The
lack of immune correlates of protection and convenient animal
models permissive to infection make vaccine design and testing
extremely challenging, and have also contributed to the fact
that there is still no licensed vaccine for either HIV-1 or HCV
(Wang et al., 2015; Bailey et al., 2019). HIV-1 and HCV co-
infections represent an additional obstacle (Platt et al., 2016)
although a recent clinical study suggests that co-administration
of HIV-1 and HCV vaccines in humans can elicit robust HIV-
1- and HCV-specific T cell responses without perturbing the
immunodominance hierarchies of T cells responding against the
vaccine encoded HIV-1 or HCV antigens (Hartnell et al., 2018).

DNA vaccines have been investigated for nearly three
decades and are essentially bacteria-derived plasmids genetically
engineered to encode immunogens under the control of
promoters that facilitate robust expression of DNA in
mammalian cells to induce adaptive immunity (Ferraro
et al., 2011). DNA vaccines are inexpensive, easily constructed,
stable at room temperature, replication defective in transfected
mammalian cells and have minimum side effects which
simplifies handling and distribution such that even developing
countries can benefit from DNA vaccines (Jorritsma et al.,
2016). Furthermore, plasmid DNA can be more easily used in
multi-dose regimens unlike recombinant virus vectors that suffer
from anti-vector immunity (Frahm et al., 2012). Recent seminal
studies described therapeutic DNA vaccination against human
papillomavirus (HPV) which resulted in histological regression
and/or eliminated persistent HPV infection and HPV-related
cervical lesions (Kim et al., 2014; Trimble et al., 2015). More
recently, a DNA vaccine was developed that induced protective
neutralizing antibodies (NAb) to Zika virus (ZIKV) in mice

(Larocca et al., 2016) and rhesus macaques (Abbink et al., 2017)
leading to the development of safe and immunogenic ZIKV
DNA vaccines for humans (Tebas et al., 2017; Gaudinski et al.,
2018). Thus, the many advantages of using plasmid DNA to
develop vaccines and the recent developments of DNA vaccines
in eliciting protective immunity in humans and higher animal
models warrant further examination as to howDNA vaccines can
be harnessed in vaccination regimens to target HIV-1 and HCV.

IMMUNE TARGETS FOR HIV-1 AND HCV
PROPHYLACTIC VACCINE DEVELOPMENT

It is imperative that vaccines take into account the virus tropism,
transmission routes, pathogenesis and immune responses that
provide effective resistance against infections to elicit protective
immunity against HIV-1 and/or HCV.

It is now established that mucosal tissues, mainly the gentio-
rectal tissues and gastrointestinal tract, are the major sites of
HIV-1 entry and pathogenesis, respectively (Belyakov andAhlers,
2012). Induction of robust HIV-specific immune responses at
these sites will be necessary to prevent HIV-1 infection or
at the very least control viraemia during the acute phase of
infection thus reducing the viral set point (McMichael and Koff,
2014) and infection-induced microbial translocation which can
result in diversion of immune responses to counteract dysbiosis
(Vujkovic-Cvijin et al., 2013). Furthermore, a prophylactic HIV-
1 vaccine will likely be delivered using an active immunization
strategy and attempt to mimic immune responses reported to be
protective in macaques against simian immunodeficiency virus
(SIV) and/or provide resistance against natural HIV-1 infections
(Pontesilli et al., 1998; Saez-Cirion et al., 2007; Hansen et al., 2011;
Haynes et al., 2012; Barouch et al., 2015, 2018; Ackerman et al.,
2016; Borducchi et al., 2016). In this regard, the most protective
immune responses reported to date involve T cell-mediated
immunity (CMI) (Pontesilli et al., 1998; Saez-Cirion et al., 2007;
Hansen et al., 2011; Borducchi et al., 2016), polyfunctional
antibody responses (Barouch et al., 2015, 2018; Ackerman et al.,
2016), antibody-dependent cellular cytotoxicity (Haynes et al.,
2012), and broadly neutralizing antibodies (bNAb) (Burton and
Hangartner, 2016). Although potent bNAb represent a blueprint
for HIV-1 vaccine design, these antibodies are unlikely to be
as effective in preventing cell to cell transmission compared to
neutralizing cell free virus (Parsons et al., 2017). Consequently,
a highly effective prophylactic HIV-1 vaccine will likely also rely
on CMI to target highly conserved viral proteins such as Gag and
Pol (Rolland et al., 2007) and/or non-neutralizing antibodies to
broadly target the virus Envelope to prevent cell-cell transmission
of the virus.

Unlike HIV-1 which has a relatively broad tropism, HCV
is a bloodborne virus that primarily infects and replicates in
hepatocytes. In primary hepatitis C infection, ∼25% of patients
naturally clear the virus and although reinfection occurs in many
individuals (Grebely et al., 2012), it is evident that repeated
infection is associated with a reduced magnitude and duration of
viraemia, and a greater likelihood of clearance (Sacks-Davis et al.,
2015). Thus, characterizing and eliciting the naturally-protective
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immune responses during primary infection and reinfection
provide a rational path for the design of a prophylactic HCV
vaccine (Grebely et al., 2012). The immune responses that
correlate best with natural protection include robust and broad
CMI to conserved HCV non-structural (NS) proteins (NS3, NS4,
and NS5) (Smyk-Pearson et al., 2008; Baumert et al., 2014) and
NAb targeting conserved regions of the viral envelope (E1E2)
proteins (Houghton, 2011; Osburn et al., 2014; Bailey et al.,
2017). Although CMI will not prevent infection, clinical data
suggest that T cell responses could prevent the development
of persistent infection in individuals who naturally clear the
virus, which is an acceptable outcome given that primary
infection is often asymptomatic and not associated with severe
disease outcomes (Baumert et al., 2014). After two decades of
unsuccessful pre-clinical studies and Phase I HCV vaccine trials,
the current lead prophylactic candidate is in an NIH-sponsored
Phase IIb, placebo-controlled trial (ClinicalTrials.gov Identifier:
NCT01436357) in high risk people who inject drugs (PWID)
(Swadling et al., 2014). The candidate vaccination regimen being
tested utilizes a chimpanzee adenovirus (ChAd) prime and a
modified vaccinia Ankara (MVA) boost to elicit systemic T cell
immunity to gt1 NS antigens (Swadling et al., 2014). However, it
is not clear if this vaccination can induce robust intrahepatic T
cell immunity and sufficient multi-genotypic immunity to result
in significant protection in vaccinated individuals especially
given the increased prevalence of multiple genotypes in HCV
endemic regions.

T CELL-MEDIATED DNA VACCINES
AGAINST HIV-1 AND HCV IN THE CLINIC

DNA vaccines against HCV have been routinely tested in small
and large animals including non-human primates (Latimer
et al., 2014; Gummow et al., 2015; Grubor-Bauk et al., 2016;
Wijesundara et al., 2018). Some candidates have also progressed
in phase I/II clinical trials, but none have progressed to a
large-scale efficacy trial in humans. A promising DNA vaccine
that included a cocktail of four plasmids with each plasmid
encoding codon optimized NS3/4A, NS4B, NS5A, or NS5B
sequences from gt1a/b virus was used to prime/boost vaccinate
macaques by electroporation (Latimer et al., 2014). In this study,
the vaccine induced CD4+ and CD8+ T cells against each
of the NS proteins encoded in the DNA cocktail which has
resulted in the testing of the DNA cocktail in a phase I clinical
trial (ClinicalTrials.gov Identifier: NCT02027116) although the
results are yet to be disclosed.

A DNA vaccine has been tested for therapeutic vaccination
against HCV. 12 hepatitis C patients suffering from chronic
disease received three doses of a DNA vaccine encoding codon
optimized NS3/4A from gt1a virus via electroporation on the
deltoid muscle which induced NS3-specific CMI and a transient
decrease in viral RNA levels (Weiland et al., 2013). The vaccine
was also tested in eight patients who received interferon and
ribavirin treatment of which six patients were completely cured of
the infection (Weiland et al., 2013). Thus, DNA vaccines could be
exploited in therapeutic settings against HCV, but this is unlikely

to occur in the future given the success of using DAA to cure
hepatitis C patients.

DNA vaccines against HIV-1 have been tested in different
pre-clinical models and some have been tested in phase I/II
clinical trials (Okuda et al., 1997; Cafaro et al., 2001; Tomusange
et al., 2016). The first human clinical trial of a DNA vaccine,
encoding env and rev genes, against HIV-1 was conducted in
1998 (MacGregor et al., 1998). Following vaccination of HIV-
1 positive, treatment naïve individuals, no significant changes
were observed in CD4+ and CD8+ T cell responses as well as
in plasma HIV RNA. In another phase I clinical trial a DNA
vaccine that encoded env and rev was shown to induce CD4+

T cell and poor CD8+ T cells responses in HIV-1 seronegative
individuals (MacGregor et al., 2002). Similarly, low CD8+ T cell
responses were observed in another phase I clinical trial following
prime/boost vaccination with a DNA vaccine that encoded gag
and pol genes (Tavel et al., 2007). More robust HIV-specific
T cell responses have been elicited when DNA vaccines are
used to prime and recombinant viral vectors are used to boost
immune responses (Kibuuka et al., 2010; Bakari et al., 2011;
Churchyard et al., 2011; Hayton et al., 2014; Moyo et al., 2017).
However, prime/boost vaccinations with DNA vaccines alone
can be optimized to elicit robust immune responses in humans
against HIV-1. For instance, a retrospective study evaluating the
immunogenicity of 10 HIV-1 DNA vaccine trials that used DNA
vaccines in the absence of viral vectors or adjuvants suggest
that the use of DNA delivery devices (e.g., electroporators and
biojectors), and increasing the number of vaccine doses and
dosage could more reproducibly elicit CD4+ and CD8+ T cell
responses (Jin et al., 2015).

The main limitation associated with DNA vaccines is their
inability to induce long-term immune responses following a
single or a few vaccinations (Abbink et al., 2017). Furthermore,
DNA vaccines are poorly effective and not well-optimized in
eliciting immunity in the liver, gut or genito-rectal mucosa which
warrant further refinements of DNA-based vaccination regimens
in order to elicit durable protection against HIV-1 and/or HCV.

THE POTENTIAL OF TISSUE-RESIDENT
MEMORY T CELLS FOR CONTROLLING
HIV-1 AND HCV INFECTIONS

Since the initial discovery of highly cytotoxic memory T cells
residing in tissues (Masopust et al., 2001), several studies have
shown that CD8+ tissue-resident memory T (TRM) cells residing
in the female reproductive tract, the gut, the lung and the liver
form a formidable frontline defense against various pathogen
infections (Mueller and Mackay, 2016; Rosato et al., 2017). The
protective role of CD8+ TRM cells is primarily due to their
ability to (1) maintain a stable and durable population following
their formation in tissues even in the absence of cognate antigen
encounter following their formation (Gebhardt et al., 2009;
MacKay et al., 2012; Beura et al., 2018; Park et al., 2018), and
(2) produce anti-viral cytokines and/or exert cytotoxic functions
to reduce the number of pathogen-infected cells and to recruit
other immune cells (e.g., circulating memory T cells) rapidly to
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the site of infection (Schenkel et al., 2013; Muruganandah et al.,
2018; Park et al., 2018). Furthermore, CD8+ TRM cells respond
more rapidly, produce greater amounts of anti-viral/cytotoxic
molecules (i.e., in the liver) and appear to be crucial for protection
against liver tropic pathogens and pathogens exposed in the
vagina and the female reproductive tract compared to circulating
memory T cells (Cuburu et al., 2012, 2015; Shin and Iwasaki,
2012; Fernandez-Ruiz et al., 2016; Beura et al., 2018). The greater
frequency of intrahepatic CD8+ TRM cells (CD69+ CD103+)
amongst the total CD8+ T cell population correlated with
partial control of viraemia in Hepatitis B Virus (HBV)-infected
patients (Pallett et al., 2017), providing further encouragement
that intrahepatic HCV-specific CD8+ TRM cells will likely be
protective against HCV.

Despite HIV-1 and HCV being highly mutable with a complex
and evolving quasispecies, several studies have revealed that only
one or few variants, referred to as transmitted/founder (T/F)
viruses, establish infection following transmission reflecting a
strong genetic bottleneck (Bull et al., 2011; Joseph et al., 2015).
T/F viruses will be exposed in the genito-rectal mucosa (i.e., the
vagina and the rectum) during the vast majority (>80%) of HIV
transmission and in the liver during HCV transmission. Thus,
eliciting HIV- and HCV-specific CD8+ TRM cells in the genito-
rectal mucosa and the liver, respectively, following vaccination
is also an attractive strategy to circumvent issues associated
with viral diversity and eliminate these viruses shortly after
transmission/exposure. Several vaccine vectors such as radiation
attenuated sporozoites (RAS), protein loaded nanoparticles (NP),
adenovirus (Ad) vectors, adeno-associated virus (AAV), and
HPV pseudovirus (HPV PsV) have been developed to elicit
localized protection and in some instances elicit CD8+ TRM cells
in the liver or the vagina (Figure 1) (Cuburu et al., 2012, 2015,
2018; Fernandez-Ruiz et al., 2016; Ishizuka et al., 2016; Gola et al.,
2018). This provides hope that a vaccine to elicit intravaginal
or intrahepatic CD8+ TRM cells can be developed to potentially
provide protection against HIV-1 or HCV, respectively.

A recent study suggests that strategies that can induce
interleukin (IL)-15 and/or inflammation in the liver can be
effective in recruiting circulating effector CD8+ T cells to
differentiate into CD8+ TRM cells in the liver (Holz et al., 2018).
Systemic immunization strategies that promote up-regulation
of gut homing molecules such as α4β7 on antigen-primed
CD8+ T cells in secondary lymphoid organs can be efficiently
recruited to establish residency in the gut (Masopust et al.,
2010). Although these studies and others suggest that local
antigen deposition and antigen encounter are not essential to
elicit CD8+ TRM cells, it is evident that this process leads to
the formation of greatest densities of CD8+ TRM cells especially
at sites such as the liver and the vagina (Cuburu et al., 2012;
Fernandez-Ruiz et al., 2016; Davies et al., 2017). Intravenous
delivery of vaccine vectors appears to be most efficient route
to facilitate local, intrahepatic expression of vaccine encoded
antigens (Nganou-Makamdop et al., 2012; Tay et al., 2014; Gola
et al., 2018), to elicit high numbers of intrahepatic CD8+ TRM

cells, and protection against hepatotropic pathogens compared to
intradermal and intramuscular vaccine delivery routes (Figure 1)
(Epstein et al., 2011; Fernandez-Ruiz et al., 2016; Ishizuka et al.,

2016; Gola et al., 2018). In the vagina, several studies suggest
that intravaginal delivery of vaccine vectors [HPV PsV, and
Ad serotypes 26 (Ad26) and 35 (Ad35)] is the most efficient
route to express vaccine-encoded antigens in vaginal tissues and
elicit cervicovaginal CD8+ TRM cells (Figure 1) (Cuburu et al.,
2015, 2018; Fernandez-Ruiz et al., 2016). Furthermore, topical
application of chemokine ligands (CXCL9 and CXCL10) in the
vagina have been reported to “pull” systemically primed effector
CD8+ T cells into the vagina and allow these cells to differentiate
into CD8+ TRM cells (Shin and Iwasaki, 2012).

CAN WE EXPLOIT DNA VACCINES TO
ELICIT TISSUE-RESIDENT MEMORY T
CELLS FOR PROTECTION AGAINST HIV-1
OR HCV?

There has been much research and progress made to improve
the immunogenicity of DNA vaccines with respect to the choice
of adjuvants, route of vaccine delivery, codon optimization of
genes, method of delivery (e.g., electroporation and gene gun),
etc. These aspects have been reviewed extensively elsewhere
(Nagata et al., 1999; Garmory et al., 2003; Jechlinger, 2006;
Vanniasinkam et al., 2006; Jorritsma et al., 2016) and the resulting
refinements have led to DNA vaccines being more effectively
exploited for use in Phase I and II clinical trials especially in
the context of cancer (Kim et al., 2014; Trimble et al., 2015).
However, vast majority of the studies including those progressing
to the clinic have delivered DNA vaccines using intradermal
or intramuscular routes. These routes may not be as effective
compared to intravenous route to elicit intrahepatic CD8+ TRM

cells or the intravaginal route to elicit cervicovaginal CD8+ TRM

cells (Figure 1).
As mentioned above, it is important that a vaccination

regimen designed to elicit CD8+ TRM cells facilitate local antigen
presentation to naïve and antigen experienced precursors of
CD8+ TRM cells, which is best achieved by the local expression of
vaccine-encoded antigens and/or promoting local inflammation
(Figure 1). Manual massaging (Liu et al., 2004), hydrodynamic
injections (Yu et al., 2014), and liposome complexes (Kawakami
et al., 2000) are some commonly used techniques to transfect
hepatocytes in vivo following intravenous delivery of DNA.
The expression of vaccine-encoded antigens in hepatocytes is
a common hallmark of studies that have elicited intrahepatic
CD8+ TRM cells (Fernandez-Ruiz et al., 2016; Ishizuka et al.,
2016), but none of these delivery strategies have led to a
licensed vaccine for use in humans. Furthermore, it not known
whether any of these strategies can elicit intrahepatic CD8+

TRM cells in humans mainly owing to the difficulties of
isolating liver biopsies in healthy patients although fine needle
aspirates may be used to less invasively sample liver-resident
T cells (Gill et al., 2018a,b) and the lack of biomarkers (i.e.,
in the blood) that can accurately predict the formation of
CD8+ TRM cells in the liver and other tissues/organs. In
the vagina, a proof of concept study has shown that DNA
can be expressed following submucosal intravaginal delivery
of DNA in mice (Sun et al., 2015). However, the same study
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FIGURE 1 | Vaccine vectors and agents that can be used to elicit and/or enhance the formation of CD8+ TRM cells in the liver and the vagina. Following intravenous

delivery, MVA, Ad serotype 5 (Ad5), ChAd serotype 63 (ChAd63), AAV, NP, and RAS can enter hepatocytes and/or cells surrounding the hepatic tissues (e.g., Kupffer

cells) (Nganou-Makamdop et al., 2012; Tay et al., 2014; Gola et al., 2018). Intravenous delivery of these vectors in multi-dose prime/trap (Fernandez-Ruiz et al., 2016;

Olsen et al., 2018), prime/target (Gola et al., 2018) or homologous prime/boost (Ishizuka et al., 2016) regimens elicits protection following P. berghei sporozoite

challenge in mice or controlled P. falciparum infections in humans, and elicits intrahepatic CD8+ TRM cells (Fernandez-Ruiz et al., 2016; Ishizuka et al., 2016; Gola

et al., 2018). The prime/trap approaches involve priming CD8+ T cells systemically using antibodies that deliver a peptide antigen to cross-presenting dendritic cells

(Fernandez-Ruiz et al., 2016) or using gene gun delivery of DNA encoding the cognate antigen (Olsen et al., 2018). The primed CD8+ T cells are then recruited to the

liver and differentiate into TRM cells (i.e., trapped) following intravenous delivery of AAV (Fernandez-Ruiz et al., 2016) or RAS (Olsen et al., 2018) that enter cells in the

liver and express the relevant cognate antigen which are recognized by the primed CD8+ T cells. The prime/target approach is an adaptation of the prime/trap

approach and essentially involves priming naïve CD8+ T cells with Ad5 or ChAd63 vaccine vector delivered via the intramuscular route and recruiting the primed

CD8+ T cells to the liver following intravenous delivery of Ad5, NP, MVA, or ChAd63 vaccine vector (Gola et al., 2018). The same study showed that intravenous

delivery was more efficient than intramuscular delivery of vaccine vectors to elicit high numbers of intrahepatic CD8+ TRM cells and protection against P. berghei

sporozoite challenge in the prime/target approach (Gola et al., 2018). IL-15 appears to be crucial for activated CD8+ T cells to differentiate into TRM cells in the liver

and inflammatory signals (e.g., CpG and Poly I:C) can enhance the formation of intrahepatic CD8+ TRM cells in vivo (Holz et al., 2018). In the vagina, intravaginal

delivery of HPV PsV, and more recently Ad26 and Ad35 have been shown to transduce cervicovaginal epithelial cells and elicit HPV-specific CD8+ TRM cells in the

cervicovaginal mucosa (Cuburu et al., 2012, 2015, 2018). In the absence of a vaccine vector, topical application of CXCL9 and CXCL10 in the vagina can be used to

recruit/pull CXCR3+ effector CD8+ T cells into the vagina which subsequently differentiate into cervicovaginal TRM cells (Shin and Iwasaki, 2012).

reported poorly immunogenic responses in mice and noted that
electroporation was required to improve the immunogenicity of
intravaginally delivered DNA which could be difficult to exploit
in humans.

DNA can be used as a vector to prime high numbers
of circulating antigen-specific T cells (Gummow et al., 2015;
Wijesundara et al., 2018) which can then be recruited to the
liver using vectors that efficiently enter cells in the hepatic
tissues or the vagina using chemokine ligands or vectors that
transduce vaginal epithelial cells (Figure 1). Furthermore, given
the poor transfection efficiency and immunogenicity of DNA
when delivered into the vagina or the liver, it is more feasible
to exploit DNA as an immune priming agent in a vaccination
regimen to elicit HIV-1- or HCV-specific CD8+ TRM cells in
the vagina or the liver, respectively. Furthermore, analogous
strategies using protein-based T cell priming agents in prime/pull
(Shin and Iwasaki, 2012), prime/trap (Fernandez-Ruiz et al.,
2016), or prime/target (Gola et al., 2018) regimens have been
used to elicit protective cervicovaginal or intrahepatic CD8+ TRM

cells. A caveat in this case is to determine whether the primed T
cells express adequate levels of chemokine receptors (e.g., CXCR3
and CXCR6) necessary to home to the liver (Sato et al., 2005; Tse
et al., 2014; Gola et al., 2018; Olsen et al., 2018) or the vagina
(Shin and Iwasaki, 2012) following DNA immunization. Even if

not obligatory, the expression of the relevant homing receptors
could be required to ensure that high densities of primed CD8+

T cells are recruited to the cervicovaginal mucosa or the liver
following introduction of a vaccine vector or an agent (Figure 1)
to facilitate the formation of CD8+ TRM cells. Several studies
have shown that the number of CD8+ TRM cells is a crucial
parameter that dictates the collective ability of these cells to
confer protection against pathogens exposed in the skin, liver, or
the vagina with greater numbers favoring protective outcomes
(Cuburu et al., 2012; Shin and Iwasaki, 2012; Fernandez-Ruiz
et al., 2016; Park et al., 2018).

CONCLUDING REMARKS

DNAhas recently re-emerged as an effective vaccination platform
in humans, but its use in developing a T cell-based vaccine will
likely rely on its ability to be exploited in a regimen that can
elicit robust immunity in the vagina and the gut in the context
of HIV-1, or the liver in the context of HCV. In this regard,
we have highlighted the importance of eliciting cervicovaginal
or intrahepatic CD8+ TRM cells against these viruses and also
reviewed strategies as well as caveats associated with using DNA
to elicit localized CD8+ TRM cells as a frontline defense against
HIV-1 and HCV.
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