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Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) have co-evolved with humans

for thousands of years and are present at a high prevalence in the population worldwide.

HSV infections are responsible for several illnesses including skin and mucosal

lesions, blindness and even life-threatening encephalitis in both, immunocompetent

and immunocompromised individuals of all ages. Therefore, diseases caused by HSVs

represent significant public health burdens. Similar to other herpesviruses, HSV-1 and

HSV-2 produce lifelong infections in the host by establishing latency in neurons and

sporadically reactivating from these cells, eliciting recurrences that are accompanied by

viral shedding in both, symptomatic and asymptomatic individuals. The ability of HSVs to

persist and recur in otherwise healthy individuals is likely given by the numerous virulence

factors that these viruses have evolved to evade host antiviral responses. Here, we

review and discuss molecular mechanisms used by HSVs to evade early innate antiviral

responses, which are the first lines of defense against these viruses. A comprehensive

understanding of how HSVs evade host early antiviral responses could contribute to the

development of novel therapies and vaccines to counteract these viruses.

Keywords: interferon (IFN), inflammasome, toll-like receptors (TLRs), natural killer cells (NK cells), dendritic cells

(DCs), cytosolic nucleic acid receptors, innate immunity, apoptosis

INTRODUCTION

Herpes simplex viruses (HSVs) type 1 (HSV-1 or human herpesvirus 1, HHV-1) and type 2 (HSV-2
or human herpesvirus 2, HHV-2), are members of theHerpesviridae family and Alphaherpesvirinae
subfamily, similar to varicella zoster virus (VZV) (Davison, 2010; Sharma et al., 2016). HSVs are
present among humans at a high prevalence (Looker et al., 2008; CDC, 2010; Yawn and Gilden,
2013; Dickson et al., 2014; Suazo et al., 2015b), with two thirds of the global population infected
with HSV-1 (Looker et al., 2015a), and ∼11% of the world population infected with HSV-2
(Looker et al., 2015b). HSV-1 and HSV-2 are associated with diverse clinical manifestations, yet
disease widely varies from one individual to another, with nearly 40% of those that are infected
displaying symptoms during primary infection (Langenberg et al., 1999; Bernstein et al., 2013).
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Additionally, during recurrent viral reactivations, most
individuals are asymptomatic, with 5–15% of those infected
displaying clinical symptoms related to HSV infections
(Benedetti et al., 1994; Wald et al., 2000; Sudenga et al., 2012;
Suazo et al., 2015b). Although a relatively low proportion of
the infected individuals show clinical manifestations, the high
percentage of the world population infected with these viruses
yields an enormous number of individuals that effectively suffer
from HSV-related illnesses.

HSV-1 is mainly associated with orofacial lesions, yet it
is also the leading cause of infectious blindness in developed
countries and the number one cause of viral encephalitis in
adults (Kaye and Choudhary, 2006; Horowitz et al., 2010; Farooq
and Shukla, 2012; Bernstein et al., 2013). On the other hand,
HSV-2 is mainly associated with genital lesions and neonatal
encephalitis (Gupta et al., 2007; Berger and Houff, 2008; Looker
et al., 2008; Suazo et al., 2015b), despite the fact that HSV-1 is
nowadays more frequently related to primary genital infection
worldwide (Buxbaum et al., 2003; Coyle et al., 2003; Xu et al.,
2006; Pereira et al., 2012). However, HSV-2 reactivates more
frequently from the genital tissue than HSV-1 and hence, despite
the finding that the latter is commonly detected during primary
infection, HSV-2 is more often isolated from this site than HSV-
1 at any time during infection (Lafferty et al., 1987; Kaneko
et al., 2008). A similar phenomenon may occur in the orofacial
area, with most viral reactivations being attributed to HSV-1.
Variable reactivation of HSV-1 and HSV-2 from neurons within
the trigeminal or sacral ganglia may be given by differences in
gene expression profiles by neurons that innervate these tissues
(Kaneko et al., 2008; Flegel et al., 2015; Lopes et al., 2017).

A clinically relevant concern associated with HSV-2 genital
infection is that it is associated with a three-fold increase in
the likelihood of acquiring the human immunodeficiency virus
type 1 (HIV-1), due to synergistic aspects related to the co-
infection with both viruses (Wasserheit, 1992; Freeman et al.,
2006; Barnabas et al., 2011). For instance, evidence of an indirect
interplay between HIV and HSV occurs with HSV-2 infection
of macaques and humans eliciting an increase in the amounts
of dendritic cells present in the genital tissue, as well as α4β7-
and CCR5-expressing CD4+ T cells, both known to be substrates
for HIV (Rebbapragada et al., 2007; Martinelli et al., 2011).
HSV-2 also elicits lesions in the infected tissue that provide
an entry portal for HIV (Bagdades et al., 1992; Suazo et al.,
2015b). Additionally, proposed interactions between HSV-2 and
HIV would support HSV-2 infections being associated with a
relative risk of HIV incidence nearing 50% in the African region
(Looker et al., 2017). The association between HSV-2 and HIV
suggests that tackling HSV-2 infection could help reduce the
HIV pandemics (Rebbapragada et al., 2007; De Jong et al., 2010;
Johnson et al., 2011; Martinelli et al., 2011; Sartori et al., 2011;
Stefanidou et al., 2013a). Therefore, HSV-2 infection should be
considered a major matter of public health concern.

Infections with HSVs remain latent and are characterized by
sporadic reactivation episodes accompanied by virus shedding,
regardless of the presence of clinical symptoms (Kaneko et al.,
2008; Tobian et al., 2013). Lifelong infection in the host by HSVs
is achieved thanks to their capacity to infect neurons, mainly

those enervating infected tissues and then remain latent within
these cells (Margolis et al., 2007; Yao et al., 2014). In the skin,
mucosae and eyes, HSVs access neurons by infecting sensorial
nerve termini and then traveling in a retrograde manner through
the axon of these cells up to the soma. Later, HSVs may reactivate
from these cells and exit them through anterograde movements
either, to infect other neurons that eventually may innervate the
brain or infect cells located nearby the initial site of infection
(Linehan et al., 2004; Gonzalez and Sanjuan, 2013).

Importantly, HSVs not only infect epithelial cells and neurons
but virtually any cell type in the body, including immune cells
thanks to the fact that the main receptors of HSVs are widely
distributed in host tissues and cells (Krummenacher et al.,
2004). By infecting immune cells, these viruses can modulate
and escape diverse antiviral mechanisms evolved by the host
to counteract infection and furthermore, establish long-term
infection with sporadic recurrences that produce new infectious
particles (Retamal-Diaz et al., 2015; Suazo et al., 2015a). Here,
we review and discuss recent studies that report the relationship
between HSVs and early cellular antiviral responses, both in
immune and non-immune cells.

Replication Cycle of HSVs
HSV-1 and HSV-2 share ∼74% identity at the nucleotide level
and are structurally very closely related (Baines and Pellett,
2007). Both viruses have a linear, double-stranded DNA (dsDNA)
genome with sizes ranging from 150 to 154 kbp, which encode
more than 70 open reading frames (ORFs) (Kieff et al., 1971;
Dolan et al., 1998; Koelle et al., 2017). The viral genomes
are covered by a 125 nm icosahedral capsid (Wu et al., 2016),
which is surrounded by a mesh composed by many proteins
(>20) called the tegument (Figure 1). This protein stratum is
in turn enveloped by a lipid bilayer, from which multiple viral
glycoproteins protrude and play roles in virus entry and exit,
as well as immune-modulation and immune-escape (Roller and
Roizman, 1992; Loret et al., 2008; Retamal-Diaz et al., 2015; Suazo
et al., 2015a; Suk and Knipe, 2015).

Although HSV-1 and HSV-2 share common aspects during
cell entry, they do have some differences. For instance, unlike
HSV-1, HSV-2 does not require its glycoprotein C (gC) for
attaching to target cells (Shukla and Spear, 2001). On the other
hand, both of these HSVs do require the viral glycoprotein B
(gB) for the virus to attach to heparan sulfate proteoglycans on
the cell surface (Atanasiu et al., 2013). In immune cells such
as dendritic cells (DCs) and natural killer cells (NK cells), gB
has been reported to bind to an additional cell receptor for
viral attachment, namely the paired immunoglobulin like-type 2
receptor (PILR) (Shiratori et al., 2004; Satoh et al., 2008). Once
the virus has attached to the cell surface, the viral glycoprotein D
(gD) will bind to either, nectin-1 (or nectin-2) expressed on the
surface of most anchored cells in the organism, such as epithelial
and neuronal cells, or the herpesvirus entry mediator (HVEM),
a member of the tumor necrosis factor receptor (TNFR) family
that signals intracellularly depending on the orientation of its
ligand, either in cis or trans (Kovacs et al., 2009). The latter HSV
receptor is preferentially expressed on the surface of immune
cells, such as DCs and T cells (Krummenacher et al., 2004; Jones
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FIGURE 1 | HSV virion structure. HSVs possess linear, double-stranded DNA genomes (152–154 kbp) encoding more than 70 ORFs. The viral genomes are

contained within icosahedral capsids of ∼125 nm, which in turn are surrounded by complex meshes of viral proteins known as the tegument. The tegument is

enveloped by lipid membranes, which harbor numerous transmembrane glycoproteins. A table with tegument proteins involved in immune evasion is shown on the

right, ordered from highest to lowest molecular weight (MW).

et al., 2016). In addition, gD has been described to bind to 3-
O-sulfated heparan sulfates on the surface of CHO cells, which
permitted viral entry when gB, gD, glycoprotein H (gH), and
glycoprotein L (gL) were present in the virion (Xia et al., 2002;
Tiwari et al., 2004). As a result of gD binding to its ligand, this
glycoprotein will undergo a conformational changes that enable
this protein to activate the viral gH/gL glycoprotein complex,
which in turn triggers the fusion of the virus and cell membranes
in a process that is dependent on the activity of gB, which
acts as the fusion protein for these viruses (Lazear et al., 2014).
Moreover, the glycoprotein complex gH/gL of HSV-1 and HSV-2
participate in a process distinct to the conventional viral entry,
since they have been reported to bind αv3, αvβ6 and αvβ8 surface
integrins causing dissociation from the heterodimer permitting
gH activation to promote virion entry through a mechanism
involving acidic endosomes (Gianni et al., 2013, 2015; Cheshenko
et al., 2014). Lastly, it has also been observed that HSV-
1 can enter cells via a phagocytosis-like uptake mechanism
(Clement et al., 2006).

Once the viral and cell membranes have fused, the viral capsid,
which is surrounded by tegument proteins, will be released into
the cytoplasm. These tegument proteins will have the opportunity
to rapidly modulate host antiviral determinants upon entry into
the cell, interfering with the detection of viral components,
that altogether aim at diminishing the progression of infection
(Owen et al., 2015). Within the cytoplasm, the viral capsid
will associate to microtubules and travel toward the nuclear
membrane to deliver the viral genome into the cell nucleus
(Sodeik et al., 1997; Dohner et al., 2002; Radtke et al., 2010).
However, it is possible that the capsid reaches the nucleus by
simple diffusion within the cytoplasm, as morphological changes
take place in HSV-infected cells (Ibanez et al., 2018). Once the
capsid reaches the outer nuclear membrane, the tegument viral
protein VP1/2, which travels associated to the capsid, will anchor

this structure to nuclear pore proteins and favor its docking to the
nucleopore for the injection of the viral DNA into the nucleus.
This process will allow the initiation of viral gene transcription
within the nucleus, and later on, viral genome replication
(Abaitua et al., 2012). In parallel, the viral protein VP16, which
is present in the tegument, will localize in the nucleus in such
a way to promote the transcription of viral genes, acting as a
transactivator (Milbradt et al., 2011; Roizman and Zhou, 2015;
Suk and Knipe, 2015).

Within infected cells, HSV genes are transcribed sequentially
in three main waves; the first set of viral genes that are transcribed
are called immediate early (or alpha) genes, with many of their
functions being related to limiting host immediate antiviral
mechanisms. This set of genes also encodes proteins that act as
transcription factors that promote the transcription of the second
set of viral genes (Silva et al., 2012). After the transcription of
alpha genes, early (or beta) viral genes are expressed, which are
involved among others in promoting the replication of the viral
genome (Ibanez et al., 2018). During the replication of the viral
genetic material, the genomes of HSVs undergo circularization in
a form known as “rolling circle,” which is regulated by viral factors
that ultimately generate linear genomes that are packaged into
new viral capsids within the nucleus (Jackson and Deluca, 2003).
After the expression of alpha and beta genes, HSV-infected cells
transcribe late (or gamma) viral genes, which are occasionally
separated into late early (or gamma-1) and late (or gamma-2)
genes, and are involved among others in providing the structural
components that are present in the virion (Chen et al., 1992).
During viral transcription, host cells equipped with a zinc-finger
antiviral protein (ZAP) that can utilize this restriction factor to
inhibit the replication of viruses by promoting the degradation
of critical viral mRNAs. Nevertheless, the HSV-1 UL41 protein
which is also known as the virus host shutoff protein (VHS),
has been reported to rapidly degrade human ZAP mRNA upon
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infection, before this host factor can block viral gene expression
(Su et al., 2015).

Importantly, infectious HSV particles to be released from
the infected cells will require that the viral capsids leaving the
nucleus contain the viral genome. For this, HSV capsids are
assembled with the viral DNA within the nucleus and then
envelope in the inner nuclear membrane (INM) and de-envelope
from the outer nuclear membrane (ONM) (Mettenleiter et al.,
2013; Funk et al., 2015). At this time, tegument proteins coating
the capsid are acquired both, in the nucleus and cytoplasm.
Importantly, viral glycoproteins located within the perinuclear
space are needed to carry out the capsid budding and fusion
processes with these membranes (Bucks et al., 2007; Mou
et al., 2009; Ott et al., 2011; Mettenleiter et al., 2013; Owen
et al., 2015). Once in the cytoplasm, the capsid which will
be covered with tegument proteins will be enveloped into
the Golgi apparatus, generating enveloped particles within this
compartment that are ready for virion exocytosis (Johnson
and Baines, 2011). Notably, it has been reported that viral
glycoproteins acquired by the enveloped capsid in the Golgi
apparatus are first exported to the cell surface by this organelle
and then re-internalized through the Trans Golgi Network before
associating to the coated capsids (Wisner and Johnson, 2004;
Turcotte et al., 2005). Infected cells will attempt to prevent the
release of mature virions using the host antiviral restriction factor
tetherin, an interferon (IFN)-inducible membrane protein that
has been shown to prevent egress of several enveloped viruses
(Perez-Caballero et al., 2009; Kuhl et al., 2011). However, the
HSV-1 VHS protein depletes tetherin by degrading its mRNA
(Zenner et al., 2013), while, HSV-2 gD has been observed to
directly interact with a long disulfide-rich coiled-coil structure
(CC) that is found within the extracellular domain of tetherin,
thereby targeting the latter to lysosomes for degradation (Liu
et al., 2016b). Both effects evidence how HSVs intervene
with cell antiviral mechanisms meant to stop virions exit and
prevent dissemination.

Aside from the previously described events, HSVs can

propagate onto close cells through cell-cell interactions. In these
cases, viral proteins are directed to the interface of adjacent

cells in a process termed virological synapse, in which cells in

close proximity undergo membrane fusion events favoring virus
propagation (Johnson et al., 2001). An advantage of this type of

infection is that it allows HSVs to propagate onto neighboring
cells while avoiding being targeted by immune components,
such as complement or neutralizing antibodies (Hook et al.,
2006a; Lubinski et al., 2011). This mechanism of infection has
not only been reported for epithelial cells, but also for the
infection of immune cells, such as T cells by HSV-infected
fibroblasts (Aubert et al., 2009).

In sum, HSVs have evolved molecular determinants to
effectively bind to and infect various cell types, causing
productive infection in multiple tissues and establishing
latency in neurons. Alternatively, these viruses are
also capable of infecting immune cells and modulate
their functions to further interfere with host early
antiviral responses.

HSV Modulates Apoptosis Differentially in
Non-immune and Immune Cells
For a virus to produce significant amounts of infectious particles
from an infected cell, it will need the cell to be viable
for as long as possible and to provide the building blocks
required for replicating its genetic material and producing its
proteins. HSVs have been reported to modulate cellular death
in different cell types either, to promote cell viability for the
generation of new virions or to promote the death of cells
that may be detrimental for their replication and shedding.
For instance, the HSV-1 glycoproteins J (gJ) and D (gD) have
been described to produce, at least partially the inhibition of
Fas-mediated apoptosis in a neuroblastoma cell line and Jurkat
cells (Zhou et al., 2000; Jerome et al., 2001). Surprisingly,
the expression of gJ alone also induced the production of
reactive oxygen species (ROS), which can eventually trigger
apoptosis (Figure 2) (Fleury et al., 2002; Aubert et al., 2008).
HSV-1 has also been reported to reduce cell apoptosis in
epithelial cells, despite eliciting processes that involved FLICE-
inhibitory protein (c-FLIP) downregulation, which is an inhibitor
of caspase-8 that generally results in cell death (Kather
et al., 2010). This apparent discrepancy was attributed to
the presence of latency-associated transcript (LAT) sequences,
which have been described to act as inhibitors of caspase-8-
mediated apoptosis, similar to what occurs in infected neuronal
cells (Henderson et al., 2002).

Additionally, an intrinsic mechanism of apoptosis consists
on the activity of pro-apoptotic Bcl-2 cell death in mouse
fibroblasts and monocytes, as well as in human colon carcinoma
cells (Figure 2) (Sciortino et al., 2006; Papaianni et al., 2015).
Importantly, HSV-1 infection promotes increased expression
of p53 upregulated modulator of apoptosis (PUMA), a protein
that is a host Bcl-2 homology 3 (BH3)-only family member that
activates Bax/Bak and produces mitochondrial outer membrane
permeabilization (MOMP) to release cytochrome c from the
mitochondria and activates caspase-3, ultimately culminating
in apoptosis (Papaianni et al., 2015). Furthermore, during HSV
infection, caspase-8-interacting domains within the HSV-1 viral
protein ICP6 and the HSV-2 viral protein ICP10, both which are
R1 large subunits of a ribonucleotide reductase (RR), have been
suggested to bind to caspase-8 and cause inhibition of apoptosis
induced by TNF-α-induced apoptosis through the TNF receptor
TNFR1 (Figure 2) (Guo et al., 2015a). However, this inhibition of
apoptosis may cause cells to enter necroptosis 12 h post-infection,
as an alternative defensemechanism to limit virus replication and
spreading (Sridharan and Upton, 2014). Nevertheless, HSV R1
proteins have been reported to bind to host receptor-interacting
protein (RIP) 1/3 and inhibit necroptosis in human cells, while
necroptosis was observed in mouse cells (Guo et al., 2015b;
Huang et al., 2015). RIP3 likely mediates necroptosis in infected
fibroblasts cells to limit the dissemination of HSV-1 in the mouse,
similar to what has been described for RIP3 with other viruses,
such as vaccinia virus and murine cytomegalovirus (MCMV)
(Wang et al., 2014; Huang et al., 2015). Effective inhibition
of both, apoptosis- and necroptosis-related mechanisms
likely allow these viruses to generate high virus yields and
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FIGURE 2 | HSVs modulate antiviral mechanisms related to cell death in non-immune cells. HSVs utilize numerous mechanisms to hamper the capacity of host cells

to restrict viral infection. (A) The engagement of the TNFR receptor leads to the activation of caspase-8 eliciting apoptosis, or eventually RIP1/3 to induce necroptosis.

However, HSV proteins ICP6 and ICP10 hamper signaling events related to these pathways, thus prolonging cell survival during infection. (B) Engagement of the Fas

receptor with Fas ligand (FasL) generally leads to extrinsic apoptosis events mediated by the activation of caspase-8. However, HSV glycoproteins J (gJ) and gD block

signaling events by this receptor. Additionally, the LAT transcript also interferes with caspase-8 mediated signaling that usually leads to apoptosis. (C) However, HSV

infection has been described to upregulate the expression of PUMA in the mitochondria of HSV-infected cells, which leads to BAX/BAK-dependent apoptosis

mediated by caspase-3. Thus, HSV may induce the intrinsic apoptotic pathway at later time points of infection after inhibiting apoptosis. (D) Another antiviral

mechanism hampered by HSV infection is inhibition of cell-induced apoptosis due to translation arrest. Upon detection of viral components, host PKR triggers eIF2α

phosphorylation, which inhibits its function and consequently mRNA translation, leading to global protein synthesis arrest and caspase-3 activation. However, the viral

proteins US11 and γ34.5 impair eIF2α phosphorylation, allowing viral gene translation to ensue during infection and limiting apoptosis through this pathway. (E) The

host protein ZAP can act as an antiviral factor that promotes degradation of viral mRNAs. However, its function is inhibited by the HSV protein UL41 (VHS), which

promotes ZAP mRNA degradation. (F) Finally, infected cells may attempt to prevent the release of mature virion through a membrane protein called tetherin that is

capable of binding to enveloped virions. As a countermeasure, the viral glycoprotein gD interacts with tetherin which ultimately provokes degradation of the latter.

Black lines show cellular processes. Red lines show processes modulated by HSVs.

sufficient amounts of progeny virions for the dissemination
of infection onto adjacent cells and other tissues within
the host.

On the other hand, HSVs have been described as capable of

inducing apoptosis in immune cells (Jones et al., 2003; Stefanidou
et al., 2013a). For instance, HSV-1 induces apoptosis in natural

killer cells (NK cells) upon interacting with virus-infected
macrophages that expresses Fas/FasL (Figure 2) (Iannello et al.,

2011), and kills dendritic cells (discussed in the followings

sections) (Peretti et al., 2005; Stefanidou et al., 2013b). Although
the specific mechanism by which HSVs induce apoptosis in

DCs is unclear to date, the process was found to be likely

mediated by reduced c-FLIP expression, because it was targeted
to degradation in a proteasome-dependent manner (Kather et al.,

2010; Stefanidou et al., 2013a). Importantly, an HSV-2 mutant
virus lacking the gene that encodes glycoprotein D (US6), was
shown to be non-lethal for DCs, yet it is unknown if the mutated
or deleted viral gene is directly involved in cell death or if its

deletion interferes with viral processes that relate to cell death
(Petro et al., 2015; Retamal-Diaz A. et al., 2017).

HSVs have also been described to induce the death of T cells

either, directly or indirectly. Indeed, a study reported that HSV-2
induced apoptosis in T cells through the activation of caspase-

9, -8, and -3 (Vanden Oever and Han, 2010). Although the
mechanism by which apoptosis was induced involved intrinsic

apoptotic pathways, the addition of inhibitors of apoptosis

was unable to completely revert cell death (Pongpanich et al.,
2004). Indirectly, HSV-1 has been described to induce T cell

“fratricide,” a process in which activated T cells infected with
HSV-1 increase their surface expression of FasL and induce the
apoptosis of neighbor T cells, through FasL signaling through
Fas receptor (Raftery et al., 1999). Overall, the findings discussed
above indicate that HSVs can differentially modulate apoptosis
in immune and non-immune cells, which may favor interference
with the host antiviral immune response while allowing viral
replication to occur in epithelial cells.
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HSVs INTERFERE WITH TOLL-LIKE
RECEPTOR SENSING OF VIRAL
COMPONENTS

Immune and non-immune cells express numerous molecular
sensors that detect virus components or infection-related stimuli
that promote the induction of rapid antiviral responses that
hamper viral replication and virus propagation (Mogensen,
2009). A type of stimuli that may be encountered or produced
during virus infection are pathogen-associated molecular
patterns (PAMPs) (Tang et al., 2012), as well as danger signals
released due to cellular stress in response to viral replication
and known as damage-associated molecular patterns (DAMPs)
(Johnson et al., 2013). Host receptors that sense these stimuli
include Toll-like receptors (TLRs), which include both cytosolic
and nuclear proteins (Mogensen, 2009). Upon the engagement of
ligands by such types of receptors, signaling pathways take place
which results in the expression of factors with antiviral activity,
as well as the production of soluble and membrane-bound
molecules that modulate the activity of the infected cell and
neighboring cells (Pandey et al., 2014). The early recognition of
viral factors by the host, immediately after infection will favor an
effective control of the pathogen and hamper its replication and
dissemination, altogether likely promoting the establishment of
a protective and long-lasting immunity (Mogensen and Paludan,
2001; Tang et al., 2012).

Toll-like receptors, such as TLR2, TLR3, TLR7, and TLR9
have been described to mediate antiviral activities against HSVs
during infection (Alexopoulou et al., 2001; Triantafilou et al.,
2014). Experimental findings indicate that TLR2 recognizes
glycosaccharides within the virion structure, which provides

some degree of protection against HSVs. Indeed, it has been
reported that TLR2 recognizes the glycoprotein B (gB) of HSV-

1, promoting NF-κB activation and the secretion of interleukin
(IL)-8 (Cai et al., 2013). Additionally, TLR2 seems to work in

concert with the integrin αvβ3, acting as a coreceptor for its

activation which leads to type-I IFN production in response
to the HSV-1 proteins gH/gL (Gianni and Campadelli-Fiume,

2014). In vivo assays showed that in TLR2 knockout mice
neuronal CCL2 levels were decreased, in associationwith reduced

macrophage recruitment into the enteric nervous system after

intragastric HSV-1 infection (Brun et al., 2018).
On the other hand, the use of agonists of TLR3, a receptor

that recognizes pathogen or host double-stranded RNA (dsRNA)
that may be produced during viral infections or abnormal cellular

processes, has been reported to promote effective antiviral

responses (Alexopoulou et al., 2001; Weber et al., 2006). Among
HSV-related viral processes that occur during viral transcription,

overlaps within (intra-molecular) or between (inter-molecular)
viral and host mRNAs may yield dsRNA structures that induce

the activation of dsRNA sensors. Additionally, HSVs encode

micro RNAs (miRNAs, miR), which are processed from dsRNA

intermediates. Some of these miRNAs have been shown to
be involved in regulating virus latency. For instance, miR-

H2 targets ICP0, which is required for immediate early gene
expression and lytic infection, while miR-H3 andmiR-H4 encode

antisense sequences that counteract the neurovirulent virus
lytic factor ICP34.5 (γ34.5). Furthermore, miR-H6 targets ICP4
and promotes LAT transcription (Piedade and Azevedo-Pereira,
2016). Other miRNAs, such as miR-H1, miR-H5, miR-H7,
miR-H8, and miR-H11 are also loaded onto the RNA-induced
silencing complex (RISC), which may also help trigger dsRNA
sensors within infected cells (Flores et al., 2013). Although the
precursors of these miRNAs may eventually be involved in the
activation of host dsRNA sensors, the precise mechanisms by
which these receptors are activated have not been determined
and calls for further research in this area. Interestingly, the
application of the TLR3 agonist Poly I:C was reported to confer
protection against HSV-related disease in the mouse genital
infection model (Ashkar et al., 2004). Recently, an HSV vaccine
candidate based on sub-unit viral antigens used Poly I:C as a
potent adjuvant, which elicited a robust antibody response and
induced protection to a lethal vaginal challenge withHSV-2 in the
mouse infection model. Importantly, protection was associated
with the activation of TLR3 by this formulation (Bardel et al.,
2016). On the other hand, it has been suggested that CD8α
dendritic cells TLR3 expression contributes to the establishment
of an antiviral response that is dependent on NK and CD8+ T cell
activation (Swiecki et al., 2013).

Importantly, several findings suggest that the host has set
mechanisms dependent on TLR3 function to detect HSV
infection in the central neural system (CNS) and restrict
viral replication (Zhang et al., 2008; Carty et al., 2014). For
instance, experiments with TLR3 knockout mice have shown
that the expression of TLR3 in astrocytes favors the control
of HSV infection in the CNS, mainly thanks to NF-κB-
dependent secretion of IL-6 and TNF-α (Reinert et al., 2012;
Liu et al., 2013). On the other hand, induced pluripotent
stem cells (iPSCs) obtained from TLR3-deficient patients that
were differentiated into various neural populations, displayed
increased susceptibility to viral infection and impaired IFN
secretion (Lafaille et al., 2012). Accordingly, mutations present
in genes of the TLR3 signaling pathway, such as the gene
encoding for TANK-binding kinase 1 (TBK1), correlated with the
development of herpes simplex encephalitis (HSE) in children
and young adults (Herman et al., 2012; Lim et al., 2014).
Therefore, positive modulation of the TLR3 pathway may help
control HSV infection in infected individuals, yet this remains to
be determined.

TLR7, which recognizes exogenous single-stranded RNA
(ssRNA) has been reported to induce a response that reduces
HSV infection and disease in a genital mouse infection model
when engaged with the synthetic agonist Imiquimod (Miller
et al., 1999). Furthermore, application of this TLR7 agonist in
HIV-1-positive patients suffering from acyclovir-resistant HSV-
2 disease has been shown to elicit favorable results against this
virus. Thus, artificially engaging TLR7 during HSV-2 infection
may eventually prove an effective mechanism to reduce virus-
related disease and shedding in these patients (Hirokawa et al.,
2011; Deza et al., 2015).

TLR9 is expressed in immune and non-immune cells and
can sense bacterial and viral DNA, as well as synthetic CpG-
oligodeoxynucleotides (CpG ODNs). Interestingly, intranasal
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application of CpG ODNs that are TLR9 agonists in BALB/c
mice previous to HSV-1 infection was reported to reduce viral
load and the production of pro-inflammatory cytokines IL-6,
CCL2, and CCL5 by neurons in the CNS, which increased
the survival rate of the infected mice (Boivin et al., 2012).
Moreover, local mucosal TLR9 engagement with CpG ODNs
prior to infection has been described to promote thickening of
the genital epithelium and increase immune cell infiltration into
the submucosa in order to control HSV-2 replication, conferring
protection in the genital tissue after infection in mice (Ashkar
et al., 2003). Although TLR9 knockout mice did not die after CNS
infection with HSV-1 in one study, these animals were highly
susceptible to HSV infection (Krug et al., 2004; Mancini and
Vidal, 2018). In another study, TLR9 expression in the trigeminal
ganglia was reported to be required to prevent HSV encephalitis
induced by intranasal HSV-1 infection, as more than half of the
animals that lacked this receptor died. Interestingly, if the animals
lacked both, TLR2 and TLR9 all animals died after infection
pointing out the relevance of these receptors in HSV infection
(Lima et al., 2010). A similar result has been reported in the
HSV genital infection model, as both TLR9 and TLR2 together
have been observed to be relevant for resisting intravaginal
infection by HSV-1. Indeed, a double TLR2/9 knockout mouse
was more susceptible to infection than single knockout animals
(Uyangaa et al., 2018). The anti-HSV response in the presence of
TLR2/9 involved increased differentiation of TNF-α- and iNOS-
producing DCs (Tip-DCs) and the activation of NK cells, which
was accompanied by increased recruitment of the latter to the site
of infection (Uyangaa et al., 2018). Furthermore, CpG treatment
has been shown to induce plasmacytoid DCs (pDCs) to secrete
IL-12 and type-I IFNs during HSV-2 infection in TLR4 knockout
mice, but not TLR9 knockout animals suggesting that these cells
need TLR9 to produce these cytokines (Lund et al., 2003; Boivin
et al., 2012). Although IFN-α production during HSV infection
in vivo is mostly TLR9-independent, CpG also elicited significant
IFN-α secretion by splenic pDCs in a TLR9-dependent manner
during HSV-1 infection in vitro (Hochrein et al., 2004).

Taken together, several TLRs recognize HSV components
leading to limited disease, while other TLRs are not stimulated by
HSV. However, when these receptors are engaged with activating
ligands they also display antiviral activities, which suggests that
targeting TLR receptors could be an attractive strategy to treat or
limit HSV infection.

HSVs ALSO HAMPER THE SENSING OF
VIRAL NUCLEIC ACIDS BY NON-TLR
RECEPTORS

Besides TLRs, other host receptors also sense nucleic acids
expressed during HSV infection, such as cytosolic retinoic-
acid-inducible gene-1 (RIG-1)-like receptors and a broad class
of putative DNA sensors (Mogensen, 2009). Importantly, viral
nucleic acids can act as strong activators of host signaling
pathways that lead to antiviral cellular responses (Iwasaki, 2012).
Furthermore, the detection of viral nucleic acids frequently leads
to the secretion of pro-inflammatory cytokines, as well as the

production of IFNs that hamper viral replication and infection
(Diner et al., 2015). Interferon-γ inducible protein 16 (IFI16) is a
host sensor of nucleic acids that has been reported to be able to
recognize episomal dsDNA, particularly DNA replicating in the
nucleus of cells, which results in IFI16 acetylation (Ansari et al.,
2015). This process is followed by the translocation of IFI16 to the
cytoplasm, which leads to the promotion of IFN-β secretion by
the cell and the activation of a host multiprotein complex called
the inflammasome, able to initiate an inflammatory response
(Unterholzner et al., 2010; Kerur et al., 2011). Importantly,
HSV-1 and HSV-2 recognition by IFI16 induces the activation
of the transcription factors interferon regulatory factor 3 (IRF3)
and NF-κB, which once translocated to the nucleus induce IFN-
α/β and IL-6 production in vaginal epithelial cells (Dawson and
Trapani, 1995; Conrady et al., 2012; Triantafilou et al., 2014).
IFI16 recognition of foreign DNA likely depends on the sensing
of naked DNA. During HSV-1 infection, IFI16 may silence viral
gene expression in human fibroblasts by adding nucleosomes and
heterochromatin marks to the viral DNA, thereby restricting the
host transcription machinery from accessing the viral genome
(Orzalli et al., 2013). On the other hand, in epithelial cells the
HSV-1 ICP0 protein has been reported to partially inhibit IFI16
activation by targeting it to the proteasome for degradation
(Figure 3) (Johnson et al., 2013). A role for IFI16 in HSV
infection has been assessed in vivo, with IFI16 knockdown mice
unable to produce IFN-α and clear HSV-1 from the cornea
after ocular infection (Conrady et al., 2012). Taken together, the
studies described above indicate that HSVs readily modulate
downstream pathways related to IFI16, as its activation seems to
be detrimental to these viruses and their replication. Regretfully,
to date only a few studies have assessed the roles of these sensors
in immune cells in response to HSV infection.

cGMP-AMP synthase (cGAS) is a cytosolic DNA sensor
that triggers cytosolic GMP-AMP (cGAMP) production upon
binding to an activating DNA (Cai et al., 2014), cGAMP, in
turn, acts as a messenger that signals through the transmembrane
adaptor stimulator of interferon genes (STING) and leads to
the recruitment and phosphorylation of TBK1, which ultimately
activates IRF3-dependent production of IFN-α/β (Sun et al.,
2013; Wu et al., 2013). Interestingly, HSV-1 recognition by cGAS
leads to IFN-α and IFN-β secretion in fibroblasts, as well as
immune cells (Orzalli et al., 2015). Furthermore, it has been
shown that cGAS and IFI16 detect HSV cooperatively, with cGAS
partially localizing in the nucleus and associating with IFI16
to promote the stabilization of the latter (Orzalli et al., 2015).
Nevertheless, HSV-1 has been reported to be able to deregulate
the function of these sensors. For example, the HSV-1 UL37
tegument protein has been shown to target cGAS and elicit its
inactivation through the deamidation of an asparagine residue
that is found both, in the human and mouse versions of this
protein (Figure 3) (Zhang et al., 2018). In addition, apoptosis was
observed following activation of cGAS after HSV-1 infection in
human foreskin fibroblasts, which required cyclic dinucleotides
and the activation of STING (Diner et al., 2016). On the other
hand, protein kinase B (PKB, AKT) activation during HSV-1
infection has been observed to phosphorylate and suppress cGAS
activity in epithelial cells, macrophages and fibrosarcoma cells
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FIGURE 3 | HSVs interfere with viral sensing. (A) cGAS is a cytosolic DNA sensor that triggers the activation of STING, which can lead to the phosphorylation of the

transcription factor NF-κB and the transcription factor IRF3 through the activity of TBK1. HSV proteins, such as UL37 and UL41 interfere with cGAS activity. VP11/12

and US3 modulate Akt signaling to promote cGAS phosphorylation and suppress its activity, further impairing the capacity of cGAS to mediate STING activation.

(B) Toll-like receptors (TLRs) are involved in recognizing pathogen and danger signals. Engagement of TLRs with agonists leads to improved antiviral responses due to

increased type-I IFN secretion, which is dependent on IRF3/7 and leads to the production of cytokines dependent on NF-κB activation. Importantly, VP24 can target

TBK1 to block IRF3 phosphorylation. Downstream of TBK1, ICP0 binds IRF3, and IRF7 to inhibit their activity. (C) US3 also blocks IRF3 activation and its translocation

to the nucleus reducing type-I IFN production by HSV-infected cells. (D) MDA5 and RIG-1 can recognize dsRNA products elicited during viral infection and replication.

HSV proteins UL37 and UL41 can impair the function of these cellular sensors, which signal through MAVS to activate NF-κB and promote cytokine production.

(E) DNA-dependent activator of interferon (DAI) can sense HSV likely through the recognition of HSV dsDNA and inhibit the activity of ICP0, leading to a decrease in

viral genome replication. However, after DAI recognition downstream signaling events from STING, through NF-κB are blocked by the viral protein UL24. (F) The

inflammasome is a multiprotein complex that assembles upon host sensor (e.g., AIM2, IFI16, NLRP3) encounter with viral determinants. The HSV protein VP22 has

been reported to block AIM2 sensing of HSV and hence, block pro-caspase-1 activation by adaptor protein apoptosis-associated speck-like protein containing CARD

(ASC). By blocking pro-caspase-1 activation, HSV inhibits the production of the pro-inflammatory cytokine IL-1β. Although the host sensor IFI16 has been reported to

signal mainly through STING, it can also participate in inflammasome activation. (G) The HSV-2 protein ICP0 can direct IFI16 to degradation compartments, thus

blocking downstream signaling events by this sensor. Black lines show cellular processes. Red lines show processes modulated by HSVs.

in vitro (Figure 3) (Seo et al., 2015). The latter effect is likely
due to HSV-1 US3 inhibiting Src family kinases and UL13-
dependent VP11/12 tyrosine phosphorylation that leads to the
modulation of the phosphatidylinositol-3 kinase (PI3K)/AKT
signaling pathway (Eaton et al., 2014). Overall, PI3K/AKT
modulation by HSVs would likely provide the virus the ability to
interfere with cellular processes related to this pathway, such as
cell metabolism, proliferation, gene expression, and cell survival
(Liu andCohen, 2015). Signaling through STINGhas been shown
to be particularly important for conferring protection against
ocular HSV-1 infection, as increased disease and virus replication
were observed in the corneas and trigeminal ganglia of STING
knockout mice, as compared to control animals (Parker et al.,
2015). Consistently, treatment with 5,6-dimethylxanthenone-
4-acetic acid (DMXAA), a STING agonist prior to infection
protected mice from HSV neurological disease, which was
associated with reduced viral replication thanks to increased
type-I IFN production (Ceron et al., 2019).

Although cGAS is targeted early after infection by HSV, one
wonders if it would be possible to detect this host sensor at later
time points during cell infection. In this regard, the virion host
shutoff protein (VHS, UL41) has been described to target cGAS
for degradation even at 20 h post-infection, significantly reducing
the chances that this receptor signal for IFN-β production upon
HSV infection of epithelial cells and fibroblasts (Figure 3) (Su
and Zheng, 2017).

Although some level of interference has been described
by HSVs over the nucleic acid sensors described above, the
DNA sensor termed DNA-dependent activator of interferon
(DAI), which is expressed in primary vaginal tissue has been
reported to readily detect HSV-2 and lead to IL-6 and IFN-
β release upon infection (Triantafilou et al., 2014). This host
sensor has been described to interact with the HSV-1 protein
ICP0 to hamper viral genome replication, yet independent
of the canonical DNA sensing function of this host factor
(Figure 3) (Pham et al., 2013). Importantly, downstream events
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of the cGAS-STING signaling pathway, which are shared with
those of DAI-STING, can be blocked by the HSV-1 serine
protease UL24 protein that impairs NF-κB activation (Xu et al.,
2017). Furthermore, VP24 can target TBK1 and hamper IRF3
phosphorylation, thus blocking alternative downstream signaling
pathways associated with STING activation (Figure 3) (Zhang
et al., 2016). Again, impairing IRF3 activation within infected
cells will result in impaired IFN-I production and subsequent
inhibition of interferon-stimulated genes (ISGs) in infected and
neighbor cells.

RIG-1, as well as melanoma differentiation-associated protein
5 (MDA5), are two host sensors specialized in recognizing
dsRNA (Weber et al., 2006). In the context of DNA viruses,
such molecules are likely generated as byproducts during the
transcription of viral genes and may derive from viral or
host products, although this has not been reported for HSVs.
Importantly, both receptors have been reported to have their
signaling pathways modulated by the HSV protein VHS early
after infection (Cotter et al., 2010; Yao and Rosenthal, 2011). This
effect has been described to lead to impaired signaling events that
otherwise should elicit IRF3 activation and an IFN-β-mediated
antiviral response (Figure 3) (Yao and Rosenthal, 2011). RIG-
1 has been reported to activate the STING pathway through
an RNA-DNA sensor crosstalk mechanism aimed at restricting
HSV-1 infection in epithelial cells and fibroblasts, as well as
in vivo (Liu et al., 2016a). Additionally, the HSV-1 UL37 viral
protein has been shown to directly block the function of RIG-1,
through the deamidation of its helicase domain, which is needed
for sensing dsRNA products (Figure 3) (Zhao et al., 2016).

In neuronal tissues DAI and RIG-1 work in tandem to detect
HSV-1 in the CNS and elicit the production of the inflammatory
cytokines TNF-α and IL-6 by murine glial cells, which altogether
promote CNS inflammation and increased CNS permeability
that allows immune cells to cross the blood-brain barrier, as
well as IFN-I type-I to limit viral replication (Crill et al., 2015).
Accordingly, RIG-1-mediated recognition of viral nucleic acids in
this context depends on host DNA-dependent RNA polymerase
III transcription of viral genes into mRNA harboring a 5′

triphosphate CAP structure, which is a substrate for RIG-1 and
would allow an antiviral response either, directly or indirectly
through DAI or RIG-1, respectively (Crill et al., 2015).

Another viral sensing pathway related to HSV and nucleic
acids is the recognition of viral DNA and the activation of the
inflammasome early after infection and then, its inhibition later
during the virus replication cycle (Johnson et al., 2013). The
inflammasome is amultiprotein complex composed by either one
of the cytoplasmic sensors NLRP3 or AIM2, combined with IFI16
and has been described to sense HSV in keratinocytes (Chen and
Ichinohe, 2015; Gimenez et al., 2016; Strittmatter et al., 2016).
Consistent with this finding, a recent study found that IFI16
and NLRP3 are activated in human fibroblasts early after HSV
infection (4 h) with consequent IL-1β release (Johnson et al.,
2013). However, at later time points (8 h), IFI16 was found to
be directed to the proteasome by the viral protein ICP0 and
caspase-1, which is a pro-inflammatory effector induced by the
inflammasome, and appeared to be trapped within actin clusters
instead of being free in the cytosol to enact its catalytic activity

(Figure 3) (Johnson et al., 2013). Additionally, HSV-1 has been
reported to inhibit AIM2-dependent inflammasome signaling
events by preventing its oligomerization through the viral protein
VP22 (Maruzuru et al., 2018). Thus, HSVs also seem to have
evolved molecular mechanisms to block the activation of the
inflammasome within infected cells, as a mechanism to hamper
the overall function of this sensor and therefore limit its effector
capacity of alerting the cells of the presence of the virus.

Finally, virus-infected cells can also detect tertiary RNA
structures derived from viral mRNAs thanks to protein kinase
R (PKR), a host factor that once activated can help hamper
the replication of viruses by inducing NF-κB activation and
the expression of cytokines that control virus replication and
infection (IFNs) (Kang and Tang, 2012). Furthermore, PKR can
control protein synthesis by inducing its shutdown within the
cell through the phosphorylation of the host translation initiation
factor 2-alpha (eIF2α), which ultimately leads to cell apoptosis
(Vattem et al., 2001). Because inhibition of translation within
infected cells would be detrimental to the replication cycle of
HSVs, these viruses override PKR function by inhibiting the
phosphorylation of eIF2α thanks to the viral proteins γ34.5 and
US11 (Figure 1) (He et al., 1997; Poppers et al., 2000; Carr et al.,
2005). Thanks to these viral factors, HSVs can bypass cellular
processes elicited after contact of host sensors with viral nucleic
acids to enable productive viral infection and virus replication
within infected cells.

Taken together, several nucleic acid receptors other than
TLRs can sense activating nucleic acids generated during HSV
infection. The recognition of such ligands likely helps counteract
virus infection and dissemination to other cells and tissues within
the host. Importantly, several of these receptors are known to
recognize dsRNA structures, yet the origin of these nucleic acids
in the context of HSV infection has not been established, and
further studies are needed for their identification.

HSVs INTERFERE WITH THE HOST
INTERFERON RESPONSE

The activation of pathogen recognition receptors (PRR), can
lead to the activation of immune and non-immune cells and
trigger antiviral responses that restrict and interfere with virus
replication. A significant antiviral response elicited by the sensing
of viruses is the IFN response. IFNs are cytokines that once bound
to their receptor can potentiate antiviral activities both, in the
cell that secretes these molecules and neighbor cells (Schoggins,
2014). IFNs are classified as type-I, -II, or -III. Type-I IFNs are
a broad family of molecules that can be secreted by numerous
cell types early after infection in response to pathogens such as
viruses, with some well-known members being IFN-α, IFN-β,
and IFN-ε, and others more recently described IFN-υ, IFN-ω,
and IFN-ζ (Hemmi et al., 2002; Al-Khatib et al., 2004; Diebold
et al., 2004; Oritani and Tomiyama, 2004; Theofilopoulos et al.,
2005; Ma et al., 2018). On the other hand, type-II IFNs have
a sole family member, namely IFN-γ which is secreted by
specialized subsets of immune cells usually late during infection
(Boehm et al., 1997; Bigley, 2014). Finally, type-III IFNs such as
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FIGURE 4 | HSV proteins modulate key steps in interferon-related pathways. HSV proteins inhibit interferon-related pathways. Engagement of Toll-like receptors

(TLRs) by viral determinants leads to the activation of transcription factors that induce the expression of type-I IFNs. (A) The HSV ICP0 protein can block IRF7

activation by hampering its phosphorylation and consequently inhibit its translocation to the nucleus. (B) Additionally, UL36 inhibits the ubiquitination of TRAF3 which

is required for positive downstream signaling and activation of the transcription factors NF-κB and IRF3. (C) HSV proteins US3 and ICP0 can interfere with IRF3

activation at this stage, thus blocking this signaling pathway that otherwise would lead to type-I IFN expression. (D) Furthermore, VP16 inhibits the formation of the

IRF3-CREBBP/p300 complex hampering signaling events that would lead to IFN-I expression. (E) Upon IFN-I engagement, IFNR on the cell surface elicits intracellular

signaling cascades mediated by STAT1, STAT2, and JAK1. However, the viral protein ICP27 interferes with STAT1 activation and the viral protein VHS hampers

STAT2- and JAK1-related signaling pathways that otherwise would induce the expression of ISGs, which elicit antiviral effects. Black lines show cellular processes.

Red lines show processes modulated by HSVs.

IFN-λ1, IFN-λ2, and IFN-λ3 are usually secreted early during
infection and have somewhat similar effects than type-I IFNs,
although their secretion is limited to epithelial cells (Donnelly
and Kotenko, 2010). While type-I and type-III IFNs are related
to the induction of multiple antiviral effects in several cell types,
type-II IFNs are more related to regulatory roles among immune
cells and are accordingly mainly expressed by such types of cells,
such as T helper cells (Tau and Rothman, 1999).

Because IFNs have detrimental effects on viruses, HSVs
encode an array of molecular factors that negatively modulate
the induction of IFN, their production, secretion, and their
associated effects by interfering, among others with their
intracellular signaling pathways (Peng et al., 2009). For example,
the ICP0 proteins of both, HSV-1 andHSV-2 have been described
to directly bind and interfere with the activation of IRF3 and
IRF7, two transcription factors related to the expression of type-I
IFNs (Figure 4) (Eidson et al., 2002; Lin et al., 2004; Zhang et al.,
2015). Importantly, mice that lack both IRF3 and IRF7 (IRF3/7
double knockout mice) have been described to suffer increased
HSV-1 replication and display enhanced dissemination of this
virus to several organs after corneal infection (Murphy et al.,
2013). Additionally, the HSV-1 US3 protein has been reported
to hyperphosphorylate IRF3, which impairs its dimerization

and nuclear translocation, thus hampering the transcription
of IFNB mediated by this transcription factor (Wang et al.,
2013b). Furthermore, the HSV-1 tegument protein VP16 has
been shown to block IFN-β expression through the inhibition
of IRF3 and NF-kB, by impairing the recruitment of the shared
coactivator CREB binding protein (CBP) to IFN-I promoters,
which is required by these transcription factors to induce IFN-I
expression (Figure 4) (Xing et al., 2013). Accordingly, the HSV-
1 protein UL36, an ubiquitin-specific protease has been shown
to de-ubiquitinate TRAF3 (TNF receptor-associated factor-3),
thereby hampering stimuli-induced IRF3 dimerization, which is
required for IRF3 translocation to the nucleus thus, inhibiting
IFN-β transcription (Figure 4) (Wang et al., 2013a). Moreover,
the advantage for HSVs in interfering with the signaling events
associated to type-I IFN secretion has been evidenced in vivo,
as low IFN-α and IFN-β production is observed in the genital
tract of mice after infection (Milligan and Bernstein, 1997;
Peng et al., 2009).

When IFNs are released from infected cells, they can act
either as paracrine or autocrine ligands by binding to IFN
receptors on the cell surface and induce ISG within cells.
Antiviral effects of IFNs include restricting the replication of
the viral genome, inhibition of protein translation, and impaired
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virus egress (Schoggins and Rice, 2011). In order to counteract
these outcomes, HSVs interfere with signaling events that occur
downstream of the IFN receptors. For instance, the HSV-1 ICP27
protein affects STAT-1 activation, which is a signal transducer for
ISG transcription. ICP27 has been reported to interfere with the
phosphorylation and nuclear accumulation of STAT-1 in order to
impair its activity as a transcription factor (Figure 4) (Johnson
et al., 2008). Additionally, there is indirect evidence, through
an HSV-1 mutant, that suggests that the viral protein VHS
could partially be responsible for reducing the activity of signal
transducers such as JAK1 and transcription factors like STAT-
2, as observed in HSV-infected HeLa cells (Figure 4) (Chee and
Roizman, 2004). Additionally, the HSV-1 ICP27 protein has been
reported to be involved in the secretion of an uncharacterized
soluble factor that has antagonizing activity over IFN-I signaling
pathways in neighboring uninfected cells (Johnson and Knipe,
2010). In vivo studies have assessed the relevance of IFN-I in HSV
infection in mice that lack the receptors for type-I IFNs, namely
IFNAR1 and IFNAR2c, and shown that inoculation of HSV-1 in
the footpads of such animals results in a reduced capacity of the
host to control HSV replication, leading to systemic infection,
although non-lethal (Luker et al., 2003).

On the other hand, IFN-αβγR−/− mice have been found to
be highly susceptible to acute liver failure after HSV-1 corneal
infection, with IFN-αβγR expression in both, immune and non-
immune cells playing relevant roles in the control of systemic
HSV infection (Pasieka et al., 2011; Parker et al., 2016). Moreover,
a key role for type-I IFN signaling has been identified in neurons,
since immune cell and non-neuronal cell IFN responses do
not protect from lethal corneal HSV infection when the these
pathways are abrogated in neurons (Rosato and Leib, 2015).
In a later study, it was found that IFN-I signaling in neurons
was dispensable for the establishment of latency and that cells
deficient in IFN-I signaling supported reduced reactivation yet,
displayed higher levels of LAT indicating that IFN-I likely
regulates LAT expression in neurons (Rosato et al., 2016).
Consistent with the relevance of type-I IFNs in HSV infection,
topical application of IFN-α was reported to significantly reduce
the frequency of recurrences and viral shedding in patients
suffering from genital HSV reactivations (Shupack et al., 1992).
Although HSVs have mechanisms to impair type-I IFN secretion
and their effects, such molecules may eventually reach adjacent
cells that are non-infected and elicit signaling events in these cells
(Gill et al., 2011; Lee et al., 2017).

IFN-γ induction is associated with positive outcomes during

HSV-1 and HSV-2 infections, with reduced viral replication.
Furthermore, IFN-γ may be considered a marker related to

the potential efficacy of prophylactic formulations (Svensson

et al., 2005; Bird et al., 2007; Sato et al., 2014; Khan et al.,
2015). Without IFN-γ, T cells are incapable of conferring

protection against HSV genital infection (Johnson et al., 2010).
However, the relationship between IFN-γ and HSV control is
intricate, as the antiviral effects of this cytokine are tissue-
dependent and vary depending on whether the virus remains
latent in infected cells or is productive in the lytic cycle (Bigley,
2014). Among numerous effects, IFN-γ causes microtubule
remodeling in infected cells, which is mediated through the

activity of the molecules suppressors of cytokine signaling 1
and 3 (SOCS1 and SOCS3). However, elevated SOCS expression
elicits microtubule stabilization and an inhibition feedback on
IFN-γ effects, which has been exploited by the HSV-1 ICP0
protein, capable of upregulating SOCS during lytic infection
in keratinocytes (Frey et al., 2009). Although IFN-γ acts over
promoters of IFN-γ-stimulated genes (ISGs) that have antiviral
functions, ISG expression is restricted by epigenetic regulations
of histone 3 (H3) in the trigeminal ganglia and is dependent
on histone deacetylases (HDACs) to maintain chromatin in a
transcriptionally inactive state (Gao et al., 2013). During HSV-
1 infection of the trigeminal ganglia, neurons may respond
to stress stimuli (e.g., UV light) and inhibit HDACs, which
results in SOCS1 and SOCS3 acetylation and the loss of IFN-γ
effects. Additionally, chromatin may suffer relaxation processes
allowing the viruses to exit latent infection of neurons (Guise
et al., 2013). Although a relevant role for IFN-γ has emerged
from some studies, paradoxically mice lacking IFN-II receptors
IFNGR1 and IFNGR2 showed comparable levels of viral loads
as controls when challenged with HSV-1, suggesting that the
effects of IFN-γ are somewhat complex in the context of
HSV infection (Luker et al., 2003).

Regarding type-III IFNs, relatively few studies have assessed

their role during HSV infection. However, one study has reported

that the administration of IFN-λ1 (IL-29) prior to HSV-1
infection promoted the expression of numerous antiviral proteins

in primary human keratinocyte cultures. One of them, IFN-
β helped prevent their infection. This effect was dependent
on TLR3 engagement and JAK-STAT signaling events (Zhang
et al., 2011). Furthermore, in human neurons HSV-1 infection
was shown to be suppressed by IFN-λ1 and IFN-λ2 (IL-
28A), particularly through the upregulation of TLR3 and TLR9
expression and subsequent TLR3/9-mediated antiviral responses
involving the transcription factor IRF7 (Zhou et al., 2011).
Interestingly, type-III IFNs have been reported to be secreted in
the vaginal mucosa mainly by DCs, yet if this is the case during
HSV infection remains to be determined (Iversen et al., 2010).

Taken together, HSVs have evolved several mechanisms to
interfere with the host IFN response at multiple levels. Indeed,
HSVs can impair IFN secretion and their related signaling events
in infected cells. Collectively, the capacity of HSVs to interfere
with IFN responses at various steps highlights the importance of
these molecules and pathways in HSV control. Unsurprisingly,
potential therapeutic approaches, such Imiquimod induce type-I
IFN secretion (Sainathan et al., 2012).

HSVs DOWN-MODULATE THE ANTIVIRAL
ACTIVITIES OF THE COMPLEMENT AND
INNATE IMMUNE CELLS

If HSV-infected cells are unable to restrict the replication of
these viruses or their dissemination, an innate immune response
consisting on both acellular and different cell types, will likely
interact with the viruses or virus-infected cells in an attempt to
impede further infection of nearby cells or other tissues (Halford
et al., 2005; Nandakumar et al., 2008; Tegla et al., 2011).
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FIGURE 5 | HSVs interfere with antiviral processes in innate immune cells. (A) HSV has been described to reduce MHC-I expression on the surface of infected cells.

In addition, HSV also reduces MICA and ULBP1-3 expression through the inhibition of PIGT, a member of the GPI anchoring complex by the HSV-1-encoded

microRNA H8 (miR-H8). (B) The HSV glycoprotein gD reduces nectin-1 expression on the surface of infected cells, hampering DNAM-1 binding to this host factor and

diminishing the capacity of NK cells to mediate the lysis of HSV-infected cells, which is normally mediated by granzymes. (C) HSV has been reported to directly

engage TLR2 on the surface of NK cells, which leads to IFN-γ and TNF-α secretion. (D) FasL expressed on the surface of HSV-infected macrophages has been

reported to induce Fas-mediated apoptosis in NK cells. (E) Within HSV-infected macrophages, the HSV protein ICP27 has been reported to inhibit STING and TBK1

activation, thus interfering with this signaling pathway that generally leads to IRF3-dependent type-I IFN secretion by virus-infected cells. (F) HSV infection of

macrophages reduces the surface expression of CD1d, which in combination with a glycolipid acts as a receptor for NKT cell TCRs. CD1d is sequestered by the HSV

proteins US3 and VP22. Thus, HSV reduces NKT expansion and function by hiding its activating ligand. Black lines show cellular processes. Red lines show

processes modulated by HSVs.

However, HSVs are able to inhibit the chain reactions carried
out by the host complement which is intended to hamper
pathogens by initiating a cascade of protein activations that
lead to a membrane attack complex (MAC) (Serna et al., 2016).
Indeed, the gC glycoprotein of HSVs can bind to the complement
component C3b and block alternative pathways that otherwise
lead to the formation of a MAC on the pathogen surface, or the
surface of virus-infected cells (Friedman et al., 1984; Mcnearney
et al., 1987. Additionally, gC also binds to the complement
components C3 and C5, further inhibiting pathways related to
the activation of this antiviral mechanism (Lubinski et al., 2002;
Hook et al., 2006b).

On the other hand, natural killer (NK) cells are innate immune
cells capable of sensing and destroying virus-infected cells that
either lack the expression of major histocompatibility complex
I (MHC-I) molecules, or express NK-activating molecules on
the surface because of abnormal cellular processes betray
infection (Mandal and Viswanathan, 2015). HSVs hampers
MHC-I expression on the surface of infected cells, which under
normal conditions should elicit the activation of NK cells (Orr
et al., 2005). However, HSV-1 infection has been shown to reduce
the expression of MHC class I polypeptide-related sequence

A (MICA) and UL16 binding proteins 1–3 (ULBP1, ULBP2,
ULBP3) on the surface of infected cells, which are activators of
NK cells that mediate signaling events through the engagement

of NKG2D in these cells (Figure 5) (Schepis et al., 2009).

This inhibition has been reported to be mediated by HSV-

1-encoded mir-H8, which downregulates PIGT expression, a

member of the GPI anchoring complex that anchors MICA
and ULBP1-3 and results in the surface downregulation of

these NK ligands (Enk et al., 2016). Therefore, NK cells
do not release cytotoxic molecules, such as granzymes onto

HSV-1-infected cells, protecting these cells from NK-mediated
apoptosis. Nevertheless, NK cells pulsed with HSV-1 and HSV-

2 glycoprotein gD antigens and inoculated with TLR2 agonists
produced IFN-γ that activated antiviral CD4+ T cells (Kim et al.,

2012). Consistent with immune evasion properties by HSVs, the

HSV-1 gD glycoprotein has been reported to sequester nectin-1
from the cell surface of infected cells and induce decreasedDNAX

accessory molecule-1 (DNAM-1) receptor engagement on the

surface of NKs by this ligand, thus preventing NK cell-mediated
lysis of infected cells (Figure 5) (Grauwet et al., 2014). Finally,

macrophages infected with HSV-1 have been described to express
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FasL and induce apoptosis in NK cells that express Fas receptors
(Iannello et al., 2011).

Another innate immune cell type known to participate in
antiviral responses is Natural Killer T cells (NKT cells). NKTs
recognize antigens in the form of glycolipids presented on CD1d
molecules that share structural similarities with MHC-I (Godfrey
et al., 2010). Importantly, HSV-1 has been described to negatively
affect NKT activation by downregulating CD1d expression on the
surface of infected cells (Figure 5) (Yuan et al., 2006; Rao et al.,
2011). More specifically, HSV-1 was shown to redirect CD1d
from the cell surface to intracellular compartments through the
phosphorylation of the host factor KIF3A by the viral kinase
US3 (Xiong et al., 2015). Furthermore, cellular recycling of CD1d
was also inhibited by the viral protein VP22 working along
US3 (Liu J. et al., 2016). Importantly, the administration of α-
galactosylceramide, an NKT ligand that elicits the recruitment
of these cells to the vaginal tissue was reported to decrease
the susceptibility of mice upon HSV-2 intravaginal infection
(Iversen et al., 2015).

Macrophages are also targets of HSVs. In these cells, HSV-
1 has been reported to inhibit downstream events related to
the cGAS-STING-TBK1 axis, particularly through the direct
interaction of ICP27 with STING and TBK1, which produced
a reduction in IFN-I secretion by these cells (Figure 5)
(Christensen et al., 2016). Interestingly, STAT-1-knockout mice,
which are unresponsive to IFN-α and IFN-γ, have been found
to be more susceptible to HSV-1 in terms of macrophage
infection, as compared to wild-type mice suggesting that these
cells utilize a JAK-STAT-1 signaling pathway to restrict HSV
replication (Mott et al., 2009). Additionally, HSV-1 has been
shown to produce higher levels of pro-inflammatory cytokines
in M1 macrophages as compared to M2 macrophages, with
M1 characterized as “classically polarized” macrophages vs.
M2 macrophages that are “alternatively polarized” (Martinez
and Gordon, 2014). The latter observation suggests that pro-
inflammatory M1 macrophages infected by HSV-1 promote
increased eye inflammation (Lee and Ghiasi, 2017). On the other
hand, in the same study when macrophages were stimulated to
induce their differentiation toward an M2 phenotype, these cells
produced anti-inflammatory cytokines (e.g., IL-10), which was
associated with less eye pathology.

Regarding other innate immune cell types, such as neutrophils
or mast cells, these cells have been described to participate at the
onset of immune cell infiltration into skin and corneas during
HSV infection (Royer et al., 2015; Hor et al., 2017). However aside
from contributing to exacerbated inflammation, a protective role
has not been attributed to neutrophil activity in these tissues in
mice models, yet mast cells seem to be necessary for assisting
innate immunity in the cornea of mice (Royer et al., 2015; He
et al., 2017).

Altogether these results suggest that HSVs target NK andNKT

cells, as well as macrophages because these cells likely play a
crucial role in controlling HSV infection. Thus, potentiating the

activation and functions of these cells during HSV exposure and

infection could elicit improved responses against these viruses.

HSV INFECTION MODULATES DENDRITIC
CELL MATURATION, ANTIVIRAL ACTIVITY
AND MIGRATION

Dendritic cells (DCs) are key immune cells that promote and
regulate immune responses by modulating the activity of innate
and adaptive immune cells (Gonzalez et al., 2008; Cespedes et al.,
2013). DCs are strategically located throughout the body acting
as sentinels that probe the environment surrounding mucosae,
skin, as well as internal organs. Ultimately, DCs sense and capture
foreign and self-antigens for their processing (Soloff and Barratt-
Boyes, 2010). DCs degrade protein-derived antigens and present
them to T cells as small peptides loaded on MHC-I and -II
molecules (pMHC) that can be recognized by T cell receptors
(TCR) on the surface of CD8+ and CD4+ T cells, respectively
(Galvez et al., 2016). DC antigen presentation to T cells can lead
to a process termed the immunological synapse, which involves
close DC-T cell interactions that can result either in T cell
activation or its inactivation (Gonzalez et al., 2007; Murphy et al.,
2012; Retamal-Diaz et al., 2015; Retamal-Diaz A. et al., 2017).
Importantly, the interaction between DCs and antigen-specific T
cells will determine the phenotype of T cells which will depend
on the expression of membrane-bound and soluble molecules
presented at the cell-cell interphase (Zheng et al., 2004). As a
result of DC-T cell activation, T cells can become among other
cell types, cytotoxic or regulatory by secreting soluble factors
that kill infected cells, modulate immune, and non-immune cells,
or promote tolerance to antigens, eventually ignoring cognate
antigens (Gonzalez et al., 2007).

Because of the role of DCs in defining the phenotype of
T cells, which in turn can affect the overall immune response
against a viral pathogen such as HSV, the interaction between
DCs and these viruses has gained increasing attention in the
last decade. Importantly, DCs are permissive to HSV infection,
although virus yields are somewhat limited as compared to
other cellular substrates, such as epithelial cells (Pollara et al.,
2003; De Jong et al., 2008; Grosche et al., 2017; Retamal-
Diaz A. et al., 2017). Once infected with HSVs, DCs display
reduced antigen presentation on MHC-I molecules, which is
mediated by the viral protein ICP47 that acts over transporters
associated with antigen processing (TAP) at the endoplasmic
reticulum and impedes antigen translocation to this organelle for
the loading of viral antigenic peptides onto MHC-I molecules
(Figure 6); yet, this phenomenon has been reported to occur
at a lower extent in murine cells, as compared to human cells
(Hill et al., 1995; Tomazin et al., 1998; Elboim et al., 2013;
Oldham et al., 2016a). Interestingly, ICP47 has been reported to
adopt a helical hairpin structure that blocks TAP function and
peptide translocation, as it precludes substrates from binding to
the transporter and prevents the two cytoplasmic nucleotide-
binding domains (NBD) of TAP from hydrolyzing ATP, which
is required for their activity (Oldham et al., 2016b). Despite the
existence of several variants of TAP-1 and TAP-2 in humans,
ICP47 does not seem to have a particular preference over one or
other polymorphism (Praest et al., 2018).
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FIGURE 6 | HSVs interfere with dendritic cell function. Dendritic cells (DCs) are susceptible to HSV-1 and HSV-2 infection. (A) Upon infection with HSV, the host

protein CYTIP is degraded, which causes the upregulation of LFA-1 and reduces the capacity of DCs to migrate to draining lymph nodes and activate T cells. (B) HSV

infection hampers the capacity of DCs to present virus-derived antigens to T cells on MHC-I molecules by interfering with the activity of transporters associated with

antigen presentation (TAP proteins). Inhibition of TAPs is mediated by the viral protein ICP47. (C) HSVs elicit apoptosis in DCs through the downregulation of c-FLIP, a

potent anti-apoptotic protein, which is directed to the proteasome during infection of these cells. (D) HSV infection hampers the activity of the autophagosome, which

has been reported to reduce antigen presentation to CD8+ T cells. (E) CD80 and CD86 are co-stimulatory molecules that are commonly upregulated during infection,

and along with MHC-peptide complexes enable DCs to activate T cells. HSV inhibits the expression of CD80 and CD86 on the DC surface thanks to the viral proteins

γ34.5. The viral protein ICP22 also inhibits the expression of CD80 on the cell surface. (F) HSV infection inhibits inducible nitric oxide synthase (iNOS) in DCs through

the downregulation of caveolin-1, which will reduce the antiviral capacity of these cells. Black lines show cellular processes. Red lines show processes modulated by

HSVs.

HSV-1 and HSV-2 can also reduce the capacity of DCs to
activate T cells by decreasing the expression of the co-stimulatory
molecules CD80 and CD86 on the cell surface, which has been
suggested to occur through the downregulation of IFNα/β levels
by the viral protein γ34.5 (Figure 6) (Jin et al., 2009; Suazo
et al., 2015a). Consistently, an HSV-1 with a mutation in γ34.5
is capable of inducing the maturation of DCs through TBK-1-
dependent phosphorylation of IRF3 (Ma et al., 2017). However,
a later study suggests that inhibition on IRF3 activation by
γ34.5 is also mediated by mechanisms other than TBK-1, as
the deletion of the TBK-1 binding domain (TBD) of γ34.5 did
not restore IRF3 activation, although this finding remains to
be confirmed in DCs as the study was performed in human
foreskin fibroblasts cells (Manivanh et al., 2017). On the other
hand, the HSV-1 protein ICP22 has been reported to be capable
of binding to the CD80 promoter in DCs circulating through
HSV-infected cornea, inhibiting the expression of this important
co-stimulatorymolecule for T cells (Matundan andGhiasi, 2018).

Moreover, both HSV-1 and HSV-2 have been reported to
inhibit autophagosome formation in DCs, by interfering with
cellular degradation processes and affecting antigen presentation
to CD8+ T cells (Suazo et al., 2015a; Budida et al., 2017). Because

DCs utilize autophagy as a means to limit viral replication within
these cells, inhibition of this process likely contributes to HSV
subversion of DCs (Figure 6) (Rasmussen et al., 2011). HSV-
1 has been described to interfere with nitric oxide synthase
within lung DCs via downregulation of caveolin-1 (Cav-1),
further hampering the antiviral capacities of HSV-infected DCs
(Figure 6) (Wu et al., 2015).

Additionally, HSV-1 and HSV-2 have been reported
to hamper DC migration from the infected tissue to the
corresponding lymph nodes (LNs), thereby likely reducing the
efficacy of DCs at activating CD4+ and CD8+ T cells at this site
(Prechtel et al., 2005; Bedoui and Greyer, 2014; Retamal-Diaz
A. et al., 2017). Indeed, HSV-1 has been shown to promote the
degradation of cytohesin-interacting protein (CYTIP) in mature
DCs, which regulates DC motility by downregulating integrin
expression and causes the upregulation of lymphocyte function-
associated antigen-1 (LFA-1), a β2-integrin protein; therefore
enhanced adhesion of DCs occurs in the infected tissue reducing
their migration to the LNs (Figure 6) (Theodoridis et al., 2011).
Additionally, HSV-1- and HSV-2-infected Langerhans cells
(LCs) have been reported to undergo apoptosis after infection
with HSVs and to be unable to downregulate E-cadherin, which
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needs to be reduced at the cell surface to promote the migration
of these cells to the LNs (Puttur et al., 2010). In this context,
HSV-infected LCs have been described to act as a source of HSV
antigen for dermal DCs (dDCs) within the infected skin, which
would result in the phagocytosis of apoptotic HSV-infected LCs
by dDCs (Kim et al., 2015). The interaction between LCs and
HSV, and then by HSV-infected and apoptotic LCs with dDCs
would likely result in the priming of HSV-specific T cells in vivo,
which would be difficult to assess in vitro with HSV-infected
bone marrow-derived DCs (BMDCs) and monocyte-derived
DCs. Importantly, the effects of HSV infection over the
capacity of DCs to activate T cells seems to more pronounced
in vitro than in vivo (Bedoui et al., 2009; Kim et al., 2015;
Whitney et al., 2018).

However, contrarily to the negative effects described above
for HSV over DCs, another study found that upon exposure to
HSV-1, a human CD8α+ plasmacytoid DC subset increased the
expression of markers associated with the migration of these cells
to lymph nodes, and that these DCs were able to promote the
activity and functions of T cells, B cells and NK cells, which were
recruited to the infection site (Schuster et al., 2015).

Overall, most of the findings described above support the
notion that HSVs have evolved different mechanisms and
strategies to hamper DC function impacting virus control by
these cells and likely negatively affecting adaptive immune
responses in the host.

Despite numerous studies describing approaches that elicit
protective immunity against HSVs, identifying a correlate of
protection for HSV infection has remained elusive. Interestingly,
recent studies suggest that the outcome of the DC-HSV
interaction may relate to the establishment of protective
immunity, as specific HSV mutants that are attenuated in DCs
confer particularly protective and robust immunity against HSV
infection in vivo (Retamal-Diaz A. et al., 2017; Retamal-Diaz
A. R. et al., 2017). One of these studies reported that anti-
HSV antibodies mediated the protection conferred by the HSV-
inoculated DCs, which likely results from the help of B cell-
supportive anti-HSV helper T cells (Long et al., 2014). On
the other hand, vaginal DCs primed with estradiol have been
described to promote CD4+ T cells with a Th17 profile that
enabled these cells to efficiently respond against an HSV-2
challenge (Anipindi et al., 2016). An IL-1β-related signaling
pathway mediated this favorable response. The relevance for
DCs in eliciting protective anti-HSV responses has been further
emphasized by studies that assess their contribution at re-
stimulating tissue-resident memory T cells (TRM) (Iijima et al.,
2008). After HSV-2 infection, TRM CD8+ are recruited to the
genital tissue by chemokines such as CXCL-9 and CXCL-10,
which are expressed by the infected epithelium (Nakanishi et al.,
2009; Iijima and Iwasaki, 2014). Importantly, this recruitment
was found to be mediated, at least partially by IFN-γ produced
by DCs which came into contact with HSV antigen-specific Th1
helper CD4+ cells and stimulated them to establish TRM CD8+

cells (Smith et al., 2004; Nakanishi et al., 2009). In line with this
notion, a “prime and pull” immunization approach was recently
described with which protective immunity was achieved against
HSV-2 genital infection upon inoculation of an attenuated HSV
virus which induced vaginal tissue memory T cells that could be

recalled to this tissue in a CXCL10-dependent manner (Shin and
Iwasaki, 2012). dDC populations present in the skin within the
CD301b+ subset were found to be present at the site of infection
after applying “prime and pull” strategy mentioned above and
were held responsible for re-stimulating HSV antigen-specific
memory CD8+ T cells (Shin et al., 2016).

HSVs have also been reported to induce the synthesis and
release of pro-inflammatory cytokines by DCs that promote
their infection with HIV and the replication of this virus from
previously-infected cells, likely increasing the dissemination of
the latter virus during co-infections (Stefanidou et al., 2013a).
HSV-2-infected DCs secrete TNF-α, which through signaling
processes mediated by TNFR1 and TNFR2 has been reported
to induce increased expression of CCR5 in DCs, enabling
subsequent infection of these cells with HIV-1 (Marsden et al.,
2015; Herbring et al., 2016).

Recent studies support the notion that DCs may promote
neuron infection with HSV, thus contributing to virus latency
within the host. In addition, it has been observed that animals
depleted of DCs display up to fivefold less latently infected
neurons in the trigeminal ganglia, as compared to wild-type
mice suggesting that DCs participate in processes related
to neuron infection (Mott and Ghiasi, 2008). Accordingly,
the depletion of the CD11c+CD8α+ DC subset reduced the
amounts of latent HSV-1 in neurons after ocular infection
(Mott et al., 2009). Furthermore, Flt3L treatment, which
increases the numbers of DCs in tissues, produced increased
neuronal infection upon a similar infection (Mott et al.,
2008). Taken together these studies suggest HSV may use
DCs as Trojan horses to reach neurons, which may occur
by virus attachment to the cell surface or virus replication
within these cells. Despite these findings, another study found
that depleting DCs with diphtheria toxin targeting CD11c-
expressing cells was associated with increased viral loads in
neurons after HSV infection in the footpads (Kassim et al.,
2006). Another study found that mice lacking CD8α+ DCs
had increased amounts of latent HSV-1 and more recurrences
(Mott et al., 2014).

Overall, HSVs have evolved multiple mechanisms to
negatively modulate the function of DCs, which likely results
in a reduced capacity of the host to control HSV infection and
mount and effective antiviral response. Identifying strategies
that improve the interaction between HSVs and DCs should
likely ameliorate the overall host response to these viruses either,
immediately upon infection or during the establishment of
long-term protection.

CONCLUDING REMARKS

Herpes simplex viruses elicit a diverse array of diseases
in humans, both in individuals that have immune-related
complications, as well as otherwise healthy persons. The
capacity of HSVs to elicit disease during primary infections, as
well as recurrences after establishing lifelong infection relates,
among others to their ability to evade and neutralize host
antiviral mechanisms that act in immune and non-immune
cells. Importantly, HSVs interfere with early antiviral steps,
such as the capacity of the host to sense viral determinants,
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signaling pathways that lead to cellular antiviral effects and the
function of innate immune cells that act early after infection
against these viruses. Evasion of these processes gives HSVs
the chance to infect host cells and reach neurons favoring
viral latency and lifelong infections, altogether dampening
antiviral activities that could help immune cells establish
effective and protective immunity against these viruses. The
fact that the host somewhat fails at initiating an effective early
antiviral response may provide grounds for the establishment of
ineffective adaptive immunity, mainly through the interference
of DC function, which is crucial for linking innate and
adaptive immunity. Thus, improving the outcome of the early
host antiviral responses against HSVs could help both, the
generation of better anti-HSV therapies, as well as the design
of prophylactic strategies intended at preventing infection with
these viruses.
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