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Lung cancer (LC) is one of the most serious malignant tumors, which has the fastest

growing morbidity and mortality worldwide. A role of the lung microbiota in LC

pathogenesis has been analyzed, but a comparable role of the gut microbiota has not

yet been investigated. In this study, the gut microbiota of 30 LC patients and 30 healthy

controls were examined via next-generation sequencing of 16S rRNA and analyzed for

diversity and biomarkers. We found that there was no decrease in significant microbial

diversity (alpha diversity) in LC patients compared to controls (P observed = 0.1422),

while the composition (beta diversity) differed significantly between patients and controls

(phylum [stress = 0.153], class [stress = 0.16], order [stress = 0.146], family [stress =

0.153]). Controls had a higher abundance of the bacterial phylum Actinobacteria and

genus Bifidobacterium, while patients with LC showed elevated levels of Enterococcus.

These bacteria were found as possible biomarkers for LC. A decline of normal function

of the gut microbiome in LC patients was also observed. These results provide the basic

guidance for a systematic, multilayered assessment of the role of the gut microbiome in

LC, which has a promising potential for early prevention and targeted intervention.
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INTRODUCTION

Lung cancer (LC) is one of the deadliest malignancies, which has growing morbidity and mortality
worldwide. It poses an enormous threat to the human health (Torre et al., 2015). Research on LC
genetics and biology has opened opportunities for novel therapeutic strategies against the disease
(Allison, 2015; Chowdhury et al., 2018; Hendriks and Besse, 2018; Herbst et al., 2018; Lissanu
Deribe et al., 2018; Wei et al., 2018), but the knowledge about the etiology remains incomplete,
making precision treatment or prevention a moving target. To date, the major etiological causes
or risk factors facilitating the pathogenesis of cancers have been mostly focused on genetic
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susceptibility and carcinogenic environments (Addario, 2014;
Gibbons et al., 2014; Liu et al., 2014), but people with high genetic
or environmental risk factors may not develop the malignancies
even at advanced ages. Conversely, in many cancer patients, clear
familial or environmental risk factors are often non-traceable.
These facts indicate the existence of additional major factors that
influence the onset and development of cancers.

Over the past few decades, numerous discoveries have been
reported regarding the gut microbiome for its roles in diseases
with a particular focus on cancers (Jobin, 2012; Schwabe and
Jobin, 2013; Gagliani et al., 2014). The diverse microbes in the
human gut, 10-fold more than the total cells of the human
host, with millions of total non-redundant genes, maintain a
dynamic stable and healthy microenvironment inside the host.
In cancer patients, the composition of the gut microbiota often
becomes radically different from that in healthy individuals, for
example, increased Porphyromonas, Enterococcus, Streptococcus,
or Peptostreptococcus and decreased Roseburia or other beneficial
microbes, such as butyrate-producing bacteria of the family
Lachnospiraceae in cases of colorectal cancer (CRC) (Wang
et al., 2012; Nakatsu et al., 2015). Meanwhile, the relative ratios
and abundance of the resident microbes may also be directly
associated with cancer, which have also been reported in CRC
patients, such as Streptococcus bovis biotype I (Boleij et al., 2011),
E. coli harboring pks (Cuevas-Ramos et al., 2010), and Bacteroides
fragilis secreting DNA-damaging toxins (Toprak et al., 2006;
Wu et al., 2009). Bacteria that are protective against cancer
are also documented, such as Lactobacillus rhamnosus GG and
Lactobacillus acidophilus (Neish, 2009; Verma and Shukla, 2013).
In a recent study, we identified and characterized a large number
of highly diverse anticancer bacteria from the gut of healthy
individual, which had potent suppressive effects against a broad
spectrum of cancer cell types in vitro and stopped the growth
of tumors in a mouse model of human ovarian cancer. In this
cancer model, the metastasized cancer cells were also cleared by
intratumoral administration of the bacterial culture supernatant
(Zhou et al., 2017). The highly effective anticancer activities
of such commensal microbes have been detected in most
participants of different age groups, demonstrating the existence
of a strong cancer-defensive system parallel to the immune
system in the human body (Zhou et al., 2017). Additionally,
the high diversity of the cancer-suppressing bacteria targeting
different cancer types suggests personalized anticancer microbial
allies within individual hosts, which may confer different levels of
resistance against or susceptibility to specific cancer types. Such
speculations point to a possibility that cancers in a particular
organ may have certain common features in the microbiome of
the patients.

However, for LC, previous analyses focus on the relationship
between LC and lung microbiome, where the microbes have
direct contact with the lung tissues (Hosgood et al., 2014; Tsay
et al., 2018). It is then a natural question whether there exists
a dysbiosis of the gut microbiome in patients with LC. Studies
of the gut microbiome composition in patients with LC and
analysis of the effects of the gut microbiome on LC are urgently
needed. Therefore, we tested whether LC patients differ in gut
microecology when compared to healthy controls.

MATERIALS AND METHODS

Study Participants
A total of 60 fecal samples were collected from 30 LC
patients (median age: 61) and 30 matched healthy controls
from the Department of Respiration, The Third Affiliated
Hospital of Harbin Medical University (Table 1). All the LC
patients were diagnosed according to their histopathological
features using tumor node metastasis (TNM) scale classification
of malignant tumors after surgery. The patients and healthy
controls had not taken any medications in the 3 months
before specimen collection. Informed consent was obtained
from all participants. The fecal specimens were frozen in
liquid nitrogen immediately after sampling and stored in
a−80◦C freezer.

DNA Extraction and PCR Amplification
Total DNA extraction from the samples was conducted according
to the instructions of the OMG-soil kit (Omega Bio-tek,
Norcross, GA, USA). DNA concentration and purity were
determined using NanoDrop2000 (Thermo Fisher Scientific,
Waltham, MA, USA), and the quality of the extracted
DNA was inspected by 1% agarose gel electrophoresis. PCR
amplification of the V3-V4 variable region was performed using
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) primers by the following
amplification procedure: pre-denaturation at 95◦C for 3min, 27
cycles (denaturation at 95◦C for 30 s, annealing at 55◦C for 30 s,
extension at 72◦C for 30 s), and extension at 72◦C for 10min
(PCR: ABI GeneAmp R© 9700). The amplification was conducted
in a 20 µL volume containing 4 µL of 5 × FastPfu buffer, 2 µL
of 2.5mM dNTPs, 0.8 µL of primer (5µM), 0.4 µL of FastPfu
polymerase, and 10 ng of DNA template.

TABLE 1 | Characteristics of the study groups.

Characteristics Control (n = 30) LC (n = 30) P-value

SEX, n (%)

Females 20 (66.7) 18 (60.0)

Males 10 (33.3) 12 (40.0) 0.316

AGE (YEARS)

Median 50 61 0.062

Range 19–95 52–72

PATHOLOGICAL CLASSIFICATION (%)

Small-cell lung cancer 7 (23.3)

Non-small-cell lung cancer 23 (76.7)

CLASSIFICATION BY TNM STANDARD (%)

I B 1 (3.3)

II A 3 (10.0)

II B 1 (3.3)

III A 17 (56.7)

III B 8 (26.7)

There were no significant differences in the age or sex of the two groups according to the

Mann-Whitney U-test; LC, lung cancer; TNM, tumor node metastasis scale.
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Illumina Miseq Sequencing
The PCR products were recovered using a 2% agarose gel,
purified using an AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA), eluted with Tris-HCl, and
detected by 2% agarose electrophoresis. Quantification was
performed using QuantiFluorTM-ST (Promega, Madison, WI,
USA). The purified amplified fragment was included in a library
of PE 2× 300 according to the standard operating protocol of the
Illumina MiSeq platform (Illumina, San Diego, CA, USA).

The steps of library construction were as follows: (1)
connecting the “Y” shaped joint, (2) removing the self-ligated
fragments using magnetic beads, (3) enriching the library
by PCR amplification, and (4) denaturing DNA by sodium
hydroxide. Sequencing was carried out on the Illumina Miseq
PE300 platform (Shanghai Meiji Biomedical Technology Co.,
Ltd, Shanghai, China), and the raw data were uploaded to the
NCBI database.

Data Processing
The raw sequence data were handled using Trimmomatic
software and spliced using the FLASH software as follows:

(1) We first set a 50-bp window. If the average quality value in
the window was lower than 20, all sequences at the back end
of the base were truncated from the front-end position of the
window, and then the sequences having a length<50 bp after
the quality control were removed.

(2) According to the base overlap, the sequences of the two
ends were spliced, and the maximummismatch rate between
overlaps was set to 0.2, with a length >10 bp. All remaining
sequences were abandoned.

(3) According to the barcode and primers at both ends of the
sequence, a sequence was assigned to a sample. In this
process, the barcode had to be precisely matched, and the
primer was allowed two base mismatches.

The UPARSE software (version 7.1 http://drive5.com/uparse/)
was used to perform the clustering of operational taxonomic
units (OTUs) on the sequences with 97% or greater similarity
of the 16S rDNA sequences and to remove single sequences and
chimeras during the clustering. Each sequence was annotated
with a species classification using the RDP classifier (http://rdp.
cme.msu.edu/), and the alignment threshold was set to 70%
compared to the Silva database (SSU123).

Alpha/Beta Diversity Analysis and
Taxonomic Plots
Alpha diversity analysis was used to investigate bacterial species
diversity in gut ecosystems between the LC group and healthy
controls. Information, such as species abundance, was obtained

by observing various index values like Chao, Shannon, Ace,
and Simpson, and then a statistical t-test was used to detect

whether the index value between the two groups was significantly

different. Here, we selected the Shannon index as a metric
to analyze the community richness and evenness between the
two groups. Inter-group comparisons were performed using a
Wilcoxon rank sum test of non-parametric data. A t-test was

applied after the results were reflected as visual metrics using
a histogram.

Beta diversity analysis represents a comparison of microbial

community composition and is used here to assess differences
between microbial community composition. The basic output

of this comparison is a distance matrix that represents the

difference between every two samples in the community. NMDS
analysis (non-metric multidimensional scaling) was chosen for
the sample similarity comparison between the LC group and
the healthy controls. This is a method of simplifying, analyzing,

and categorizing research objects (samples or quantities) in
a multidimensional space into low-dimensional spaces, while

retaining a method for analyzing raw relational data between

objects. The basic feature is to regard the similarity or
dissimilarity data between objects as a monotonic function
of point distance. On the basis of maintaining the original
data order relationship, the original data are replaced with
new identical data columns for metric multidimensional scaling
analysis. This approach simplifies the study objects (samples or
quantities) in a multidimensional space into low-dimensional
spaces for localization, analysis, and categorization, while
preserving the original relationships between objects. The basic
feature of NMDS is to regard the similarity or dissimilarity
data between objects as a monotonic function of point distance
and replace the original data with new identical data columns
for metric multidimensional scaling analysis on the basis of
maintaining the original data order.

To determine potential bacterial biomarkers that differ in
abundance and occurrence between the LC group and healthy
controls, LEfSe analysis in multi-level species was used (Puri
et al., 2018). LEfSe is a software package for discovering
high-dimensional biomarkers with inputs that include genes,

metabolites, and classification. We first used the non-parametric
factorial Kruskal-Wallis (KW) sum-rank test to detect specific

species relating significant abundance differences in two groups.
We then estimated the effect of each component (species) by
LEfSe linear discriminant analysis (LDA). In order to detect the

species contributing to the abundance differences in different
groups of microbial communities, we carried out a test of

significance differences between groups. Based on the obtained

community abundance data, rigorous statistical methods were
used to detect species with different richness in different groups
(samples) of microbial communities, and hypothesis testing was
performed to assess the significance of these observed differences.

16S Function Prediction Analysis
“16S function prediction analysis” was implemented to obtain
functional information of the gut microbiome between
LC patients and healthy controls (Ravi et al., 2018). We
normalized the OTU abundance table by using PICRUSt (the
PICRUSt software stores the COG (Clusters of Orthologous
Groups of proteins) letter KO (KEGG Ontology) information
corresponding to the greengene id) (Douglas et al., 2018),
i.e., to remove the effect of the number of copies of the 16S
marker gene in the species group. The COG family information
corresponding to the OTU was obtained by using the GreenGene
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ID corresponding to each OTU. The abundance of each COG
was calculated. According to the COG database information, the
description information of each COG and its work information
was parsed from the eggNOG database to obtain a functional
abundance spectrum (Huerta-Cepas et al., 2016).

The functional abundance spectrum reflected different levels
of expression of related functional proteins or specific metabolic
capacity of microbiome. By combining the distribution of the
research objects in various functional categories, we had the
opportunity to make a conclusion for the role of gut microbiota
in the development of LC.

Implementation of Statistical Analysis
All statistical calculations were performed in R 3.4.3. The
correction of the P-value is responsible for the false discovery
rate (FDR).

RESULTS

Raw Data Management
After curation of the sequences, a total of 2,682,019 sequence
fragments were obtained from the 60 samples, with an average
length of 433 bp. To facilitate the storage and sharing of high-
throughput sequencing data generated in this work, we uploaded
the original sequence file of 1,162,191,785 bp to the NCBI large-
capacity database SRA (Sequence Read Archive, http://www.ncbi.
nlm.nih.gov/Traces/sra Accession: PRJNA507734).

OTU Clustering and Evaluation
We obtained 740 OTUs by statistical analysis of the 16S rDNA
sequences at a 97% similarity level. The community composition
of each sample was statistically analyzed at the taxonomical ranks
of phylum, class, order, family, genus, and species (i.e., OTU
here).We constructed a rarefaction curve based on the number of

FIGURE 1 | The abscissa is the group name, and the ordinate is

the exponential average of each group (0.01 < P ≤ 0.05 marked as *, 0.001

< P ≤ 0.01 marked as **P ≤ 0.001 marked as***). LC: lung cancer.

sequences drawn. The Shannon-Wiener curve tended to be flat,
indicating that the sequencing depth was sufficient to reflect the
microbial diversity in the sample (Figure S1).

No significant difference was observed in alpha diversity
between LC patients and healthy controls.

The results of alpha diversity analysis were quantified by the
Shannon index, which relates both the evenness and richness of
a total of 740 OTUs obtained from the LC group and healthy
controls. Figure 1 reflected the alpha diversity measurements for
LC patients vs. healthy controls. The Shannon index of OTU
level of healthy controls and LC patients were 3.28 and 3.09,
respectively. Statistical testing using Welch’s t-test showed no
significant difference for Shannon diversity for the observed
species (P observed= 0.1422).

LC Patients and Controls Differ in Gut
Microbial Composition
As a dimensionality reduction-based approach, NMDS (Non-
metric multidimensional scaling) analysis was applied for
dissimilarities in the microbial composition between LC patients
and healthy controls (Noval Rivas et al., 2013). Results from
NMDS are displayed in Figure 2. Patients with LC (blue dots)
showed a shift to the left, which indicated compositional
differences, and is measured by the NMDS intensity index (stress
= 0.153 on phylum level). The separation intensity in other levels
were as follows: class (stress= 0.16), order (stress= 0.146), family
(0.153), and genus (0.21, unexplanatory meaning), the graphics
of which are summarized in Figure S2.

Specific Species in Multi-Level Tests
The multi-level LEfSe analysis for biomarkers was used to
find significantly imbalanced species between LC patients and
healthy controls, which showed substantially differentiated the
two groups. LEfSe results illustrated 47 bacterial taxonomic

FIGURE 2 | Points of blue colors or shapes represent LC samples; red colors

or shapes represent samples of control. The closer the two sample points are,

the more similar the composition of the two sample species is. The horizontal

and vertical coordinates represent relative distances and have no practical

significance. It is generally considered that stress<0.2 can be expressed by

the two-dimensional dot pattern of NMDS, and its graph has a certain

explanatory meaning. LC, lung cancer.
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clades having statistically significant differences (33 increased
and 14 decreased) in LC patients. At the phylum level, increased
Actinobacteria was detected as the strongest marker in healthy
controls (Figure 3). Analysis at the class level also showed
elevated levels ofActinobacteria in healthy individuals (Figure 3).
At the order level, Bifidobacteriales showed a greater abundance
in healthy controls (Figure 3). At the family level, increased
bacteria such as Bifidobacteriaceae and Coriobacteriaceae were
detected as markers in the control group and Enterococcaceae
in the LC group (Figure 3). Numerous differential bacterial
biomarkers were found at the genus level (Figure 3). Again,
a multi-level Wilcoxon rank-sum test bar plot confirmed the
above findings. A difference significance test between the two
groups was based on the obtained community abundance data
for hypothesis testing, and the significance of the difference was
observed (Table 2, Figure S3). Combined with the results of the
LEfSe test, the differences in species composition were judged
mainly from Actinobacteria (P = 0.041), Bifidobacterium (P =

0.012) and Enterococcus (P = 0.018; Table 2).

Differential Microbiome Functional
Abundance Spectrum in the Lung
Cancer Group
We implemented a 16S functional predictive analysis by COG
(Cluster of Ortholog Genes) functional annotation, where

the description information of each COG and its functional
information was parsed from the eggNOG database. Compared
to the healthy controls, results showed a significant decline in
the functional abundance spectrum including 24 gut microbiota
metabolic pathways in LC patients (Table 3). Among them,
the expression of functional proteins involved in chromatin
structure and dynamics and RNA processing and modification
both decreased by more than 80%. At the same time, the only
up-regulated was the extracellular structures related metabolic
functions, which rose more than 10% in protein expression level
(Table 3). The legends are shown in Figure S4.

DISCUSSION

In this study, we found that patients with LC had no difference in
gutmicrobial alpha diversity but showed significant differences in
microbial composition compared to healthy controls (Figures 1,
2; Table 2). At the phylum level, we found that these
differences were mainly caused by Actinobacteria (Table 2). At
the genus level, Bifidobacterium and Enterococcus were found
to be the highest potential biomarkers for lung carcinogenesis
(Table 2). We also observed a differential microbiome function
abundance by 16S function prediction between these two groups
(Table 3, Figure S4).

FIGURE 3 | The LDA score obtained by linear regression analysis (LDA), the larger the LDA score, the greater the influence of species abundance on the difference

effect. LC, lung cancer.
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TABLE 2 | Taxa differentially represented in the gut microbiomes of LC patients

and healthy controls.

Taxa Control (%) LC (%) P-value

Phylum

Actinobacteria 7.735 3.141 0.0406

Class

Actinobacteria 7.735 3.141 0.0406

Order

Bifidobacteriales 4.703 1.517 0.0138

Coriobacteriales 2.948 1.087 0.0351

Family

Bifidobacteriaceae 4.703 1.517 0.0138

Enterococcaceae 0.226 4.258 0.0180

Coriobacteriaceae 2.948 1.087 0.0351

Genus

Bifidobacterium 4.695 1.505 0.0121

Enterococcus 0.226 4.257 0.0187

Significant difference between groups based on the obtained community abundance data

by Kruskal-Wallis test; LC, lung cancer.

These results are consistent with the growing body of evidence
for a bidirectional relationship between the gut microbiome
and malignancies (Eun et al., 2014; Flemer et al., 2017; Allali
et al., 2018). Meanwhile, human studies have concluded that
the metabolic processes and products of the gut microbiome
regulate human health and disease, including the development
of immune function, incidence of obesity or anorexia nervosa,
various types of cancer (Kluyver, 1932; Belcheva et al., 2015;
Takiishi et al., 2017; Zhou and Fang, 2018). At the level of
the phylum, we found drastically reduced Actinobacteria sp. as
a possible LC-associated biomarker. This phylum contains a
large proportion of commensal species, which are part of the
healthy human microflora (Kundu et al., 2017). Although our
method does not allow the identification of specific species within
Actinobacteria, the abundance reduction in this phylum may be
involved in the pathogenesis of LC. If there is a causal role in
LC, then cancer suppression of malignant cells by secondary
metabolites of the gut actinomycetes might be of interest (Rangan
and Hang, 2017). A study has recently obtained initial evidence
to support this hypothesis: an isolated Actinobacteria sp. from
healthy children had potent cancer-suppressing activities due to
its secondary metabolites (Zhou et al., 2017). Ravikumar et al.
found anticancer properties of sediment actinomycetes against
MCF-7 and MDA-MB-231 cell lines (Ravikumar et al., 2012).
Thus, anticancer compounds produced by specificActinobacteria
sp. had a direct killing effect on malignant cells, which might
explain the observed overrepresentation of this genus in healthy
samples. The LEfSe analysis and difference significance test both
showed that the genus Bifidobacterium was significantly more
abundant in controls, while the LC patients showed elevated
levels of Enterococcus. Members of Bifidobacterium have a
variety of probiotic functions, such as improving inflammatory
bowel disease, ulcerative colitis, Crohn’s disease, and colonic
pouchitis (van den Broek et al., 2008; Wang et al., 2014;

Klemenak et al., 2015; Liang et al., 2018). At the same time,
Bifidobacterium can inhibit the growth of spoilage bacteria and
decompose carcinogens to achieve anti-cancer effects and reduce
the inflammation caused by TNF-α and lipopolysaccharide
(Boesten et al., 2011; Klemenak et al., 2015; Lim and Kim,
2017). Recently, researchers such as Shang et al. have confirmed
that TNF-α promotes metastasis of lung cancer by inducing
epithelial–mesenchymal transition (Shang et al., 2017). If there
is a causal relationship, the decrease in genus Bifidobacterium
we find in LC patients may reflect the bacterial community
involved in a progression of lung cancer. However, compared
with Bifidobacterium, Enterococcus can produce many harmful
chemicals that lead to increased DNA mismatch rate, which,
in turn, causes genetic activity that promotes rectal cancer
(Strickertsson et al., 2013; Amarnani and Rapose, 2017). In
previous studies, Enterococcus faecalis infections have been
confirmed to lead to NF-κB inflammatory responses and
DNA damage. At the same time, the superoxide secreted by
Enterococcus spp. sent a strong signal to macrophages, changed
the growth and division of intestinal parasitic cells, and enhanced
the activity of oncogenes (Strickertsson et al., 2013; Wang et al.,
2015; Amarnani and Rapose, 2017). Although the underlying
mechanisms of an inflammatory response-associated severity of
lung carcinogenesis are not understood, the overrepresentation
of Enterococcus has been suspected as being a missing link.

Using the 16s functional predictive analysis, significant
differences inmicrobiome functional abundance between the two
groups were observed. The healthy controls had a significantly
higher microbiome functional spectrum, while the LC patients
showed elevated levels only in expression of extracellular
structures functional proteins. The various metabolic abilities
of the gut microbiome are being reduced during the disease
(Table 3). In the gut micro-ecology of LC patients, expressions
of functional proteins involved in amino acid transport and
metabolism, coenzyme transport and metabolism, cell cycle
control, and cell division all decreased by more than 10%,
which directly negatively impacted the reproduction of, and
colonization by, gut bacteria. The gut microbiome is not only
an important participant in the digestive function of the human
body, but also plays a substantial role in maintaining the gut—
the largest immune organ (Kau et al., 2011; Hwang et al.,
2012; Zitvogel et al., 2017). A team led by Dr. Laurence
Zitvogel of the Gustave Roussy Cancer Center showed that
some cancer treatments rely on the gut microbiota to activate
the immune system (Gopalakrishnan et al., 2018; Zitvogel
et al., 2018). A large body of evidence confirms that the host
and the enteric microbiome complement each other, and the
disorder of the gut microecology is exacerbated during the
disease state, which greatly impairs its beneficial functions (Kelly
et al., 2015; Ringel, 2017). Undoubtedly, changes in microbial-
associated molecular patterns and microbiome functions caused
by bacterial dysbiosis are key pathways for the progression
of LC.

The importance of the human gut microbiome is being
increasingly recognized. As an important “organ” that
has long been neglected, how to maintain a healthy gut
microbiome is increasingly becoming a focus. However,
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TABLE 3 | Functional abundance spectrum of gut microbiome in LC patients and healthy controls.

Functional level classification Control (median) LC (median) Difference ratio (%)

Carbohydrate transport and metabolism 2959599 2691015 −9.07%

Function unknown 2731054 2507793 −8.17%

Amino acid transport and metabolism 2633394 2290167 −13.0%

Transcription 2610684 2422958 −7.19%

General function prediction only 2509370 2364836 −5.75%

Replicating, recombination and repair 2310377 2079278 −10.0%

Translation ribosomal structure and biogenesis 2115246 1879680 −11.1%

Cell wall/membrane/envelope biogenesis 2029903 1857081 −8.51%

Signal transduction mechanisms 1776253 1625486 −8.48%

Energy production 1856959 1624919 −12.4%

Inorganic ion transport and metabolism 1728393 1669573 −3.40%

Coenzyme transport and metabolism 1111055 982456 −11.5%

Defense mechanisms 1011090 940100 −7.02%

Nucleotide transport and metabolism 989752 902508 −8.81%

Posttranslational modification, protein turnover, chaperones 974889 884352 −9.28%

Lipid transport and metabolism 739863 701716 −5.15%

Cell cycle control, cell division, chromosome partitioning 480860 428783 −10.8%

Intracellular trafficking, secretion, and vesicular transport 460625 428402 −6.99%

Cell motility 286766 239656 −16.4%

Secondary metabolites biosynthesis, transport and catabolism 233283 224935 −3.57%

Cytoskeleton 3971 3581 −9.82%

Chromatin structure and dynamics 8731 1710 −80.4%

RNA processing and modification 8158 1061 −86.9%

Extracellular structures 766 852 11.2%

Difference ratio (%) = (Control (median) - LC (median))/ Control (median); LC, lung cancer.

due to the limitations in technical conditions and a lack of
sufficient clinical data, the specific mechanisms of microbial-
associated molecular patterns and bacterial metabolites driving
cancer have not been fully elucidated. In the future, we
will review in detail therapeutic modalities and discuss
clinical settings in which targeting the “gut-microbiota–
lung axis” for the prevention of LC seems promising. In
addition, since the main research object of gut microbial
diversity analysis is gut bacteria, the whole process of the
experiment was carried out using bacterial universal primers
for the amplification of bacterial marker genes, the virus and
mycoplasma present in a small part were not analyzed. It is
necessary to design a completion plan for this limitation in the
future study.

In conclusion, compared to previous analyses of the
relationship between LC and the lungmicrobiome, this is the first
study of LC in connection with the gut microbiome (Hosgood
et al., 2014; Kosikowska et al., 2016). Our findings support
the hypothesis of LC-specific microbiota. We suggest that the
reduced levels of Actinobacteria sp. and Bifidobacterium sp. and
elevated levels of Enterococcus sp. are associated with LC. At
the same time, we have further revealed that the damage of the
normal function of the gut microbiome is associated with the
progression of LC. the progress of LC. We hope that the results
herein can provide some guidance for using gut microbes as

biomarkers to assess the progression of lung cancer, or lead to
interventional targets to control the development of the disease.
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Figure S1 | The abscissa is the amount of sequencing data randomly selected;

the ordinate is the number of species observed.

Figure S2 | Points of blue colors or shapes represent LC samples; red colors or

shapes represent samples of control. The closer the two sample points are, the

more similar the composition of the two sample species is. The horizontal and

vertical coordinates represent relative distances and have no practical

significance. It is generally considered that stress<0.2 can be expressed by the

two-dimensional dot pattern of NMDS, and its graph has a certain explanatory

meaning. LC, lung cancer.

Figure S3 | The axis represents the taxa name at a given classification level, and

the column length corresponding to the species indicates the average relative

abundance of the species in each sample group. The different colors indicate

different groupings. The rightmost side is the P-value from Kruskal–Wallis test,
∗ 0.01 < P ≤ 0.05, ∗∗ 0.001 < P ≤ 0.01, ∗∗∗ P ≤ 0.001. LC, lung cancer.

Figure S4 | The abscissa is the first-level classification of COG function. LC,

lung cancer.
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