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Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes.

Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of

seven species generated by reversible phosphorylation of the inositol moieties at the

positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane

domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has

been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P),

PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups,

plasma membrane, and phagocytic cups, respectively. The localization of these PIs in

E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous

functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize

PIs in this organism has not been well-documented. In this review, we summarized

the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via

a genome-wide survey of the current genomic information. E. histolytica appears to

have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved

enzymes that generate all the seven PI species. However, class II PI 3-kinases, type

II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not

present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases

have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI

3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling

cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several

enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate

(PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI

metabolism also has conserved roles related to nuclear functions in E. histolytica, as it

does in model organisms.
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1. INTRODUCTION

Phosphoinositides (PIs) are phosphorylated-
phosphatidylinositol (PtdIns) derivatives and play pivotal
roles in a variety of biological processes such as receptor-
mediated signaling, vesicular traffic, cytoskeleton rearrangement,
and regulation of channels and transporters (Sasaki et al., 2009;
Balla, 2013). Spatiotemporal regulation of PI-mediated biological
processes is achieved by interconversion of the phosphorylation
states of PIs by specific kinases and phosphatases, followed by
recruitment of PI-specific effectors. Phospholipids are ubiquitous
in all three domains of life. Nevertheless, the complexity of PIs
and enzymes that interconvert them appears to have increased in
eukaryotes (Michell, 2008, 2011). It has been suggested that the
PI metabolism developed in the last common eukaryotic ancestor
(Michell, 2008) and diverged during eukaryotic evolution.

Human amebiasis is a common infection caused by the
protozoan parasite Entamoeba histolytica in both developing
and developed countries (Taniuchi et al., 2013; Lo et al., 2014;
Ishikane et al., 2016), causing as far as 73,800 deaths annually
(Lozano et al., 2012). The transmission usually occurs upon
ingestion of water or food contaminated with E. histolytica cysts.
The ingested cysts pass through the stomach and differentiate
into trophozoites that colonize the colon. It is estimated that
only 10–20% of individuals who are infected with E. histolytica
develop symptoms (Gathiram and Jackson, 1985; Marie and
Petri, 2014). The most common clinical manifestations in
symptomatic cases are colitis and dysentery, and 5–10% of these
are accompanied by invasive extraintestinal amebiasis, which is
mostly amoebic liver abscess (Walsh, 1986).

Entamoeba histolytica belongs to the eukaryotic
supergroup Amoebozoa, which is only distantly related to
the eukaryotic model organisms in the Opisthokonta clade,
including Saccharomyces cerevisiae, Caenorhabditis elegans,
Drosophila melanogaster, and Homo sapiens. Various unique
features of E. histolytica have been described due to its
anaerobic/microaerophilic and parasitic life style, including
metabolism of sulfur-containing amino acids, anaerobic
energy generation, anti-oxidative stress mechanisms, and
compartmentalization of sulfate activation to mitosomes, a
unique mitochondria-related organelle (Ali and Nozaki, 2007;
Müller et al., 2012; Makiuchi and Nozaki, 2014; Jeelani and
Nozaki, 2016; Mi-Ichi et al., 2017; Pineda and Perdomo, 2017).
Furthermore, the mechanisms regulating membrane trafficking
in E. histolytica appear to be at least as complex as those found
in higher eukaryotes. While most of the machineries underlying
membrane-trafficking such as clathrin coats, coatomers,
SNAREs, ESCRTs, and the retromer complex are conserved
in E. histolytica (Nakada-Tsukui et al., 2005; Clark et al., 2007;
Leung et al., 2008), unique evolutionary features in membrane
trafficking are also apparent. For example, E. histolytica has
numerous extremely diversified Rab small GTPases (104 genes)
despite its unicellularity throughout its life cycle (Saito-Nakano
et al., 2005; Nakada-Tsukui et al., 2010). In addition, a family of
unique receptors that transport lysosomal hydrolase emerged
in Entamoeba and related lineages during evolution (Furukawa

Abbreviations: see Supplementary Table S6.

et al., 2012, 2013; Nakada-Tsukui et al., 2012; Marumo et al.,
2014). Although membrane trafficking in E. histolytica has
been well-studied in the last few decades, E. histolytica PIs and
PI metabolism are still relatively elusive despite the fact that
they likely play critical roles in the physiology, especially in
membrane trafficking, and pathogenicity of this organism (Raha
et al., 1994, 1995; Giri et al., 1996; Makioka et al., 2001; Powell
et al., 2006; Blazquez et al., 2008; Nakada-Tsukui et al., 2009;
Byekova et al., 2010; Goldston et al., 2012; Koushik et al., 2013,
2014; López-Contreras et al., 2013; Lee et al., 2014; Bharadwaj
et al., 2017). A previous genome-wide survey suggested that
PI effectors found in other eukaryotes are not well-conserved
in E. histolytica (Nakada-Tsukui et al., 2009). In this particular
study, in order to better understand the level of conservation,
elimination or diversification of the enzymes involved in the
metabolism of E. histolytica PIs, we performed an extensive
search for the potential kinases and phosphatases specific for
the PIs found in the genome of this pathogen. Additionally,
we summarized the known structural features and functions
of similar enzymes in other organisms. To find and weigh the
significance of possible homologs, we primarily used the E-values
in the BLAST search. This was because E. histolytica homologs
often differ in domain configurations and protein lengths to
homologs in model organisms and the E-values better reflect
both local and entire protein similarity. Such a comprehensive
understanding of PI kinases and phosphatases will help us
construct new hypotheses in future research.

2. GENERAL OVERVIEW ON
INTRACELLULAR LOCALIZATION AND
ROLES OF PIs

2.1. Definition, Structure, Synthesis,
Transport, and Localization of PIs
2.1.1. Definition, Structure, Synthesis, and Transport

of PIs
PtdIns consists of a glycerol backbone with two covalently
bound fatty acids at the stereospecifically numbered (sn)-1 and
2 positions, and a D-myo-inositol head group linked via the sn-
3 phosphate of glycerol. Three hydroxyl groups of the D-myo-
inositol head group (D3–5) are independently phosphorylated
or dephosphorylated to form seven kinds of phosphorylated
PtdIns (PIs) (Figure 1). PtdIns is synthesized in the endoplasmic
reticulum (ER) from cytidine diphosphate diacylglycerol (CDP-
DAG) andmyo-inositol by PtdIns synthase (PIS) and transported
to other cellular compartments either by vesicular transport or by
PI transfer proteins (PITPs) (Di Paolo and De Camilli, 2006; Lev,
2010; Das and Nozaki, 2018). PtdInss are further metabolized to
a variety of PIs on the membranes of these organelles (Figure 1).

2.1.2. Localization of PIs
PtdIns and PIs are concentrated at the cytosolic surface of
the plasma membrane. Each PI type is enriched in a specific
compartment(s) or sub-compartment(s) (Balla, 2013; Schink
et al., 2016) (Figure 2). This disequilibrium in the type and
distribution of PIs serves as a molecular tag to recruit specific
effectors (Hammond and Balla, 2015; Várnai et al., 2017). In the
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model organisms, the distribution of PtdIns and PIs has been
well-characterized. PtdIns4P and PtdIns(4,5)P2 are enriched on
the plasma membrane, where PtdIns(3,4)P2 and PtdIns(3,4,5)P3
are transiently generated in situ in response to extracellular
stimuli or intracellular signaling (Di Paolo and De Camilli, 2006).
PtdIns4P is enriched in the Golgi apparatus, where it regulates
both intra-Golgi trafficking and the subsequent transport to
the plasma membrane or the endosomal system (De Matteis
et al., 2013). PtdIns3P is enriched in early endosomes and
is known to trigger the recruitment of a number of effector
proteins important for early endosomal identity and function
(Di Paolo and De Camilli, 2006; Marat and Haucke, 2016;
Schink et al., 2016). PtdIns(3,5)P2, converted from PtdIns3P,
accumulates in the multivesicular bodies (MVBs) and late
endosomes/lysosomes as early endosomes mature (Marat and
Haucke, 2016). PtdIns5P is present in the nucleus, plasma
membrane, and endomembranes including autophagosomes
(Hammond and Balla, 2015; Vicinanza et al., 2015; Várnai
et al., 2017), and functions in cytoskeleton regulation, and stress
signaling pathways (Viaud et al., 2014). Except for PtdIns(3,4)P2
and PtdIns(3,5)P2, nuclear localization of all the PIs has been
reported (Ye and Ahn, 2008). Although PI metabolism in the
nucleus is not fully understood, the involvement of nuclear PIs in
transcription and chromatin remodeling in mammals, fly, yeast,
and plant has been reported (Cheng and Shearn, 2004; Blind et al.,
2012; Dieck et al., 2012; Shah et al., 2013; Poli et al., 2016).

2.2. Physiological Roles of PIs
2.2.1. Signaling via Phospholipase C-PtdIns(4,5)P2

Breakdown
PIs are involved in signaling via two major pathways:
as precursors of second messengers, and as regulators of
various PI-specific effectors. The role of phospholipase C
(PLC), which breaks down PtdIns(4,5)P2 to inositol 1,4,5-
trisphosphate[Ins(1,4,5)P3] and DAG, in the receptor-mediated
growth signal pathway was first demonstrated in the early ’80s
(Michell et al., 1981; Berridge, 1983; Nishizuka, 1984; Michell,
1995). The role of PI turnover and PI-mediated signaling in
cell proliferation is well-established (Berridge, 1984, 1987). PI
turnover has also been implicated in the upstream signaling of
Ca2+ fluxes (Fain and Berridge, 1979). Given that the primary
target of PLC is PtdIns(4,5)P2 but not PtdIns (Berridge, 1983;
Berridge et al., 1983; Creba et al., 1983), and Ins(1,4,5)P3 is
involved in Ca2+ release from the ER, PLC and PtdIns(4,5)P2
indirectly affect the regulation of non-mitochondrial Ca2+

storage (Streb et al., 1983, 1984; Volpe et al., 1985). DAG activates
the phospholipid-dependent kinase family, protein kinase C
(PKC), and subsequently, the downstream signaling cascades
(Nishizuka, 1984, 1995).

Ins(1,4,5)P3-mediated calcium signaling is conserved in a
wide range of eukaryotes (Plattner and Verkhratsky, 2013).
Interestingly, Ins(1,4,5)P3 can be generated by an alternative
pathway independent of PLC, and many protists do not have
orthologous genes for the canonical Ins(1,4,5)P3 receptor, which
regulates Ca2+ release from the ER (Kortholt et al., 2007; Plattner
and Verkhratsky, 2013; Artemenko et al., 2014; Garcia et al.,
2017). However, Ca2+ release by Ins(1,4,5)P3 has been observed

FIGURE 1 | Structures of phosphatidylinositol (PtdIns) and phosphoinositides

(PI), and the routes of their interconversion. PtdIns consists of a glycerol

backbone with two covalently attached fatty acids at the sn-1 and sn-2

positions, and a D-myo-inositol head group linked via the phosphate at the

sn-3 position. Three hydroxyl groups of the D-myo-inositol head group (D3-5)

are independently phosphorylated or dephosphorylated to form the seven

kinds of phosphorylated PtdIns, PIs. Solid and broken arrows indicate kinase

and phosphate reactions, respectively.

even in the organisms without an Ins(1,4,5)P3 receptor. Besides,
an orthologous gene has been identified in Trypanosoma cruzi,
which is responsible for Chagas disease, suggesting some extent
of conservation of the signaling pathway among eukaryotes
(Hashimoto et al., 2013; Plattner and Verkhratsky, 2013).

2.2.2. Vesicular Traffic
PIs are involved in a variety of processes that involve
vesicular trafficking, including secretion, recycling,
endocytosis/phagocytosis, and autophagy (Frere et al., 2012;
Balla, 2013; Swanson, 2014; Klinkert and Echard, 2016;Makowski
et al., 2017; Wallroth and Haucke, 2018). A majority of secretory
proteins are first transported into the ER lumen through the
translocon on the ER membrane, then to the Golgi, where
they are packaged into transport vesicles to be dispatched to
endosomes or the plasmamembrane. PtdIns4P, which is enriched
in the Golgi, cooperatively works with PtdIns4P effectors such
as GGA (Golgi-localized, gamma adaptin ear-containing,
ARF-binding; a clathrin adaptor protein), Arf1, Ypt32p/Rab11
(small GTPase), and Sec2 (RabGEF) to form and target transport
vesicles to the plasma membrane (De Matteis et al., 2013;
Makowski et al., 2017). At the plasma membrane, PtdIns(4,5)P2
cooperates with its effectors and promotes fusion of secretory
vesicles with the plasma membrane (Li and Chin, 2003; Balla,
2013; Martin, 2015). PtdIns(4,5)P2 at the plasma membrane
is involved in the initiation of internalization processes such
as endocytosis, micropinocytosis, and phagocytosis (Swanson,
2014; Wallroth and Haucke, 2018). During clathrin-mediated
endocytosis, local synthesis of PtdIns(4,5)P2 from PtdIns4P
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FIGURE 2 | Subcellular localization of PIs in Homo sapiens and Entamoeba histolytica. Schematic representation of subcellular localization of PIs in H. sapiens

(Upper) and E. histolytica (Lower). The seven PI species are depicted with different colors as indicated in the islet. Numbers 3, 4, and 5 depict the positions of

phosphates in the PIs. Note that localization of the PIs in E. histolytica is largely elusive. CCP, clathrin-coated pit; MVB, multi vesicular body; ER, endoplasmic reticulum.

by PIP kinases initiates clathrin-coated pit (CCP) formation.
Subsequent conversion of PtdIns(4,5)P2 to PtdIns(3,4)P2 is
necessary for CCP maturation. It has been demonstrated that
elimination of PtdIns(4,5)P2, and generation of PtdIns(3,4)P2

and PtdIns3P on CCPs by PI 5-phosphatases and PI 3-kinases
are the key events for maturation of endosomes (Nakatsu
et al., 2010). Generation of PtdIns4P on endosomes and
recruitment of PtdIns4P effectors have been reported to be
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necessary for recycling the plasma membrane proteins (Henmi
et al., 2016). Both macropinocytosis and phagocytosis depend
on actin reorganization, in which PI metabolism is known
to be involved (Yeung and Grinstein, 2007; Swanson, 2014).
Briefly, local accumulation of PtdIns(4,5)P2 stimulates actin
rearrangement to form the phagocytic/macropinocytic cup.
The accumulated PtdIns(4,5)P2 is then removed from the
cup via three different mechanisms: hydrolysis by PLC to
generate Ins(1,4,5)P3 and DAG, phosphorylation by PI 3-kinase
to generate PtdIns(3,4,5)P3, and dephosphorylation by PI
5-phosphatases (OCRL1 and INPP5B, see below sections) to
generate PtdIns4P. Removal of PtdIns(4,5)P2 from the cup
causes actin dissociation and cup closure. On the nascent
phagosomes, PtdIns3P accumulates by the action of type
III PI 3-kinase and SHIP1/2 phosphatases. The generated
PtdIns3P, alongside its effectors, engages in the early phase
of phagosome/macropinosome maturation (Birkeland and
Stenmark, 2004). In the later phase of the maturation, PtdIns3P
is converted to PtdIns(3,5)P2, which drives sorting of cargos,
such as carboxypeptidase S in yeast, and EGF receptor in
human, into MVBs in cooperation with the ESCRT (endosomal
sorting complex required for transport) complex (Odorizzi
et al., 1998; Whitley et al., 2003). Autophagy is a mechanism
necessary for bulk breakdown of cytoplasmic proteins and
organelles (Mizushima et al., 2011). The unique serine/threonine
kinase ULK1 (unc-51-like kinase 1, Atg1 in yeast) is activated
during autophagy, and it subsequently activates the class III PI
3-kinase Vps34 complex to generate PtdIns3P on the autophagic
membrane. This, in turn, recruits a variety of proteins involved
in autophagosome formation (Marat and Haucke, 2016).
PtdIns(3,5)P2 synthesis has been reported to be required at the
later phase of autophagosome maturation (Ferguson et al., 2009;
Zou et al., 2012; Al-Qusairi et al., 2013).

2.2.3. Cytoskeletal Rearrangement, Motility, and

Regulation of Transporters
As mentioned above, PtdIns4P and PtdIns(4,5)P2 are the major
PIs on the plasma membrane, and PtdIns(3,4,5)P3 is transiently
generated to provide a temporary signal. The importance of
PtdIns(4,5)P2 has been well-established by a number of studies,
and it has been shown that the level of PtdIns(4,5)P2 on the
plasma membrane changes. As discussed above, PtdIns(4,5)P2
is involved in signal transduction and endocytosis/phagocytosis
(see sections 2.2.1 and 2.2.2). PtdIns(4,5)P2 is also involved in the
regulation of actin cytoskeleton and membrane channel activity
(Balla, 2013; Hille et al., 2015; Schink et al., 2016).

During chemotaxis, chemoattractants are recognized
by G-protein-coupled receptors (GPCRs) on the plasma
membrane. This interaction leads to dissociation of the Gα

heterodimer, which in turn activates PI 3-kinase to generate
PtdIns(3,4,5)P3 from PtdIns(4,5)P2 on the cytoplasmic side of
the plasma membrane. Local accumulation of PtdIns(3,4,5)P3
causes translocation of actin-binding proteins (ABP) that
interact with PtdIns(3,4,5)P3, and activates actin remodeling
at the leading edge of the cell. On the contrary to these
events at the leading edge, the PI 3-phosphatase PTEN
(phosphatase and tensin homology located on chromosome 10),

which converts PtdIns(3,4,5)P3 to PtdIns(4.5)P2 to cease the
signal, has been shown to accumulate at the posterior side of
the cell.

There aremany ion channels regulated by PIs (Hilgemann and
Ball, 1996; Hille et al., 2015). Kir2.2 is a member of the inwardly
rectifying potassium channel family localized on the plasma
membrane, and it is known to be activated upon interaction with
PtdIns(4,5)P2 (Hansen et al., 2011). Crystal structure analysis
revealed that a direct interaction of PtdIns(4,5)P2 with Kir2.2
induces a structural change on this channel. This, in turn, induces
the channel to compress by pulling its cytoplasmic domain
toward the potassium-selective pore on the membrane, shifting
the channel to the active conformation (Rohács et al., 2003;
Whorton and MacKinnon, 2011). Two possible advantages of
PI dependence of ion channels have been suggested: (1) to
achieve local activation of the channels depending on the lipid
composition (i.e., no or decreased activity during synthesis and
trafficking of the lipids to the target membrane) and (2) to swiftly
regulate the channel activity by lipid modifying enzymes such as
PLC, PI kinases, and PI phosphatases.

2.2.4. Nuclear Functions
Besides the various roles of PIs in the cytoplasm and the
plasma membrane described above, PIs play indispensable roles
in the nucleus. Localization of PIs, except for PtdIns(3,4)P2
and PtdIns(3,5)P2, in the nuclear matrix has been demonstrated
(Payrastre et al., 1992; Vann et al., 1997; Tanaka et al., 1999;
Gillooly et al., 2000; Clarke et al., 2001). Since the nuclear matrix
is hydrophilic, it is not well-understood how PIs remain soluble
in the nucleus (York, 2006). The significance of PtdIns(4,5)P2
and PtdIns5P has been well-demonstrated (Irvine, 2003; Poli
et al., 2016; Hamann and Blind, 2018). PtdIns(4,5)P2 is involved
in the transcriptional regulation and chromatin remodeling by
interacting with histones (Yu et al., 1998; Cheng and Shearn,
2004; Shah et al., 2013). PtdIns(4,5)P2 also regulates cell cycle
and differentiation through DAG generated by PLC-induced
hydrolysis (Clarke et al., 2001; Newton, 2010; Poli et al., 2013,
2014). Nuclear DAG accumulation is followed by translocation
of PKC to the nucleus for the phosphorylation of the target
proteins (Neri et al., 1998). PtdIns5P is known to interact with
TAF3, a component of the TATA box-binding protein complex,
TFIID, and the chromatin-associating protein ING2, to regulate
transcription and chromatin remodeling (Shi et al., 2006; Bua
et al., 2013; Stijf-Bultsma et al., 2015). Interestingly, nuclear
PI metabolism is regulated independently from cytoplasmic PI
metabolism (Lindsay et al., 2006).

2.3. Spatiotemporal Regulation of
PI-Mediated Signaling
2.3.1. PI-Specific Binding Proteins
Spatiotemporal regulation of PI-mediated signaling occurs in a
variety of biological processes by various PI-specific effectors
and enzymes that mediate interconversion of PIs. The seven
phosphorylated PI species are enriched on specific membrane
regions in both the cytoplasm and nucleus (Balla, 2013), and
specifically recognized by PI effectors. This specific recognition
occurs through the interaction of the PI-specific binding domains

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 June 2019 | Volume 9 | Article 150

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Nakada-Tsukui et al. Phosphoinositide Kinases and Phosphatases in Entamoeba histolytica

of the effector proteins with the head groups of PIs (Figure 1). All
the distinct PI-binding domains, consisting of a total of 24, have
already been reported (Várnai et al., 2017).

2.3.2. Major Players of PI Interconversion
Each PI interconversion reaction is regulated by specific
kinases or phosphatases (Figure 1). In mammals, 18 PI
interconversion reactions have been identified, and these
reactions are mediated by 19 PI kinases and 28 PI phosphatases
(Supplementary Tables S1, S2, Sasaki et al., 2009). PI 3-, PI 4-,
and PIP kinases use PtdIns as a substrate to generate PtdIns3P,
PtdIns4P, and PtdIns5P, respectively. Mono-phosphorylated
PIs are further phosphorylated by PIP kinases to generate
PtdIns(3,4)P2, PtdIns(3,5)P2, and PtdIns(4,5)P2, which is
further phosphorylated to generate PtdIns(3,4,5)P3. Each PI
is dephosphorylated by a series of PI phosphatases such as
PI 3-phosphatases (PTEN, MTM) PI 4-phosphatases (INPP4,
TMEM55), and PI 5-phosphatases (Synaptojanin, OCRL1,
INPP5, SHIP). It has been suggested that unique expression and
localization patterns of PI kinases and PI phosphatases influence
the local accumulation of PIs (Balla, 2013; Schink et al., 2016).

3. PREVIOUS FINDINGS ON THE ROLE OF
PIs IN E. histolytica

E. histolytica trophozoites have been reported to
have phospholipid compositions similar to those of
mammalian cells except for the unique ceramide, ceramide
aminoethylphosphonate (CEAP), which constitutes ∼15%
of the total phospholipids (Aley et al., 1980). PI is a minor
phospholipid component, constituting ∼5% of all phospholipids
(Aley et al., 1980). Similarly, PI content of intracellular vesicles
and the plasma membrane is <5%. While the plasma membrane
contains less phosphatidylcoline than other membranes, it has a
high content (40%) of CEAP (Aley et al., 1980). The resistance
of the plasma membrane of trophozoites to the intrinsic
pore forming peptide, amoebapores, is attributable to CEAP
(Andrä et al., 2004).

Several previous studies demonstrated that PIs are involved
in pathogenesis related processes such as adhesion, secretion,
and phagocytosis. When the amebic trophozoites adhere to host
cells, Gal/GalNAc lectin serves as a major adhesion molecule
and transduces the signals. It is composed of heavy (Hgl),
intermediate (Igl), and light (Lgl) subunits, of which Igl and Lgl
are GPI-anchored. The downstream cytosolic signals transmitted
from the lectin have not been well-investigated except for one
example (Hughes et al., 2003). However, it has been shown
that PtdIns(4,5)P2- and cholesterol-dependent enrichment of
Gal/GalNAc lectin subunits to lipid rafts causes an increment
of Ca2+ level followed by adhesion to the mammalian cell
(Welter et al., 2011; Goldston et al., 2012). These results suggest
involvement of PtdIns(4,5)P2-mediated Ca2+ signaling during
cell adhesion (Goldston et al., 2012).

Cysteine proteases (CPs) are the major virulence factors.
They are secreted via the default brefeldin A-sensitive or
unique brefeldin A-insensitive pathways, and Rab11B-dependent

pathways (Manning-Cela et al., 2003; Mitra et al., 2007).
In the model organisms, it has been established that Rab11
on the secretory vesicles, and Sec3 of the exocyst complex
interact, leading to tethering of the Rab11 vesicles to the
plasma membrane in a PtdIns(4,5)P2-dependent manner (He
et al., 2007; Zhang et al., 2008; Wu and Guo, 2015). The
components of the exocyst complex including PtdIns(4,5)P2-
binding Sec3 and Exo70 are mostly conserved in E. histolytica.
Thus, it is conceivable that PI-regulated secretion takes place in
E. histolytica.

PIs are also involved in phagocytosis in E. histolytica as
in mammals. Several studies in which amebic transformants
that expressed PI-binding proteins fused with green fluorescent
protein (GFP) or in which recombinant glutathione S-transferase
(GST) were used as bioprobes demonstrated that PtdIns(4,5)P2
were localized on the plasma membrane, while PtdIns(3,4,5)P3
were localized on the extended pseudopodia, and phagocytic
cups, and PtdIns3P on the phagocytic cups, nascent phagosomes,
and internal vesicles (Powell et al., 2006; Nakada-Tsukui
et al., 2009; Byekova et al., 2010; Koushik et al., 2013).
Localization of PtdIns(3,4,5)P3 and PtdIns3P is similar during
E. histolytica phagocytosis and macrophage phagocytosis (Yeung
and Grinstein, 2007). It has been recently shown that AGC
kinases 1 and 2 that bind to PtdIns(3,4,5)P3 or PtdIns(3,4)P2 are
localized to the contact site upon interaction with mammalian
cells (Somlata et al., 2017). Interestingly, AGC kinases 1 and
2 have different localization patterns, although their apparent
PtdIns specificities have been demonstrated with lipid overlay
assay. AGC kinase 2 localizes to a tunnel-like structure proximal
to the primary trogocytic cup and adjacent to the contact
site on the plasma membrane during trogocytosis (“trogo”
means “nibble” or “chew,” and trogocytosis is the process of
internalizing live cells by nibbling them). In contrast, AGC
kinase 1 is confined to the intermediate part of the trogocytic
tunnel. Such an observation has been made in E. histolytica
but not in professional phagocytes of multicellular organisms,
including mammals.

Cytoskeletons also play indispensable roles during
phagocytosis and trogocytosis. EhRho1, which is involved in
actin rearrangement via EhFormin1 and EhProfilin1 (Bharadwaj
et al., 2018), has been shown to regulate membrane blebbing
to initiate internalization of the prey through PI 3-kinases
(Bharadwaj et al., 2017). Inducible expression of a constitutively
active EhRho1 increased the PtdIns(3,4,5)P3 level and reduced
PtdIns(4,5)P2 level, whereas expression of a dominant negative
EhRho1 caused opposite effects (Bharadwaj et al., 2017). EhRho1
is considered to be orthologous to HsRhoA as the amino acid
sequences of their ROCK-binding domains are 65% identical.
Moreover, EhRho1 complements HsRhoA activity in HEK
293T cells (Bharadwaj et al., 2017). Interestingly, HsRhoA does
not localize to the phagocytic cup in mammalian cells unlike
EhRho1. Signaling transduced downstream of PtdIns3P in
mammals appears to be different in E. histolytica, because E.
histolytica does not seem to be equipped with the orthologs of
known mammalian PtdIns3P effectors. Transformation of E.
histolytica with GFP-fused human Hrs showed that PtdIns3P was
concentrated on phagosomes, more specifically at the bottom
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of the phagocytic cup during the early phase of phagocytosis
(prior to the closure of the phagosome) (Nakada-Tsukui et al.,
2009). Two PtdIns3P-binding domains are known: Phox
homology (PX) and Fab-1–YGL023–Vps27–EEA1 (FYVE)
domains. E. histolytica apparently has two PX and twelve FYVE
domain-containing proteins (Nakada-Tsukui et al., 2009; N.
Watanabe, data not shown). It has been demonstrated that
eleven out of the twelve E. histolytica FYVE domain-containing
proteins (EhFPs) also have a RhoGEF domain, and one of
EhFP (EhFP4) preferentially binds to PtdIns4P and localizes
to the plasma membrane proximal to the phagosome that is
not yet closed (Nakada-Tsukui et al., 2009). Surprisingly, the
C-terminal domain instead of the FYVE domain of EhFP4 binds
to PtdIns3P, PtdIns4P, and PtdIns5P (Nakada-Tsukui et al.,
2009). In model organisms, phagosomal PtdIns3P has been
shown to recruit FYVE domain-containing proteins, which
are subsequently involved in maturation of the phagosomes.
However, like RhoGEF, EhFP4 appears to be primarily involved
in actin rearrangement during phagocytosis eventhough full
length EhFP4 does not seem to recognize PtdIns3P. Additional
PtdIns3P effectors on phagosomes, most likely to be PX
domain-containing proteins, still remain elusive.

4. PI 3-KINASES

Phosphorylation of PtdIns and PIs is initially observed as
conversion of PtdIns to PtdIns4P, and PtdIns4P to PtdIns(4,5)P2
(Balla, 2013). The enzymes responsible for these activities are
named PtdIns kinases and PI kinases, respectively. Currently,
it is known that some enzymes can phosphorylate both PtdIns
and PIs. The enzyme classification given in this review is
based on the position of the hydroxyl group that the enzymes
can phosphorylate.

PI 3-kinases phosphorylate the hydroxyl group at the
D3 position of the inositol ring of PtdIns, PtdIns4P, and
PtdIns(4,5)P2 to generate PtdIns3P, PtdIns(3,4)P2, and PtdIns
(3,4,5)P3, respectively. There are three subfamilies of PI 3-
kinases: class I, II, and III (Sasaki et al., 2009). In general,
class I enzymes preferentially generate PtdIns(3,4,5)P3 from
PtdIns(4,5)P2. Class II enzymes mostly generate PtdIns(3,4)P2
from PtdIns4P and also generate PtdIns3P from PtdIns. Class
III enzymes almost exclusively generate PtdIns3P from PtdIns.
In mammals, there are a total of 8 members of PI 3-kinases.
All PI 3-kinases contain a “signature motif ” consisting of the
catalytic kinase domain, a helical domain, also called “lipid
kinase unique (LKU) domain,” and a membrane-binding C2
domain (Vanhaesebroeck et al., 2010a; Balla, 2013; Marat
and Haucke, 2016). The class I to III classification of PI 3-
kinases is mainly based on the presence of additional protein
domains and their interactions with regulatory subunits. Class
I enzymes have an adaptor binding domain (ABD), and
regulatory subunit-binding and Ras binding domains (RBD).
Class II enzymes have an N-terminal extension, which is
involved in clathrin binding, and a C-terminal PX and extra
C2 domains. It is of note that this PX domain in class II
PI 3-kinase is known to preferentially bind to PtdIns(4,5)P2

(Stahelin et al., 2006). These domains are involved in subcellular
localization and activity of the enzyme, and downstream
effector selection. The class I and class III enzymes have
regulatory subunits which modulate localization and activity of
these enzymes.

4.1. Class I PI 3-Kinase
4.1.1. General Description of Class I PI 3-Kinase
Class I PI 3-kinases predominantly produce PtdIns(3,4,5)P3 from
PtdIns(4,5)P2. There are two kinds of class I PI 3-kinases based
on their composition of catalytic and regulatory subunits. One of
the three class IA catalytic subunits (p110α, β, and δ) associates
with one of the five p85 class regulatory subunits (p85α, p85β,
p55α, p55γ, and p50α), while the class IB catalytic subunit
(p110γ) associates with one of the two P101/p87 class regulatory
subunits (p101 and p87) (Vadas et al., 2011; Jean and Kiger,
2014) (Figure 3). In mammals, p110α and p110β are expressed
ubiquitously, while p110δ and p110γ seem to be restricted to
hematopoietic cells. The class IA catalytic subunits (p110α, β,
and δ) are activated via receptor tyrosine kinases and generate
PtdIns(3,4,5)P3 at the plasma membrane. On the other hand, the
p110β and p110γ catalytic subunits are activated downstream
of the GPCR (Stephens et al., 1994; Stoyanov et al., 1995;
Vanhaesebroeck et al., 2010a). PtdIns(3,4,5)P3 generation causes
recruitment of PI effectors, such as the protein kinase Akt, also
named protein kinase B (PKB) (James et al., 1996; Ma et al., 2008;
Rodgers et al., 2017). Activated Akt is involved in cell survival and
metabolism via various cellular processes, including those that
involve mammalian target of rapamycin complex-1 (mTORC1),
the pro-apoptotic factor BAD, and FOXO transcription factors
(Vanhaesebroeck et al., 2010a; Dibble and Cantley, 2015). Due
to their crucial roles in cell growth and proliferation, dominant
activating mutations of the class I PI 3-kinases are known to
be associated with cancers, making PI 3-kinases potential drug
targets (Vanhaesebroeck et al., 2010b).

4.1.2. Class I PI 3-Kinase of E. histolytica
In the E. histolytica genome (http://amoebadb.org/amoeba/),
six potential catalytic subunits of class I PI 3-kinases were
identified by probing the genome with the catalytic subunits of
human class I PI 3-kinases as queries (NP_006209, NP_006210,
AAH35683, and NP_005017, corresponding to p110α, β, γ, and
δ, respectively). Independent of the query used, ten proteins
were identified to share significant overall similarity, reflecting
a possible redundancy among them (E-value < 1 × 10−10).
Six of them have conserved domains, such as RBD, C2, LKU,
and PI 3-kinase catalytic domains, but no protein with the
ABD was identified (Figure 3; Supplementary Table S1). Four
additional proteins were also identified during this survey:
a class III PI 3-kinase (EHI_096560) and type III PI 4-
kinase (EHI_148700) (see below), a catalytic domain-only
protein (EHI_127850), and a protein that lacked the LKU
domain (EHI_073560). As PI 3-kinase catalytic domain is also
conserved in PI 3- and PI 4-kinases (Vogt et al., 2007), the
identification of both class III PI 3-kinase and type III PI
4-kinase homologs during this search is understandable. In
the present review, we tentatively designated the proteins that
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FIGURE 3 | Structural features of PI kinases of H. sapiens and E. histolytica. Structural features and domain organization of PI kinases, including their regulatory

subunits are shown. Numbers showing at the end of the protein indicates amino acid length. ABD, adaptor binding domain; AR, acidic region; BH, Bcl Homology;

C2,C2 domain; Catalytic, lipid kinase domain of PI 3- and PI 4-kinases; DEP, disheveled, Egl-10 and pleckstrin domain; FYVE, Fab1, YOTB, Vac1, and EEA1 domain;

HEAT, Huntington, Elongation factor3, PR65/A, and TOR; Kinase, Ser/Thr kinase domain; LKU, lipid kinase unique domain; P, Proline-rich; PDZ-B, PDZ domain

binding domain; PH, Pleckstrin-homology; PIPKc, kinase core domain of PIP kinases; PX, Phox homology; Rab-BD, Rab binding domain; RBD, Ras binding domain;

SH2, Src homology 2; SH3, Src homology 3; TPC-1, T-complex 1 homology; TPR, tetratricopeptide repeat; WD40, WD40 repeat. Myristoylation, palmitoylation sites,

and the nuclear localization signal are also depicted with “*”, “ ”, or “H”, respectively.
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contain LKU and catalytic domains as class I PI 3-kinases,
which excluded the four additional proteins mentioned above
(Figure 3; Supplementary Table S1). Among the six class I PI
3-kinases, EHI_040690 showed a lower E-value to class II PI 3-
kinase. The E-values with p110β and PI 3-kinase-C2α were 1 ×

10−107 and 2 × 10−110, respectively (Supplementary Table S3

and N. Watanabe, data not shown). However, because it lacks
the C-terminal domains and catalytic domain, we included
this gene among the class I PI 3-kinases (also refer section
4.2.2). The six proteins with conserved RBD, C2, LKU, and
PI 3-kinase catalytic domains cannot be further classified into
p110α, β, γ, or δ, as none of them has the ABD and show
only marginal E-value to the ABD-containing proteins p110α,
β, or δ (Supplementary Table S3; Supplementary Figure S4).
Furthermore, all potential class I PI 3-kinase catalytic subunit
homologs showed the lowest E-value to p110β, but not for p110γ
despite the fact that all the amebic homologs lack the ABD
and structurally resemble p110γ (Supplementary Table S3).
No homologs of the regulatory subunits that contain Src
homology 2 (SH2) domain were identified in the E. histolytica
genome database when p85α, β, p55α, p50α, and p55γ were
used as the queries. Furthermore, only five proteins were
predicted to have an SH2 domain and four of them were
annotated as protein kinases, while the remaining protein was
predicted to have a role in RNA stability and/or transcriptional
regulation, with no possible link to PI 3-kinase regulatory
subunits. These data suggest the possibility that the regulatory
subunits of class I PI 3-kinase have been lost or replaced with
a lineage-specific protein in E. histolytica during evolution.
In Saccharomyces cerevisiae, class I and II PI 3-kinases are
not conserved. Dictyostelium discoideum has catalytic but not
regulatory subunits of three class I PI 3-kinases and lacks
class II PI 3-kinases (Engelman et al., 2006). The catalytic
subunits of D. discoideum class I PI 3-kinases also lack the
ABD as in E. histolytica. Such lineage-specific modifications of
the catalytic subunits and loss of the regulatory subunits of
class I PI 3-kinases likely suggest divergence of PtdIns(3,4,5)P3-
mediated lipid signaling in eukaryotes. It should be noted that
E. histolytica has six PtdIns(3,4,5)P3 phosphatase homologs of
PTEN, while there is only one PTEN gene in the human genome
(see section 7.1).

4.2. Class II PI 3-Kinase
4.2.1. General Description of Class II PI 3-Kinase
Class II PI 3-kinases are monomeric enzymes that generate
PtdIns(3,4)P2 and PtdIns3P from PtdIns4P and PtdIns,
respectively (Balla, 2013; Maffucci and Falasca, 2014). There
are three subtypes: PI 3-kinase C2α, β, and γ, among which PI
3-kinase C2α and β have N-terminal extensions that are likely
involved in autoinhibition and protein-protein interactions with
clathrin (Marat and Haucke, 2016). Except for the N-terminal
extensions, all class II PI 3-kinases contain one RBD, two C2, one
LKU, one catalytic, and one PX domains. PI 3-kinase C2α and
β isoforms are ubiquitously expressed, whereas the γ isoform
is largely restricted to the liver. This class of PI 3-kinases does
not have the regulatory subunit; however, they are regulated
by interacting with proteins such as clathrin and Rab5 small

GTPase. Clathrin associates with PI 3-kinase C2α and β isoforms
through the N-terminal extension, and Rab5 interacts with the γ

isoform via the RBD (Gaidarov et al., 2001, 2005; Braccini et al.,
2015). Accumulating evidence suggests that class II PI 3-kinases
are involved in the regulation of membrane trafficking from the
plasma membrane via PtdIns(3,4)P2 synthesis. PI 3-kinase C2α
is involved in clathrin-mediated endocytosis by the formation of
PtdIns(3,4)P2, which constricts the membrane by recruiting PX
and BAR domain-containing sorting nexin (SNX) SNX9 (Posor
et al., 2013; Schöneberg et al., 2017). PI 3-kinase C2γ is recruited
to endosomes as Rab5 effector for PtdIns(3,4)P2 synthesis,
which is indispensable for delayed and sustained activation of
Akt2 in the liver (Braccini et al., 2015). It was also suggested
that PI 3-kinase C2α and β also play a role in the regulation of
intracellular PtdIns3P levels and directly or indirectly regulate
membrane traffic and autophagy (Jean et al., 2012; Devereaux
et al., 2013; Franco et al., 2014).

4.2.2. Class II PI 3-Kinase From E. histolytica

In E. histolytica, we concluded that there are no class II PI
3-kinases. When three human class II PI 3-kinases were used
as queries, the best hits we obtained were the same proteins
identified as class I PI 3-kinases (see above). As described above,
because of the low similarity to class II PI 3-kinases in five
out of six candidates and the absence of the PX domain in all
the six, they were classified into class I PI 3-kinases. It is of
note that EHI_040690 showed a lower E-value with PI3KC2α
(2 × 10−110 with PI3KC2α and 1 × 10−107 with class I PI
3-kinase, p110β). Additionally, class II PI 3-kinases evolved
after Metazoa, and another amoeboid organism, D. discoideum,
lacks this class of PI 3-kinases (Engelman et al., 2006; Brown
and Auger, 2011). According to these contexts, we decided to
conclude that there are no class II PI 3-kinases in E. histolytica.
However, the conservation of a gene showed low E-value with
the class II PI 3-kinase, suggesting the possibility that some of
the class I PI 3-kinases have a role similar to that of class II
PI 3-kinases.

4.3. Class III PI 3-Kinase
4.3.1. General Description of Class III PI 3-Kinase
The human genome has one class III PI 3-kinase, vacuolar
protein sorting (Vps) 34, which phosphorylates the D3-
position of PtdIns. Vps34 gene was first identified as a
temperature-sensitive mutation that impairs the sorting of
vacuolar hydrolases in yeast (Herman and Emr, 1990; Schu
et al., 1993). Vps34 consists of one of each of the C2, LKU,
and catalytic domains, and forms a dimer with the p150
regulatory subunit (Vps15 in yeast). p150 constitutively interacts
with Vps34, and the myristoyl modification in its amino
terminal links Vps34 to the membrane (Stack et al., 1993;
Vanhaesebroeck et al., 2010a). Since Vps34 is the only PI
3-kinase in yeast, and also widely conserved in Eukaryota,
Vps34 is considered to be the ancestral PI 3-kinase (Schu
et al., 1993; Engelman et al., 2006; Brown and Auger, 2011).
Vps34 participate in membrane trafficking, endocytosis,
phagocytosis, and autophagy through the synthesis of PtdIns3P
(Sasaki et al., 2009; Swanson, 2014; Wallroth and Haucke,
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2018; also see section 2.2.2). In the endocytic pathway,
early endosomes mature as PtdIns3P is synthesized in situ,
subsequently recruiting Rab5 and Rab7 to early and late
endosomes, respectively. Vps34 was identified as one of the
mutual effectors of Rab5 and Rab7, involved in spatiotemporal
generation of PtdIns3P on endosomal membranes
(Christoforidis et al., 1999; Stein et al., 2003; Shin et al., 2005).

Vps34 has been shown to form two kinds of complexes that
differ in localization and function (Marat and Haucke, 2016).
Complex I consists of p150, and the mammalian orthologs of
yeast Vps30, Atg14, and Atg38 (Beclin-1, ATG14L, and NRBF2,
respectively). It is involved in autophagy (Itakura et al., 2008; Cao
et al., 2014; Lu et al., 2014). In contrast, complex II consists of
p150, Beclin-1, and UVRAG, which is the mammalian ortholog
of yeast Vps38. Complex II is involved in the regulation of
endosome and autophagosome maturation (Kihara et al., 2001;
Matsunaga et al., 2009; Funderburk et al., 2010; Sun et al., 2010;
Rostislavleva et al., 2015). It is also known that, in addition to its
role in autophagy Vps34 functions as an amino acid sensor, and
regulates mTORC1 activity and localization (Munson et al., 2015;
Hong et al., 2017). These observations suggest multiple roles
of Vps34 at the cross road of nutrient sensing and membrane
trafficking. Vps34 is also involved in the negative regulation
of autophagy through amino acid sensing (Furuya et al., 2005;
Gulati and Thomas, 2007) and mTORC1 activation mediated by
PtdIns3P-dependent recruitment of phospholipase D1 (PLD1)
(Yoon et al., 2011; Bridges et al., 2012). Activated mTORC1
inhibits the autophagy-promoting activity of the Complex I by
phosphorylating Atg14L in the complex (Yuan et al., 2013),
while it activates the Complex II by phosphorylating UVRAG.
Activation of the Complex II, in turn, leads to activation of Vps34
during the reformation of lysosomes from autophagosomes
following recovery from starvation (Yu et al., 2010;Munson et al.,
2015; Chen and Yu, 2017). Thus, Vps34-containing complexes
are interactive and involved in eliciting opposite effects
in the cell.

4.3.2. Class III PI 3-Kinase of E. histolytica
In E. histolytica, there are one of each Vps34 and p150
homolog (EHI_096560 and EHI_044190, respectively). Although
neither their localization nor function have been demonstrated,
roles of PtdIns3P are well-established as previously described
(Powell et al., 2006; Nakada-Tsukui et al., 2009). During
trogocytosis, which is ingestion by nibbling live mammalian
cells (Ralston et al., 2014; Somlata et al., 2017), unclosed
and nascent trogosomes are decorated with PtdIns3P. While
localization of PtdIns3P to endosomes per se has not been
well-documented, its localization toMVB-containing endosomes
has been demonstrated (Nakada-Tsukui et al., 2009), suggesting
a conserved role of PtdIns3P in the endocytic pathway in
E. histolytica. It is conceivable that Vps34 is involved in the
synthesis of PtdIns3P on trogosomes. E. histolytica has two
TOR (EHI_155160 and EHI_169320) and two Atg8 homologs
(EHI_130660 and EHI_172140). It is thus expected that
E. histolytica Vps34 may also play a role in the response
to starvation.

5. PI 4-KINASES

Among seven PtdIns isotypes, PtdIns(4,5)P2 is the most
abundant and well-studied in the context of PI turnover (see
section 2.2.1). Since PI 4-kinase is one of the major enzymes
responsible for producing the precursor of PtdIns(4,5)P2, it plays
a significant role by producing PtdIns4P (Wang et al., 2003;
D’Angelo et al., 2008). Various roles have been suggested for
PtdIns4P and PI 4-kinases, including signaling on the plasma
membrane (Tan and Brill, 2014). Two types of PI 4-kinases
are currently known in humans: type II and type III. Type I
PI 4-kinase, which was initially identified in a bovine brain
homogenate chromatography fraction that showed PI kinase
activity has turned out to be identical to PI 3-kinase, and thus it is
no longer referred (Whitman et al., 1988). The human genome
encodes two isotypes of both type II and type III PI 4-kinase.
Type II and III PI 4-kinases differ in their domain structure and
sensitivity to wortmannin, since the former is insensitive unlike
the latter.

5.1. Type II PI 4-Kinase
5.1.1. General Description of Type II PI 4-Kinase
Type II PI 4-kinases (PI4KII) contain a large lipid kinase domain
that is separated by a long non-conserved insert. This structure is
significantly different from that of type III PI 4-kinases (PI4KIII)
whose catalytic domain consists of LKU and catalytic domains.
It was inferred by phylogenetic analyses that type II PI 4-
kinases are evolutionarily different from type III PI 4-kinases.
Furthermore, type III PI 4-kinases share significant homology
with the typical protein kinase PKA and PI 3-kinases (Minogue
and Waugh, 2012). The catalytic domains of PI4KIIα and β

are highly similar, but their N-terminal regions are divergent.
The N-terminal proline-rich region (P) in PI4KIIα and acidic
region (AR) in β have been shown to interact with AP-3 and AP-
1 adaptor complexes, respectively (Salazar et al., 2005; Wieffer
et al., 2013). Initially, PI 4-kinases were expected to have a role
in the generation of PtdIns4P as a precursor of PtdIns(4,5)P2,
whereby they were thought to regulate signal transduction from
the plasma membrane. However, it has recently been suggested
that type II PI 4-kinases are mostly involved in the regulation
of endomembrane sorting machinery. They do so mostly in the
trans-Golgi network (TGN), which functions as a sorting hub.
To date, there are four suggested roles of PI4KIIα and β during
membrane trafficking: (1) cargo trafficking between the TGN and
internal vesicles via interaction with adaptor proteins such as AP-
1 and AP-3 (Wang et al., 2003; Salazar et al., 2005; Minogue
et al., 2006; Wieffer et al., 2013); (2) synthesis of PtdIns4P on
mature phagosomes/autophagosomes and regulation of fusion
with lysosomes (Jeschke et al., 2015; Levin et al., 2017); (3)
outbound traffic toward the plasma membrane (Husebye et al.,
1990; Barylko et al., 2001; Xu et al., 2006); and (4) regulation of
actin-dependent trafficking by interacting with actin regulatory
proteins, such as RhoGEF1, and Wiskott-Aldrich Syndrome and
SCAR homolog (WASH) complex components (Mössinger et al.,
2012; Ryder et al., 2013; Gokhale et al., 2016). It has been
shown in mammalian cells that the two isotypes of PI4KII are
differently regulated due to differences in the regulatory proteins
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they interact with. Both PI4KII isotypes are palmitoylated
at the CCPCC motif in the catalytic domain; however, only
PI4KIIβ has the ability to bind to HSP90, and the interaction
is disrupted upon stimulation by epidermal and platelet-derived
growth factors (Jung et al., 2011). This association with HSP90
enables stabilization of the lipid-modified PI4KIIβ in the cytosol
by preventing its proteasomal degradation (Jung et al., 2011).
Such elaborate mechanisms enable isotype-specific regulation
of PI4KII.

5.1.2. Type II PI 4-Kinase of E. histolytica
In E. histolytica, no ortholog with the E-value < 1 ×

10−4 was identified by using human type II PI 4-kinases
as a query in the BLAST search. It has been reported
that a majority of parasitic protists including Trypanosoma,
Leishmania, Trichomonas vaginalis, Giardia lamblia, and E.
histolytica, apparently lack type II PI 4-kinases (Brown and
Auger, 2011). However, apicomplexans such as Plasmodium
exceptionally conserve a type II PI 4-kinase. Fungal and
apicomplexan type II PI 4-kinase orthologs are closely related
to those found in metazoans and plants, respectively. This
observation is consistent with the current understanding of the
evolution scheme that fungi are closely related to metazoans, and
Apicomplexa acquired a plant-associated enzyme together with
the plastid-like apicoplast by endosymbios (Baldauf and Palmer,
1993; McFadden, 2000). Although Entamoeba appears to lack
type II PI 4-kinases, there is a possibility that Entamoeba and
other organisms that lack type II PI 4-kinase may have a novel
type of PI 4-kinase that is yet to be identified.

5.2. Type III PI 4-Kinase
5.2.1. General Description of Type III PI 4-Kinase
Type III PI 4-kinases contain a continuous (uninterrupted)
catalytic domain like PI 3-kinases, and both kinase types similarly
show wortmannin sensitivity. Different from type II PI 4-
kinases, the type III enzymes have a lipid kinase unique (LKU)
domain, which is conserved among PI 3-kinases (Balla, 2013).
As described above, the primary role of type III PI 4-kinases
is generation of PtdIns4P, a precursor of PtdIns(4,5)P2, at the
plasma membrane. PI4KIIIα has been shown to be recruited to
the plasma membrane by interacting with two binding proteins,
EFR3B and TTC7B, which are the mammalian homologs of
yeast Efr3 and Ypp1 (Baird et al., 2008, see below). Additionally,
knocking down PI4KIIIα causes reduction in PtdIns4P and
PtdIns(4,5)P2 level at the plasma membrane (Nakatsu et al.,
2012). Notably, in the PI4KIIIα knockout mouse embryonic
fibroblast (MEF) cells, the total cellular level of PtdIns(4,5)P2
did not change due to the compensatory upregulation of
PIPKIβ and γ, which also generate PtdIns(4,5)P2 from PtdIns4P.
However, the level of PtdIns(4,5)P2 in the internal vesicles
increased in the PI4KIIIα-knockout MEF cells. Several plasma
membrane proteins such as M1 muscarinic receptor, and
myristoylated/palmitoylated N-terminal anchor of LCK have
been demonstrated to be concentrated in the internal vesicles
where PtdIns(4,5)P2 is also enriched. These results suggest that
PI4KIIIα gives unique properties to the plasma membrane,

and thus lack of PI4KIIIα perturbs the membrane identity
(Nakatsu et al., 2012).

Of two isotypes in humans, PI4KIIIα contains a bipartite
nuclear localization sequence (NLS) and PH domain (Heilmeyer
et al., 2003). In contrast, PI4KIIIβ does not have either of these
domains; however, it contains several stretches rich in basic
amino acids and leucine-rich sequences that can potentially serve
as nuclear localization and export signals, overall suggesting their
nuclear localization (Heilmeyer et al., 2003). Both PI4KIIIs have
indeed been detected in the nucleus, and the yeast homolog of
PI4KIIIβ, Pik1p, has been shown to shuttle between the cytosol
and nucleus, suggesting its contribution to the PI pools in the
nuclear speckles (Garcia-Bustos et al., 1994; de Graaf et al., 2002;
Heilmeyer et al., 2003; Demmel et al., 2008; Mellman et al., 2008;
Barlow et al., 2010). PI4KIIIβ plays a role as Rab11 effector, and
participate in the recruitment of Rab11 to the Golgi and TGN
(de Graaf et al., 2004). The crystal structures of PI4KIIIβ, Rab11,
and Rab11 effector FIP3 revealed that PI4KIIIβ-Rab11 binding
is independent of the kinase activity of PI4KIIIβ, which suggests
a role of PI4KIIIβ other than PI phosphorylation (Burke et al.,
2014). While type II PI 4-kinases are palmitoylated, type III PI
4-kinases are soluble and present in the cytosol. For membrane
association, they interact with other proteins that havemembrane
affinity. PI4KIIIα has been shown to bind to TTC7 and EFR3
(Baird et al., 2008; Nakatsu et al., 2012). These proteins function
as a scaffold for PI4KIIIα (Wu et al., 2014). For instance, EFR3
binds to acidic phospholipids, whereby it recruits the enzyme
complex to the plasma membrane (Nakatsu et al., 2012). On the
other hand, PIK4IIIβ binds to neuronal calcium sensor 1 (NCS-
1), acyl-CoA-binding domain containing protein 3 (ACBD3), 14–
3–3, and ADP-ribosylation factor 1 (Arf1) (Zhao et al., 2001;
Hausser et al., 2006; Hsu et al., 2010; Sasaki et al., 2012; Klima
et al., 2016). NCS-1 is a myristoylated calcium binding protein
involved in membrane recruitment and activation of PI4KIIIβ.
ACBD3 is a Golgi adaptor protein involved in the recruitment of
PI4KIIIβ to the Golgi. Arf1 is a Golgi-localized small GTPase and
its activation enhances binding and activity of PI4KIIIβ. 14–3–3
is a phosphoserine/threonine-binding protein. It binds to protein
kinase D-phosphorylated PI4KIIIβ and this interaction stabilizes
PI4KIIIβ activity. These binding proteins are the key regulators
of type III PI 4-kinases.

5.2.2. Type III PI 4-Kinase of E. histolytica
Entamoeba histolytica has only one homolog of PI4KIIIα and
PI4KIIIβ (EHI_148700). As described above, E. histolytica does
not have a type II PI 4-kinases, and EHI_148700 is the only
potential PI 4-kinase in this organism. NLS search did not
indicate presence of NLS on EHI_1478700 (http://nls-mapper.
iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) (Heilmeyer et al.,
2003; Kosugi et al., 2009). Considering the analogy of E.
histolytica to other organisms and also the fact that its type I
PIP kinase is predicted to have NLS (see section 6.1.2 below),
it is reasonable to speculate that E. histolytica also has a
PtdIns4P pool in the nucleus. If so, as described above for
PI4KIIIβ, basic amino acid-stretches and leucine-rich sequences
in EHI_148700 may function as a nuclear localization signal.
This potential E. histolytica type III PI 4-kinase is a soluble
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protein and predicted to associate with the plasma membrane
through its binding proteins. However, no orthologs for the
known PI4KIIIα-binding proteins TTC7 and EFR3 have been
identified with an E-value lower than 1 × 10−10. EHI_118850
has been identified during a similarity search using human TTC7
as the query, and thus the two proteins are thought to be
homologs. However, although TTC7 has three tetratricopeptide
repeat (TPR) domains, EHI_118850 has two. No homologs of
human/yeast ERF3 have been identified in E. histolytica; however,
one should note that human and yeast ERF3 share only low
(19.4%) amino acid homology according to Clustal Omega
alignment, and noDNA similarity was detected by BLAST search.
Murine homologs of EFR3 and TTC7 were identified from the
PI4KIIIα immunoprecipitates of mouse brain extract (Nakatsu
et al., 2012). Thus, biochemical approaches must be pursued
in E. histolytica for the identification of its proteins that are
functionally homologous to TTC7 and ERF3. It is also worth
mentioning that type III PI4K of P. falciparum has been exploited
for the development of antimalarials (McNamara et al., 2013;
Kandepedu et al., 2018).

6. PHOSPHATIDYLINOSITOL PHOSPHATE
KINASES (PIP KINASES)

PIP kinases have a unique catalytic domain that is not
homologous to any other known lipid or protein kinases.
There are three types of PIP kinases based on the substrate
specificities. Type I and II PIP kinases generate PtdIns(4,5)P2
from PtdIns4P and PtdIns5P, respectively. Type III PIP kinases
generate PtdIns(3,5)P2 form PtdIns3P. The only recognizable
domain present in all PIPKs is the highly conserved kinase core
domain (PIPKc) (Sasaki et al., 2009; Balla, 2013).

6.1. Type I PIP Kinase
6.1.1. General Description of Type I PIP Kinase

(PIP 5-Kinase)
Three type I PIP kinases (PIPKI) have been identified in humans:
PIPKIα, β, and γ. The PIPKIγ mRNA transcript has been shown
to be alternatively spliced to encode multiple forms of PIPKIγ
isoforms: PIPKIγ-i1 to 6 (Ishihara et al., 1998; Giudici et al.,
2004; Schill and Anderson, 2009; Xia et al., 2011). All PIPKI
isoforms share a central kinase core (PIPKc) domain with 80%
amino acid homology (Ishihara et al., 1998). The C-terminal part
of the PIPKc domain contains a 25 amino acid activation loop
that is critical for both the substrate specificity and subcellular
targeting of PIPKs (Kunz et al., 2000, 2002; Liu et al., 2016).
PIPKIs are the major PtdIns(4,5)P2-generating enzymes, which
phosphorylate the hydroxyl group at the D5 position of the
inositol ring of PtdIns4P, and have a wide variety of roles relating
to PtdIns(4,5)P2 synthesis (Rameh et al., 1997). Since one of the
major roles of PtdIns(4,5)P2 is the actin-mediated processes,
PIPKIs are also indispensable for the actin dynamics. In fact,
yeast has a single PIPKI, Mss4p, and the mss4 mutant showed
a phenotype similar to actin deficiency (Desrivières et al., 1998;
Homma et al., 1998). In mammals, PIPKIs have also been shown
to be involved in actin dynamics and membrane activities by

generating PtdIns(4,5)P2 from PtdIns4P, and the specific role of
each PIPK seems to vary depending on their expression levels
and the cell type (Balla, 2013). PIPKIs are widely distributed in
the cell, and each isoform shows a unique localization pattern,
whereby it regulates a specialized (compartmentalized) pool
of PtdIns(4,5)P2 (Doughman et al., 2003; Tan et al., 2015).
PIPKIγi1–3 and 5 have been shown to be localized on the plasma
membrane (Balla, 2013), while PIPKIγi2 is also localized in the
recycling endosomes and focal adhesions (Di Paolo et al., 2002;
Ling et al., 2002). It has been also shown that PIPKIα and β are
targeted to autolysosomes (Rong et al., 2012). Additionally, it has
been independently demonstrated that PIPKIα and PIPKIγi4
are found in nuclear speckles (Li et al., 2013), and PIPKIβ
accumulates at the perinuclear regions (Doughman et al., 2003).
PIPKIs apparently play redundant roles, and only a single copy
of PIPKIγ is sufficient to support the development and growth
of mice to the adulthood (Volpicelli-Daley et al., 2010). All three
PIPKI isozymes have been linked to endosomal traffic (Galiano
et al., 2002; Shinozaki-Narikawa et al., 2006). PIPKIα and β are
known to initiate lysosomal reformation during autophagy (Yu
et al., 2010; Rong et al., 2012; Chen and Yu, 2017). PIPKIα and
γ are also implicated in chemotaxis (Lacalle et al., 2007; Lokuta
et al., 2007). PIPKIγi1 is involved in the generation of pools of
PtdIns(4,5)P2 for Ins(1,4,5)P3, which regulates calcium release
in histamine-stimulated HeLa cells (Wang et al., 2004). PIPKIα
has been shown to be involved in pre-mRNA processing
in association with non-canonical poly(A) polymerase,
Star-PAP, which is specifically stimulated by PtdIns(4,5)P2
(Mellman et al., 2008).

Activation of PIPKI differs from that of type II PIP kinase
(PIPKII). PIPKI activity is stimulated by phosphatidic acid (PA)
(Jenkins et al., 1994). Phospholipase D (PLD) and diacylglycerol
kinase produce PA and are thought to be involved in the
activation of PIPKIs (Tolias et al., 1998; Honda et al., 1999;
Divecha et al., 2000). In mammals, two PLD isotypes use
PtdIns(4,5)P2 as a cofactor (Cockcroft, 2001), and thus, locally
accumulated PIPKI and PLD mutually activate each other
through their products, which results in a positive feedback
loop (Mahankali et al., 2015). It has been shown that Arf6, a
small GTPase which regulates membrane traffic, recruits PLD2
to membrane ruffles and stimulates PIPKI activity (Skippen et al.,
2002). PLD1 is involved in initiation of autophagy by stimulating
the PIPKI activity to generate necessary PtdIns(4,5)P2 pool for
the formation of the isolation membrane (Jenkins and Frohman,
2005; Dall’Armi et al., 2010; Fan et al., 2011; He et al., 2013).

6.1.2. Type I PIP Kinase (PIP 5-Kinase) of E. histolytica
In E. histolytica, only one possible ortholog (EHI_153770)
with the E-value of < 1 × 10−10 was found (E-value, 1 ×

10−38) by using three H. sapiens type I PIP kinases (PIPKI)
(NP_001129110, AAH30587, and NP_001287778) as queries.
EHI_153770 has a PIPKc domain based on pfam search.
Furthermore, human and yeast PIPKIs, PIPKIβ (NP_001265182)
and Mss4p (BAA02869), respectively, were identified with the
corresponding E-values of 8 × 10−39 and 5 × 10−37, when
EHI_153770 was used as a query to search for a human or
yeast ortholog, respectively. Since no PIPKII ortholog has been
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identified in E. histolytica (see below section 6.2.2), EHI_153770
likely has a major role in PtdIns(4,5)P2 generation from
PtdIns4P. This single type I PIP kinase should have a wide variety
of roles in E. histolytica. It is of note that the NLS is conserved in
EHI_153770 and the putative PLD of E. histolytica also has an
NLS (K. Das, data not shown). Sharma and colleagues recentrly
demonstrated of EHI_15377 (Sharma et al., 2019).

6.2. Type II PIP Kinase
6.2.1. General Description of Type II PIP Kinase

(PIP 4-Kinase)
Type II PIP kinase is the oldest PIP kinase identified among
the others. However, the role of this class of enzymes is not
as well-understood as that of type I PIP kinases (Boronenkov
and Anderson, 1995; Divecha et al., 1995). Although PIPKII was
initially thought to be responsible for generation of PtdIns(4,5)P2
from PtdIns5P, this enzyme is currently considered to play a role
in the regulation of the PtdIns5P levels (Clarke et al., 2010).
Three PIPKII isotypes, PIPKIIα, β, and γ, are known, all of
which contain the conserved PIPKc kinase domain bisected in
the center by a non-conserved inserted sequence (Loijens et al.,
1996; Itoh et al., 1998; Sasaki et al., 2009). All three PIPKIIs
contain the ∼25 amino acid activation loop at the C-terminal
part of the PIPKc domain as in PIPKIs (Sasaki et al., 2009).
PIPKII α, β, and γ isotypes differ in their relative enzymatic
activities in the order listed, with α being the most active
(Clarke et al., 2008; Bultsma et al., 2010). It was speculated
that the weak forms of PIPKII (β and γ) dimerize with the
strong enzyme PIPKIIα and serve as adaptor proteins that bring
it to specific membrane compartments (Clarke et al., 2010).
Nuclear localization of PIPKIIα and PIPKIIβ has been reported
(Bultsma et al., 2010; Wang et al., 2010). PIPKIIβ, which lacks an
NLS, is targeted to the nucleus by a unique nuclear localization
sequence consisting of an acidic α helix present in its unique
insertion region in the kinase domain (Ciruela et al., 2000; Bunce
et al., 2008). In contrast, PIPKIIγ has been detected in the ER
by immunochemistry and subcellular fractionation, and also in
other compartments of the endomembrane system (Itoh et al.,
1998; Clarke et al., 2009).

Type II PIP kinase does not seem to play a role in the
regulation of actin dynamics, as human type II PIP kinase failed
to rescue yeast mss4 (type I PIP kinase) deficiency (Homma
et al., 1998; Ishihara et al., 1998). It has been shown that PIPKIIα
is involved in the formation and secretion of alpha granules
in platelets (Rozenvayn and Flaumenhaft, 2001, 2003; Schulze
et al., 2006). PIPKIIβ knockout mice show increased insulin
sensitivity, likely through enhanced Akt activity (Carricaburu
et al., 2003; Lamia et al., 2004). This is tentatively explained
by slow degradation of PtdIns(3,4,5)P3 in the knockout mice;
however, themolecular basis remains elusive. The hypothesis that
an excess amount of PtdIns5P inhibits phosphatase activity has
been rejected (Campbell et al., 2003; Schaletzky et al., 2003). It has
been shown that increasing the PtdIns5P level by overexpressing
a bacterial PtdIns(4,5)P24-phosphatase (IpgD) enhanced Akt
activity (Pendaries et al., 2006). It has also been shown that
nuclear PIPKIIβ is involved in nuclear stress response. For
instance, UV irradiation induces phosphorylation of Ser236 in

PIPKIIβ, and this phosphorylation inactivates PIPKIIα kinase-
activity, which is associated with PIPKIIβ and accumulation of
PtdIns5P (Jones et al., 2006; Bultsma et al., 2010; Wang et al.,
2010) (also see section 2.2.4).

6.2.2. Type II PIP Kinase (PIP 4-Kinase) of

E. histolytica

The E. histolytica genome was found to encode one possible
PIPKI with a reasonable E-value of 6× 10−26 when three human
PIPKII isotypes were used as queries in BLAST search. This
protein (EHI_153770) was identified as a top hit with a lower E-
value of 6× 10−37 when PIPKI was used as a query, as described
above. Because of this higher similarity to PIPKIs, EHI_153770 is
categorized as a PIPKI.

6.3. Type III PIP Kinase
6.3.1. General Description of Type III PIP Kinase

(PIP 5-Kinase)
Type III PIP kinases (PIPKIII) phosphorylate PtdIns3P to
PtdIns(3,5)P2, which is one of the least abundant PIs (Hasegawa
et al., 2017). PIPKIII was initially found in yeast by a genetic
screening for defects in nuclear segregation (Yamamoto et al.,
1995). A PIPKIII-deficient yeast line showed enlargement of
vacuoles and retardation in vacuole delivery of hydrolases, such
as carboxypeptidase Y (CPY) (Gary et al., 1998). This observation
suggests the primary effect of PIPKIII deficiency is on membrane
trafficking. PIPKIII is a large protein of >2000 amino acids
and contains the C-terminal catalytic domain of PIPKc, which
is similar to that of PIPKI and PIPKII. Distinct from other
PIP kinases, PIPKIIIs have multiple domains in humans:
FYVE (Fab1p, YOTB, Vac1p, and EEA1), DEP (disheveled,
Egl-10, and pleckstrin), and TCP-1 (t-complex polypeptide-
1) domains (Sasaki et al., 2009; Balla, 2013).These domains
are involved in PtdIns3P binding, membrane association,
and actin/tubulin binding, respectively (Cabezas et al., 2006).
As PtdIns(3,5)P2 has a critical role in endosome/lysosome
biogenesis, PtdIns3P, which is highly used in endocytic pathways,
is converted to PtdIns(3,5)P2 by PIPKIII on endosomes to
initiateMVB formation (Odorizzi et al., 1998). PIPKIII deficiency
in mammalian cells has also been shown to cause massive
vacuolization (enlarged endosomes) due to defective MVB
formation (Ikonomov et al., 2003). PIPKIIIs are involved in
a variety of membrane traffic pathways and signaling, such
as retrograde transport of cation-independent mannose 6-
phosphate receptor and sortilin, lysosomal localization and
activity of mTORC1, and autophagosome-lysosome fusion
(Rutherford et al., 2006; Zhang et al., 2007; Bridges et al.,
2012; Hasegawa et al., 2016; Jin et al., 2016). It is of note that
suppression of PIPKIII hampered phagosome maturation but
did not inhibit acidification of lysosomes in macrophages (Kim
et al., 2014). Additionally, PIPKIIIs are involved in nutrient
(or macromolecule) import via vacuoles (Krishna et al., 2016).
PIPKIII thus plays multiple roles by tightly regulating PtdIns3P
and PtdIns(3,5)P2 concentrations in vesicular trafficking. In
mammals and yeast, PIPKIIIs are known to form a complex
with the Sac1-related PI phosphatase, Fig4/Sac3, and a scaffold
protein, Vac14/ArPIKfyve. In yeast, PIPKIII is also known
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to interact with the WD domain protein Atg18 and Vac7
(Duex et al., 2006; Chow et al., 2007; Sbrissa et al., 2007;
Botelho et al., 2008; Jin et al., 2008). Deletion of Fig4/Sac3 and
Vac14/ArPIKfyve reduces PtdIns(3,5)P2 level (Gary et al., 1998,
2002; Bonangelino et al., 2002; Dove et al., 2002; Rudge et al.,
2004; Duex et al., 2006; Zhang et al., 2007; Zolov et al., 2012).
Thus, PIPKIII activation and stabilization is also regulated by the
associated proteins, such as phosphatases and scaffold proteins in
the complex, to tightly control the PtdIns(3,5)P2 level.

6.3.2. Type III PIP Kinase of E. histolytica
A genome survey of E. histolytica by a BLAST search with H.
sapiens PIPKIII as the query identified one ortholog candidate
(EHI_049480). EHI_049480 shows similarities to human PIPKI
and PIPKIII with the E-values of 5 × 10−4 and 4 × 10−45,
respectively. EHI_049480 is considerably smaller than the
potential human homolog, and has not been predicted to contain
any additional domains such as FYVE. However, based on the
highest similarity between the catalytic domains of EHI_049480
and human PIPKIII, we tentatively annotated EHI_049480 as a E.
histolytica PIPKIII. Additionally, a BLASTP search against theH.
sapiens and S. cerevisiae genomes with EHI_049480 as the query
identified PIPKIII and Fab1 with the E-values of 2× 10−45 and 9
× 10−40, respectively.

We further searched for other PIPKIII complex components
such as Vac7, Vac14, Atg18, and Fig4 (the yeast homolog of
the mammalian Sac3). Potential orthologs for Atg18 and Fig4
were identified with the E-values of 1 × 10−20 and 1 × 10−34,
respectively. This possible Fig4 ortholog showed a lower E-value
with Sac1 (1× 10−82). Thus, it is reasonable to tentatively assign
this protein as a Sac1 ortholog, although it is not possible to
specifically categorize Sac1 among Sac orthologs (see section
10). A human ortholog of Atg18 (WIPI), which is a WD
repeat-containing protein that interacts with phosphoinositides,
recognizes PtdIns3P on the nascent autophagosome and recruits
the lipidation machinery to the autophagosome for LC3.
However, the role of WIPI in PtdIns(3,5)P2 metabolism remains
unknown. It is unknown whether E. histolytica has PtdIns(3,5)P2
metabolic pathways similar to other organisms. However,
conservation of ESCRT and MVB, and the localization of
PtdIns3P on phagosomes indicate that PtdIn(3,5)P2-mediated
vesicular trafficking is also conserved in E. histolytica. We failed
to identify potential Vac7 and Vac14 homologs with an E-value<

1 × 10−1. As 19 HEAT repeat-containing proteins are present in
the E. histolytica genome, it is possible that some of them function
in lieu of Vac14.

7. PI 3-PHOSPHATASES

PI phosphatases are also important regulators of PI signaling.
Because identification of lipid kinases and PLC-mediated second
messengers had a significant impact, studies on phosphatase
activity in the early ’80s was largely focused on Ins(1,4,5)P3
decomposition. A number of inositol phosphatases and PI
phosphatases were identified and characterized (Majerus et al.,
1986). In the ‘90s, it was revealed that mutations in PI
phosphatases are responsible for human genetic disorders,

including Oculo-Cerebro-Renal Syndrome of Lowe (OCRL),
human X-linked centromyotubular myopathy, and Charcot-
Marie-Tooth disease type 4B. OCRL1, myotubularin-related
(MTMR) 1, and MTMR2 were identified as the genes responsible
for the above-mentioned human genetic disorders, respectively
(Attree et al., 1992; Myers et al., 1997; Maehama and Dixon,
1998, 1999; Blondeau et al., 2000; Taylor et al., 2000; Kim S. A.
et al., 2002). One of the most studied PI phosphatases, PTEN,
was identified as a tumor suppressor gene (Maehama and Dixon,
1998). Similar to PI kinases, classification of PI phosphatases
is primarily based on the position of the hydroxyl group that
they dephosphorylate. The human and yeast genomes are known
to encode twenty-eight and six PI phosphatases, respectively
(Odorizzi et al., 2000; Sasaki et al., 2009).

PI 3-phosphatases are categorized into two groups based
on substrate specificities. One group includes PTEN, TPTE
(transmembrane phosphatase with tensin homology), and TPIP
(TPTE and PTEN homologs inositol lipid phosphatase), while
the other group includes myotubularins (MTMs). Since TPTEs
have no phosphatase activity, and their functional role remains
unclear, they are not discussed in this review. However, TPTE
has been reported to be associated with cancers. For instance,
it has been demonstrated that TPTE is upregulated in prostate
cancer, and autoantibody production against TPTE is observed
in lung cancer (Walker et al., 2001; Tapparel et al., 2003; Bansal
et al., 2015; Kuemmel et al., 2015). PTEN and TPIP have
similar catalytic domains but differ in substrate specificity. PTEN
removes the phosphate moiety at D3 position of PtdIns(3,4,5)P3
and PtdIns(3,4)P2, while TPIPs dephosphorylate any of the 3

′

-
phosphorylated inositides at D3 position (Walker et al., 2001;
Malek et al., 2017). On the other hand, MTMs remove the
D3 phosphate from PtdIns(3,5)P2 and PtdIns3P. The catalytic
center of both groups of PI 3-phosphatases contains the CX5R
motif, which is also found in protein tyrosine phosphatases
(Hsu and Mao, 2015).

7.1. PTEN and TPIP
7.1.1. General Descriptions of PTEN and TPIP
PTEN was initially identified as a tumor suppressor gene located
on chromosome 10 (Li et al., 1997; Steck et al., 1997; Maehama
and Dixon, 1998). It is among the most frequently mutated genes
in various cancers in humans (Guldberg et al., 1997; Li et al.,
1997; Steck et al., 1997; Tashiro et al., 1997; Cairns et al., 1998;
Kohno et al., 1998; Maehama, 2007), and in hereditary cancer
predisposition syndromes, such as Cowden disease (Myers et al.,
1997; Furnari et al., 1998). Human TPIP was bioinformatically
identified as a protein encoded by PTEN-related genes (Walker
et al., 2001). PTEN consists of a protein tyrosine phosphatase
(PTP)-related lipid phosphatase domain, a C2 domain, two PEST
(proline, glutamine, serine, threonine) sequences, and a PDZ
domain (Figure 4). The C2 domain is known to be involved in
lipid binding and protein stability. PEST sequences are known to
enhance proteolytic sensitivity, and the PDZ domain is involved
in protein-protein interactions (Maehama, 2007; Sasaki et al.,
2009; Balla, 2013). The human genome encodes three isotypes of
TPIP, and only two of them have an N-terminal transmembrane
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domain (Figure 4). PTEN and TPIP have a CX5R motif-
containing PTP-related lipid phosphatase domain, whose core
sequence is CKAGKGR and CKGGKGR, respectively. This
domain forms the catalytic cleft of PTEN, and it is wider than
the corresponding domain of protein tyrosine phosphatases. This
allows the bulky PtdIns(3,4,5)P3 head group to access the active
center of the enzyme (Lee et al., 1999). The principal role of PTEN
is to cease the cell proliferation signal by inactivating Akt though
dephosphorylation of PtdIns(3,4,5)P3, whereby it serves as a
tumor suppressor.

PTEN is predominantly localized to the cytosol, and also
dynamically associated with the plasma membrane, where it
hydrolyzes PtdIns(3,4,5)P3 (Billcliff and Lowe, 2014). Although
PTEN lacks an NLS, it also localizes to the nucleus and
plays important roles in chromosome stability by directly
interacting with centromere specific binding protein C (CENP-
C), DNA repair by interacting with p53 and Rad51, and cell
cycle regulation by interacting with APC and MAP kinases
(Freeman et al., 2003; Chung and Eng, 2005; Chung et al.,
2006; Tang and Eng, 2006a,b; Shen et al., 2007; Trotman et al.,
2007; Song et al., 2011). This nuclear translocation depends
on the cytoplasmic localization signal and ubiquitination
(Denning et al., 2007; Trotman et al., 2007; Wang et al.,
2007; Drinjakovic et al., 2010). Mutations in the N-terminal
cytoplasmic localization signal, which is found in familial
Cowden disease patients, increases nuclear localization (Denning
et al., 2007). Mono-ubiquitination of K13 and K298 serves
as the nuclear translocation signal, while poly-ubiquitination
causes degradation of PTEN (Trotman et al., 2007; Wang et al.,
2007; Drinjakovic et al., 2010). PTEN has also been shown
to participate in phagocytosis, autophagy and determination
of cell polarity through dephosphorylation of PtdIns(3,4,5)P3
(Arico et al., 2001; Kim J.S et al., 2002; Martin-Belmonte
et al., 2007). In contrast, the physiological role of TPIP is not
well-understood. TPIPα and γ both have the transmembrane
domain unlike TPIPβ. Accordingly, they are localized on
internal membranes, whereas TPIPβ remains in the cytosol
(Walker et al., 2001).

7.1.2. PTEN and TPIP of E. histolytica
The E. histolytica genome potentially encodes six PTEN orthologs
with E-values < 1 × 10−10 to the human PTEN (Figure 4;
Supplementary Table S2; Supplementary Figure S5). Domain
search by pfam showed that these six PTEN orthologs contain
the CX5R motif-containing phosphatase domain. Furthermore,
the same protein candidates were detected when the three human
TPIP isoforms were used as queries. The E-values against TPIP
were around 1 × 10−16-10−17, which is higher than those
against PTEN (Supplementary Table S2). Thus, we concluded
that they are likely PTEN orthologs. Furthermore, five out of
the six orthologs have a CX5R motif identical to that found
in PTEN (CKAGKGR). The CX5R sequence of the remaining
ortholog (EHI_131070) is CLAGRGR. Three of the E. histolytica
PTEN orthologs also had a C2 domain. PTENs commonly
have the cytosol localization signal (Supplementary Figure S2)
(Denning et al., 2007). Among the three C2 domain-containing
candidates, all six consensus amino acids of the cytosol

localization signal are conserved in EHI_131070, and all
but one amino acid are also conserved in EHI_197010
and EHI_098450 (Supplementary Figure S2). In the three E.
histolytica PTEN candidates, which lack the C2 domain, only a
few residues are conserved (four in EHI_010360, EHI_054460;
three in EHI_041900) (Supplementary Figure S2). All the three
candidates have lysine or tyrosine instead of phenylalanine that
is found in the amino acid 22 position of human PTEN. It
has been shown that F21A mutation causes nuclear localization
of PTEN, which in turn fails to activate Akt even though the
phosphatase activity is retained (Denning et al., 2007). Thus, it
is not clear if the three E. histolytica PTEN candidates which
lack the C2 domain have functional cytosol localization signals.
According to the gene expression profile, two of the PTEN
homologs, EHI_197010 and EHI_098450, are actively transcribed
(Supplementary Figure S1). Both of them have a C2 domain and
the cytosol localization signal.

7.2. Myotubularin (MTM)
7.2.1. General Description of MTM
The human myotubularin (MTM) family consists of 15
members [MTM1 and MTM related (MTMR) 1–14]. As
in PTEN, the CX5R motif of their phosphatase domain is
overall well-conserved. Among the 15 MTMs, six of them
(MTMR5 and MTMR9–13) substituted the conserved cysteine
and arginine residues within the CX5R motif with other
amino acids, and thus these MTMs are catalytically inactive
(Laporte et al., 2003; Hnia et al., 2012; Hsu and Mao,
2015). The CX5R motif in MTMs (CXXGWDR) is slightly
different from that in PTEN (CKAGKGR). While PTEN
prefers PtdIns(3,4,5)P3 and PtdIns(3,4)P2 as substrates, MTMs
preferentially dephosphorylate PtdIns3P and PtdIns(3,5)P2.
MTMs are categorized into six groups based on their domain
configurations and catalytic activity: MTM1 and MTMR1–
2; MTMR3–4; MTMR6–8; MTMR14; MTMR5 and 13; and
MTMR9–12 (Figure 4). In all MTMs, except for MTMR14, the
PH-GRAM (pleckstrin homology-glucosyltransferase, Rab-like
GTPase activator and myotubularin) domain is conserved. This
domain is involved in PI binding. Additionally, they all have an
active or inactive catalytic core, and coiled-coil domain, which
is involved in homo- or hetero- dimerization. In addition, some
members have the C-terminal PDZ binding sequence and FYVE
domain. The N-terminal DENN and C-terminal PH domains are
conserved in two of the catalytically inactive MTM members,
MTMR5 and MTMR13. Although all the catalytically inactive
members (MTMR5 and MTMR9–13) lack an active phosphatase
domain, they can heterodimerize with active MTMs, whereby
inactive MTMs likely regulate the activity and localization of
active MTMs (Kim et al., 2003; Mochizuki and Majerus, 2003;
Lorenzo et al., 2006). The role of MTMs and their preferred
substrates [PtdIns3P and PtdIns(3,5)P2] in endocytosis and
membrane traffic have been well-characterized (Robinson and
Dixon, 2006; Hohendahl et al., 2016). Besides these, MTMs have
been suggested to have other roles in cellular processes, including
cell proliferation and differentiation, autophagy, phagocytosis,
organelle positioning, cytokinesis, cytoskeletal rearrangement,
and cell junction dynamics (Hnia et al., 2012; Lawlor et al.,
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FIGURE 4 | Continued
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FIGURE 4 | Structural features of PI phosphatases of H. sapiens and E. histolytica. Structural features and domain organization of the PI phosphatases are shown.

Numbers showing at the end of the protein or after the name of the protein indicates amino acid length. 5-Ptase, PI 5-phosphatase domain; ASH, ASPM-SPD2-hydin;

C2, C2 domain; CAAX, CAAX motif; CC, coiled coil domain; DENN, differentially expressed in normal vs. neoplastic; DNaseI, DNase I-like domain; FYVE, Fab1, YOTB,

Vac1, and EEA1 domain; GRAM, glucosyltransferases Rab-like GTPase activators and myotubularins; GAP, GTPase-activating domain; kinase, protein kinase domain;

LRR, leucine-rich repeats; NPF, asparagine- proline-phenylalanine repeats; P, Proline-rich; PDZ-B, PDZ domain binding domain; PEST, Proline, glutamine, serine,

threonine; PH, Pleckstrin-homology; (Ptase; gray), inactive Ptase domain; (Ptase; yellow), active CX5R motif containing PI 3- or PI 4-phosphatase domain; ROCO,

comprised of a ROC (Ras of complex proteins) and COR (C-terminal of ROC) region; SAC, Sac domain; SAM, sterile alpha motif; SH2, Src homology 2; SKICH, SKIP

carboxylhomology; TM, transmembrane domain. Clathrin-binding domain and the nuclear localization signal are also labeled with “�” and “H”, respectively.

2016). It is of note that some of the cellular functions performed
by MTMs depend on the tissue-specific expression patterns of
their binding proteins and do not involve a phosphatase activity.
For instance, disrupting the interaction between MTM1 and its
intermediate filament, desmin, causes the formation of desmin
aggregates, and this impairment is associated with myofibrillar
myopathies and cardiomyopathies (Hnia et al., 2011).

7.2.2. MTM of E. histolytica
Genome-wide survey against the E. histolytica genome using
human MTM1, MTMR3, 5, 6, 9, or 14 as the query identified
an identical set of 11 proteins with E-values < 1 × 10−58.
We concluded that 10 out of these 11 potential homologs are
E. histolytica MTM orthologs by pfam search, because they
contain a myotubularin-like phosphatase domain (Figure 4;
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Supplementary Tables S1, S4). All of them, except EHI_140980
and EHI_188050, contain the conserved catalytic domain. The
phosphatase domains of these two exceptions conserved the
cysteine residue in their C(S/T)DGWDR motifs, but arginine is
replaced with serine or isoleucine (CRNGWDS and CIDGTGI,
respectively). Although E. histolytica MTMs appear to have
a simpler domain organization, they also are thought to
heterodimerize as in model organisms given that the genome
contains both active and inactive MTMs. Among all the PI
phosphatases in E. histolytica, MTMs are the most diverged ones.

It should be noted that Amoebozoa supergroup members
exclusively have a protein family that contain multiple inactive
myotubularin domains. These proteins have been designated as
inactive myotubularin/LRR/ROCO/kinase (IMLRK) proteins
(Kerk and Moorhead, 2010). Nine IMLRK proteins have
previously been identified in the E. histolytica genome by the
FFAS03 (Fold and Function Assignment System) sequence:
profile method and the HHPred [Hidden Markov Model
(HMM)-HMM structure prediction] profile: profile method
(Kerk and Moorhead, 2010). The D. discoideum homologs of
IMLRKs, Pats1 and GbpC, have been identified as a cytokinesis-
related protein and cGMP-binding protein, respectively
(Goldberg et al., 2002; Abysalh et al., 2003). Since both D.
discoideum IMLRK homologs are involved in cytoskeleton-
related processes such as cytokinesis and chemotaxis, E.
histolytica IMLRKs may also be involved in the similar processes
(Bosgraaf et al., 2002, 2005; Abysalh et al., 2003; Lewis,
2009). However, it is not clear why E. histolytica has inactive
myotubularin domains, and more IMLRK proteins than D.
discoideum (nine vs. two, respectively).

8. PI 4-PHOSPHATASES

Dissimilar to PI 3- and PI 5-phosphatases, which belong to
multiple families of enzymes, PI 4-phosphatases consist of
only four proteins. All members of human PI 4-phosphatases
have the CX5R motif in the catalytic domain. There are
two groups of PI 4-phosphatases: inositol polyphosphate-
4-phosphatase (INPP4) and transmembrane protein 55
(TMEM55) (Figure 4). INPP4 dephosphorylates PtdIns(3,4)P2,
and TMEM55 dephosphorylates PtdIns(4,5)P2. No PI 4-
phosphatases that use PtdIns(3,4,5)P3 as a substrate have been
identified yet. E. histolytica has no homologs of PI 4-phosphatases
in this class. Here, we will discuss only the general aspects of
PI 4-phosphatases.

8.1. INPP4
Two INPP4 proteins have been identified in the human
genome and named INPP4A and B. They both contain
a conserved catalytic domain and N-terminal C2 domain;
however only INPP4A contains the PEST sequence (Sasaki
et al., 2009; Balla, 2013) (Figure 4). The C2 domains of these
proteins show different binding specificities. The C2 domain
of INPP4A preferentially binds to PtdIns(3,4)P2, PtdIns3P,
phosphatidylserine, and calcium (Ivetac et al., 2005, 2009; Shearn
and Norris, 2007), while that of INPP4B prefers phosphatidic
acid and PtdIns(3,4,5)P3 (Ferron and Vacher, 2006). INPP4A is

cleaved and inactivated by calpain via recognition of the PEST
sequence in INPP4A (Norris et al., 1995), as shown in platelets
stimulated with thrombin and calcium ionophores (Norris et al.,
1997). INPP4A is known to be localized in recycling and
early endosomes in resting cells and translocated to the plasma
membrane upon serum stimulation (Ivetac et al., 2005). In
contrast, INPP4B has been shown to be localized diffusely in the
cytoplasm. INPP4A is involved in the regulation of membrane
traffic, which is consistent with its endosomal localization. It has
been shown that INPP4A is activated by Rab5, and knocking
down Rab5 inhibits transferrin uptake (Shin et al., 2005). On the
other hand, overexpression of INPP4A suppresses the enlarged
endosomemorphology caused by PtdIns3P deficiency in INPP4A
knock-out MEF cells (Ivetac et al., 2009), suggesting that
INPP4A produces PtdIns3P from PtdIns(3,4)P2. A significant
role of INPP4A in the generation of PtdIns3P to recruit SNX9
and actin polymerization machineries during clathrin-mediated
endocytosis has also been reported (Malek et al., 2017). No
potential orthologous genes with the E-value < 1 × 10−1 have
been identified in E. histolytica.

8.2. TMEM55
TMEM55 (transmembrane protein 55), which was named after
the transmembrane regions it contains, was originally identified
based on its homology to the virulence factor of Burkholderia
pseudomallei, BopB, a putative phosphatase that contains a CX5R
motif (Ungewickell et al., 2005). There are two isotypes of
TMEM55, termed TMEM55A and B. They both consist of a
CX5R motif-containing phosphatase domain and two putative
transmembrane domains at the C-terminus (Rynkiewicz et al.,
2012). Based on in vitro and in vivo observations, TMEM55
specifically hydrolyzes the D4 phosphate of PtdIns(4,5)P2.
Both TMEM55A and TMEM55B show cytosolic and late
endosomal membrane localization (Ungewickell et al., 2005).
Overexpression of TMEM55A enhances EGFR degradation
induced by EGF stimulation, suggesting that TMEM55A is
involved in the endocytic and recycling pathways (Ungewickell
et al., 2005). Additionally, TMEM55A has been reported to be
involved in macrophage phagocytosis (Morioka et al., 2018). On
the other hand, TMEM55B translocates from the cytosol to the
nucleus and increases the PtdIns5P level in response to DNA
damage (Zou et al., 2007). This upregulation of PtdIns5P in the
nucleus is accompanied by activation of ING2 (Gozani et al.,
2003) and enhanced p53-mediated cell death (Zou et al., 2007).
In E. histolytica, no potential orthologous genes with the E-value
< 1 × 10−1 have been identified. It is possible that E. histolytica
utilizes Sac phosphatase (see below) for dephosphorylation of the
D4 position of PIs.

9. PI 5-PHOSPHATASES

Inositol polyphosphate 5-phosphatases (INPP5s) have an
inositol 5-phosphatase (5-Ptase) domain that contains
two signature motifs (F/Y)WXGDXN(F/Y)R and
P(A/S)(W/Y)(C/T)DR(I/V)L(W/Y) separated by ∼60–75
residues (Majerus et al., 1999). INPP5s are Mg2+-dependent
enzymes and share homology with apurinic/apyrimidinic
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family of endonucleases (Whisstock et al., 2000). There are
four classes of PI 5-phosphatases (types I–IV). However, the
type I enzyme (INPP5A) does not have lipid phosphatase
activity, and dephosphorylate Ins(1,4,5)P3 and Ins(1,3,4,5)P4
(Laxminarayan et al., 1993, 1994; De Smedt et al., 1994). Type II
PI 5-phosphatases include the synaptojanins OCRL1, INPP5B,
INPP5J, and SKIP. The type III enzymes are two SHIPs, namely
SHIP1 and 2. Interestingly, there is only one type IV PI 5-
phosphatase, named INPP5E. Because E. histolytica has a low
conservation of PI 5-phosphatases, we will describe the search
result at the end of this section. However, the enzyme Sac can act
as a PI 5-phosphatase. Although it does not contain the 5-Ptase
domain, it contains the CX5R motif-containing phosphatase
domain (CKAGRSR). As described below, like PTEN, it differs
from PI 5-phosphatases in its active center configuration and
substrate specificity.

9.1. Type II PI 5-Phosphatase
There are five kinds of type II PI 5-phosphatases, such as
synaptojanins, OCRL1, INPP5B, INPP5J, and SKIP. They differ
in structure and function.

9.1.1. General Description of Synaptojanins
There are two synaptojanins in mammals, and each of them
has multiple splice variants (McPherson et al., 1996). All the
synaptojanins have a conserved 5-Ptase catalytic domain and
N-terminal Sac domain. The Sac domain also has inositol
phosphatase activity. The domain configuration of the C-
terminal region varies in each splice form (Figure 4). Most
synaptojanin splice forms encode proteins that contain a
proline-rich (P) region, and SYNJ1-170 additionally has an
asparagine-proline-phenylalanine (NPF) repeat. NPF repeat
is involved in the association of these proteins with the
endocytic protein Eps15 (Haffner et al., 1997). SYNJ2A
is ubiquitously expressed, and SYNJ1-170 shows a broad
tissue distribution. Interestingly, SYNJ1-145, SYNEJ2B1, and
SYNEJ2B2 are highly expressed in the brain, and SYNEJ2B1
and 2 are also abundant in the testis (Nemoto et al., 2001).
The 5-Ptase domain of all SYNJ1 and 2 proteins enables them
to dephosphorylate Ins(1,4,5)P3, Ins(1,3,4,5)P4, PtdIns(4,5)P2,
and PtdIns(3,4,5)P3 at the D5 position (McPherson et al.,
1996; Sakisaka et al., 1997). Furthermore, the Sac domain
of Synaptojanins enable them to dephosphorylate PtdIns3P,
PtdIns4P and PtdIns(3,5)P2 (Guo et al., 1999). Sac domain
has been suggested to use the product generated by the
PI 5-phosphatase domain to finally generate PtdIns (Guo
et al., 1999; Nemoto et al., 2001). SYNJ1 has been found
to be involved in synaptic vesicle exocytosis and recycling
(McPherson et al., 1996). Additionally, synaptojanins have
a critical role in the fate determination of clathrin-coated
vesicles (CCVs). Knocking out SYNJ1 in the mouse caused
accumulation of endocytosed CCVs and poor recycling of
vesicles into the fusion-competent synaptic vesicle pool (Kim
W. T. et al., 2002). Consequently, it caused neurological defects,
and death after birth (Cremona et al., 1999). Synaptojanins
are involved in endocytosis and synaptic vesicle recycling
in concert with a variety of binding proteins such as
endocytic proteins amphiphysin, endophilin syndapin/pacsin,

and intersectin/Dap160 (McPherson et al., 1996; Bauerfeind
et al., 1997; de Heuvel et al., 1997; Ringstad et al., 1997;
Roos and Kelly, 1998; Qualmann et al., 1999). Also, the C-
terminal NPF region of SYNJ1-170 enables the interaction
with the EH (Eps15 homology) domain of Eps15, ear domain
of the α-adaptin component of the adaptor protein (AP) 2
complex, and N-terminal domain of the clathrin heavy chain
(Barbieri et al., 2001; Krauss et al., 2006).

9.1.2. General Descriptions of OCRL1 and INPP5B
OCRL1 was originally identified as a protein responsible for the
X-linked human disease OCRL. It shares a high amino acid
sequence homology (45%) with INPP5B (Attree et al., 1992;
Jefferson and Majerus, 1995; Speed et al., 1995; Matzaris et al.,
1998). OCRL1 and INPP5B consist of a PH domain, 5-Ptase
domain, ASH (ASPM, SPD2, hydin) domain, and RhoGAP
domain. Only OCRL1 has two clathrin binding domains (CB),
and only INPP5B has a C-terminal CAAX extension for
prenylation of the cysteine residue (Jefferson and Majerus, 1995).
These two proteins are the only RhoGAP domain-containing PI
5-phosphatases in the human and mouse (Jefferson and Majerus,
1995; Speed et al., 1995; Matzaris et al., 1998; Lowe, 2005).
However, their RhoGAP domains appear to lack the catalytic
activity because of amino acid substitutions at the catalytic region
(Peck et al., 2002). Even though these domains lack a catalytic
activity, RhoGAP domain of OCRL1 can interact with Rac1,
Cdc42, ARF1, and ARF6 (Faucherre et al., 2003; Lichter-Konecki
et al., 2006; Erdmann et al., 2007; Choudhury et al., 2009).
OCRL1 prefer PtdIns(4,5)P2, Ins(1,4,5)P3, Ins(1,3,4,5)P4, and
PtdIns(3,4,5)P3 as dephosphorylation substrates (Zhang et al.,
1995; Schmid et al., 2004). OCRL1 can also dephosphorylate
PtdIns(3,5)P2 (Schmid et al., 2004). On the other hand, INPP5B
can remove the D5 phosphate of PtdIns(4,5)P2, PtdIns(3,4,5)P3,
Ins(1,4,5)P3, and Ins(1,3,4,5)P4 with comparable efficiencies,
but it is ineffective in the dephosphorylation of PtdIns(3,5)P2
(Jefferson and Majerus, 1995; Schmid et al., 2004). OCRL1
is involved in the regulation of vesicular trafficking between
endosomes and the TGN (Choudhury et al., 2005). This
is in line with OCRL1’s localization on the TGN, early
endosomes, membrane ruffles, and clathrin-coated trafficking
intermediates (Olivos-Glander et al., 1995; Dressman et al., 2000;
Ungewickell et al., 2004; Choudhury et al., 2005; Faucherre
et al., 2005; Erdmann et al., 2007). OCRL1 deficiency causes
abnormal cytoskeletal reorganization (Suchy and Nussbaum,
2002; Faucherre et al., 2005). This is not only due to perturbation
of the functions exerted by the RhoGAP-like domain, but also
due to perturbed modulation of PtdIns(4,5)P2 levels, suggesting
the importance of OCRL1 in PtdIns(4,5)P2 homeostasis. INPP5B
is associated with the Golgi apparatus, ER exit sites, and Rab
(Williams et al., 2007). Its localization is affected by interactions
with Rab proteins (Vyas et al., 2000; Shin et al., 2005; Williams
et al., 2007). These data suggest that INPP5B is involved in the
early secretory pathway.

9.1.3. General Descriptions of INPP5J and SKIP
INPP5J and SKIP (skeletal muscle- and kidney-enriched inositol
polyphosphate phosphatase) have been identified by virtue of two
conserved consensus motifs characteristic of PI 5-phosphatases
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(Mochizuki and Takenawa, 1999; Gurung et al., 2003). INPP5J is
also called proline-rich inositol polyphosphate 5-phosphatase
(PIPP) because of the two proline-rich regions at the N-
and C- terminal of the protein. The N-terminal proline-
rich region of INPP5J contains a putative SH3-binding motif
(PRSPSR) and six 14–3–3 binding motifs (Gurung et al.,
2003), and a SKICH (SKIP carboxyl homology) domain which
mediates localization to the plasma membrane (Ooms et al.,
2006). The C-terminus of the 5-Ptase domain is overall
conserved in both INPP5J and SKIP. INPP5J removes the D5
phosphate of PtdIns(4,5)P2, PtdIns(3,4,5)P3, Ins(1,4,5)P3, and
Ins(1,3,4,5)P4, while SKIP prefers PtdIns(3,4,5)P3, but can also
dephosphorylate PtdIns(4,5)P2, Ins(1,4,5)P3, and Ins(1,3,4,5)P4
(Ijuin and Takenawa, 2003). INPP5J and SKIP are localized on the
plasma membrane, and also in the TGN and ER of resting cells,
respectively. Following insulin stimulation, SKIP translocates to
the plasma membrane via the SKICH domain (Gurung et al.,
2003). Both enzymes are considered to regulate Akt activation by
negatively regulating PtdIns(3,4,5)P3 (Ijuin and Takenawa, 2003;
Ooms et al., 2006). Furthermore, SKIP participates in insulin
response by regulating GULT4 translocation and glucose uptake
in skeletal muscle.

9.2. Type III PI 5-Phosphatase
Type III PI 5-phosphatases, termed SHIP (SH2-containing
inositol phosphatase), consists of SHIP1 and SHIP2. SHIP1
has several splice variants: a full-length isoform (SHIP1α) and
shorter isoforms (SHIP1β, SHIP1γ, and s-SHIP1) (Lucas and
Rohrschneider, 1999; Tu et al., 2001). SHIP1 was originally
identified as a binding protein of several adaptor proteins such
as Shc, Grab2, and DOK (Liu et al., 1994), and immunoreceptor
tyrosine-based inhibitory (ITIM) or activation (ITAM) motifs of
immune receptors (Osborne et al., 1996; Kimura et al., 1997).
Both enzymes are composed of an N-terminal SH2 domain, a 5-
Ptase catalytic domain followed by a C2 domain, and an NPXY
motif. All SHIP isoforms except for SHIP1γ contain a C-terminal
proline-rich domain. SHIP2 has a sterile alpha (SAM) motif at
the C-terminus of the proline rich region. SHIP1 is exclusively
expressed in hematopoietic and spermatogenic lineages, whereas
SHIP2 expression is ubiquitous (Liu et al., 1998). SHIP1
isoforms hydrolyze the D5 phosphate of both PtdIns(3,4,5)P3 and
Ins(1,3,4,5)P4, whereas SHIP2 activity appears to bemore specific
for PtdIns(3,4,5)P3 (Wisniewski et al., 1999). SHIP1 is involved
in myeloid cell homeostasis, chemotaxis, bone metabolism, and
mast cell activation (Helgason et al., 1998; Huber et al., 1998;
Liu et al., 1999; Jiang et al., 2005; Nishio et al., 2007). SHIP2 is
involved in the negative regulation of insulin-mediated cellular
response (Wada et al., 2001; Kaisaki et al., 2004; Sleeman et al.,
2005). These phenotypes are explicable given the high level of
PtdIns(3,4,5)P3 in the cells, also pointing to the pivotal role of
SHIPs in PtdIns(3,4,5)P3-mediated signaling.

9.3. Type IV PI 5-Phosphatase
There is only one type IV PI 5-phosphatase, which is also
called INPP5E, 72-kDa polyphosphate 5-phosphatase, or Pharbin
(Kisseleva et al., 2000; Kong et al., 2000). INPP5E consists
of the C-terminal farnesylation CAAX motif and the central

5-phosphatase domain, flanked by an N-terminal proline-
rich region. PtdIns(4,5)P2, PtdIns(3,4,5)P3, and PtdIns(3,5)P2
have been reported to be substrates of INPP5E (Kisseleva
et al., 2000; Kong et al., 2000). Notably, INPP5E has the
highest affinity to PtdIns(3,4,5)P3 and shows ten times higher
affinity for PtdIns(3,4,5)P3 than SHIP (Kisseleva et al., 2000).
It localizes to the cytosol, and Golgi in proliferating cells
(Kong et al., 2000). In macrophages, INPP5E localizes to
the phagocytic cup and regulates FcγR1-mediated, but not
complement receptor 3-mediated, phagocytosis (Horan et al.,
2007). In adipocytes, INPP5E has been shown to hydrolyze
PtdIns(3,5)P2 to PtdIns3P and enhance GULT4 translocation;
however, insulin signaling does not decrease upon INPP5E
overexpression (Kong et al., 2000). Importantly, INPP5E also
plays a critical role in ciliopathies (Bielas et al., 2009; Jacoby
et al., 2009). The primary cilium is amicrotubule-based organelle,
which forms protrusions on the plasma membrane and functions
as a sensor for the environmental factors such as light, chemicals,
and mechanical stress (Goetz and Anderson, 2010). Additionally,
primary cilia are central in hedgehog signaling, which is a major
pathway involved in the structural organization of the body,
organogenesis, and tumorigenesis (Elliott and Brugmann, 2019).
PtdIns4P and PtdIns(4,5)P2 have been shown to be localized on
the primary cilium membrane and ciliary base, respectively. This
position-specific PI distribution pattern is maintained by INPP5E
localized at the primary cilium (Chávez et al., 2015; Garcia-
Gonzalo et al., 2015). Disrupting the PI compartmentalization
pattern or increasing the PtdIns(4,5)P2 level in the primary
cilium causes cilial accumulation of Tulp3, which contains a
PtdIns(4,5)P2-binding domain. In turn, Tulp3’s binding proteins,
Gpr161 and IFT-A, are recruited to the primary cilium. Gpr161
is a negative regulator of the hedgehog signaling, and IFT-A is a
flagellar transporting protein, respectively. Accumulation of this
complex has been shown to perturb hedgehog signaling from the
primary cilium. This observation emphasizes the significance of
PI metabolism in cell physiology (Nakatsu, 2015).

9.4. PI 5-Phosphatases of E. histolytica
The possible E. histolytica PI 5-phosphatases all have a simple
domain configuration: a 5-phosphatase domain alone or together
with one more domain (Figure 4). PI 5-phosphatases have
divergent and specialized roles in the human. For instance,
synaptojanins are involved in neurotransmitter secretion, while
SHIPs participate in hematopoietic cell signaling. Thus, the
simplification of 5-phosphatases in E. histolytica may indicate
the importance of IP5-phosphatase in multicellularity, and also
the possibility of E. histolytica having only the ancestral type of
PI 5-phosphatases.

Six candidate proteins showed E-values lower than 1
× 10−30 when searched with human OCRL1 as the query
(AAB03839). One candidate, EHI_153490, has the 5-Ptase
and RhoGAP domains, and the other protein, EHI_159880,
contains the 5-Ptase and GAP domains. They both lack the
C-terminus CAAX motif conserved in INPP5B. The apparent
similarity in domain configurations suggests that these two
proteins may have homologous roles to those of OCRL1.
The rest of the hits (four) only have the 5-Ptase domain
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(Supplementary Figure S3) and showed only low levels of
E-values to OCRL1 (Supplementary Table S5). Searching
with type III and type IV PI 5-phosphatases detected the
six candidates with higher E-values. Based on this result, we
tentatively assigned the four proteins as type II PI 5-phosphatases
homologous to OCRL1 (Figure 4; Supplementary Table S2).
When searched with synaptojanin1 and synaptojanin2, nine
candidates with E-values lower than 1 × 10−25 were detected.
Six of them are identical to the above mentioned OCRL1
homologs and showed lower E-values to OCRL1. Other
three candidates have a SAC domain, and thus they are
considered as SAC homologs (see section 10). EHI_040380, as
one of these SAC domain-containing proteins, was found
to also harbor a DNase I domain by InterPro analysis
(https://www.ebi.ac.uk/interpro/). The domain is classified
in the endonuclease/exonuclease/phosphatase superfamily
(IPR036691). As mentioned above, the 5-Ptase domain shares
homology to the apurinic/apyrimidinic family of endonucleases
(Whisstock et al., 2000), but EHI_040380 lacks the residues
critical for the 5-Ptase activity (Supplementary Figure S3).
Consequently, we classified this domain as “SAC with DNase I or
5-Ptase” domain (Figure 4). If this protein has a IP 5-phosphatase
activity, it may act as synaptojanin in E. histolytica.

10. Sac FAMILY PHOSPHATASES

10.1. General Description of Sac
The first member of Sac (suppressor of actin), Sac1, was originally
discovered in yeast by two independent genetic suppressor
screens, which searched for the genes that rescued either
actin cytoskeleton defects (Novick et al., 1989) or secretion
defects caused by sec14 mutation (Cleves et al., 1989). The
catalytic domain of the Sac family phosphatases conserves the
CX5R motif, which is commonly found in protein and PI
phosphatases. According to the crystal structure, configuration
of Sac1 catalytic center has a unique feature compared with
PTEN and MTMs (Lee et al., 1999; Begley et al., 2003, 2006;
Manford et al., 2010). The catalytic cysteine is oriented away
from the conserved arginine in Sac1, while the corresponding
residue in PTEN and MTMs faces toward the arginine and
generates a narrow active center. This observation suggests
that Sac1’s catalytic center probably undergoes a conformational
change during the catalysis. This premise appears to agree
with the fact that Sac1 is an allosteric enzyme, and its activity
is stimulated by anionic phospholipids (Zhong et al., 2012).
The Sac domain is also found in synaptojanins (see section
9.1). It is responsible for the removal of phosphate from D3,
D4, and/or D5 positions of various PIs, and thus, Sac is
considered to be a PI phosphatase with broad specificity. Sac1
dephosphorylates PtdIns3P, PtdIns4P, and PtdIns(3,5)P2, but
not PtdIns(4,5)P2 (Nemoto et al., 2000), and Sac2 acts on D5
position of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 (Minagawa et al.,
2001), whereas Sac3 hydrolyzes only PtdIns(3,5)P2 (Botelho
et al., 2008). Sac1 is mostly localized on the ER and shuttles
between the Golgi and ER. The C-terminus of Sac1 mediates
an association with the COPI complex via a conserved KXKXX
motif and this association induces the retrieval of Sac1 to the

ER (Blagoveshchenskaya et al., 2008). Sac1 preferentially utilizes
PtdIns4P as its substrate, and mutations that downregulate
Sac1 cause the cellular PtdIns4P levels to increase in yeast
and mammals (Guo et al., 1999; Nemoto et al., 2000). Sac1
has been also shown to be involved in the maintenance
of the plasma membrane PtdIns4P levels at the ER-plasma
membrane junctions (Stefan et al., 2011). Sac2 is a mammalian-
specific negative regulator of the Akt pathway (Trivedi et al.,
2007), and involved in the endocytic pathway as a PI 4-
phosphatase (Nakatsu et al., 2015). Sac3 is important for the
regulation of the endocytic pathway given that it regulates
PtdIns(3,5)P2 levels. Sac3 deficiency causes PtdIns(3,5)P2 levels
to increase and impairs late-endosome to lysosome transition. It
is also involved in the regulation of PIPKIII enzymatic activity
(see section 6.3.1).

10.2. Sac of E. histolytica
In the E. histolytica genome database, three proteins
(EHI_141860, EHI_040380, EHI_048570) showed E-values
lower than 1 × 10−10 with human Sac1 in a blastp search. These
proteins were also detected when Sac2 and Sac3 were used as
queries, and the E-values were lower than those obtained with
Sac1. Therefore, these three proteins seem to be homologous
to the human Sac1. EHI_141860 has the highest homology to
the human Sac1, conserves the two transmembrane domains
(Figure 4), and thus, it is considered to be the E. histolytica Sac1
ortholog. EHI_141860 also has the C-terminal COPI complex
binding motif, KXKXX. As mentioned above, EHI_040380 has
a DNaseI domain. Since 5-Ptase domain shares homology to
the apurinic/apyrimidinic family of endonucleases (Whisstock
et al., 2000), there is a possibility that this protein functions like
synaptojanin. However, as the domain in EHI_040380 lacks
the residues critical for the active center of PI 5-phosphatase
(Supplementary Figure S3), we classified it as “SAC with DNase
I or PI 5-phosphatase” domain (Figure 4). Nevertheless, further
experimental evidence on its PI 5-phosphatase potential is
necessary. Since E. histolytica appears to lack PI 4-phosphatases
(see section 8), Sac orthologs may act as PI 4-phosphatase in
this organism.

11. POSSIBLE PATHWAY-DEPENDENT
COORDINATED REGULATION OF KEY PI
METABOLIZING ENZYMES

11.1. Biosynthetic, Secretory, and
Exocytotic Pathways
While a majority of interconversion steps between specific
PIs are catalyzed by >1 enzymes, some steps are catalyzed
by a single enzyme encoded by a single gene, which may
suggest the significance of the enzyme. Furthermore, mRNA
expression levels, inferred by transcriptomic analyses, often
suggest biological importance of the enzyme(s) for the reaction
under given conditions. In the biosynthetic and secretory
pathways, the PtdIns4P level is maintained in an organelle
specific fashion: low in the ER and high in the Golgi, by the
coordinated action of PI 4-kinases, PI4KIIα and PI4KIIIβ, and
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Sac1 (Blumental-Perry et al., 2006; Graham and Burd, 2011;
Bajaj Pahuja et al., 2015). E. histolytica possesses only one PI
4-kinase, EHI_148700, which is most likely involved in this
pathway. Role of Sac1 to maintain the low PtdIns4P level in
the ER was shown (Bajaj Pahuja et al., 2015). It is conceivable
to assume a single two transmembrane domain-containing
PI-phosphatase Sac, EHI_141860, likely plays important role
to maintain the low PtdIns4P level in the Golgi to regulate
biosynthetic and secretory pathways. The transcriptome data also
suggest the robust expression (Supplementary Figure S1) and
thus the significance of EHI_141860.

Since clathrin-mediated trafficking machinery for the exocytic
pathway is well-conserved in this organism (Clark et al., 2007),
PtdIns4P is likely used in the Golgi apparatus as a key signaling
molecule to recruit effector molecules, such as clathrin binding
proteins AP, Arf, and Rab11for cargo selection and packaging.
Following the generation of transport vesicles in the Golgi,
PtdIns4P on the PtdIns4P-rich transport vesicles is replaced with
sterol by oxysterol binding protein (OSBP), to form sterol-rich
vesicles (Schink et al., 2016). This exchange is necessary to recruit
exocyst complex onto the transfer vesicles and also function as
sterol transfer mechanism from the ER to the plasma membrane
(Schink et al., 2016). It remains elusive if this mechanism also
works in E. histolytica, although its genome encodes 2-4 possible
OSBP (Das and Nozaki, 2018).

At the plasma membrane, PtdIns(4,5)P2 generated
from PtdIns4P by single type I PIP kinase, EHI_153770,
likely determines the site of exocytosis, where the exocyst
complex mediates a release of the content of the sterol-rich
secretory vesicles. Sec3 and Exo70 of the exocyst complex
are known PtdIns(4,5)P2 effectors on secretory vesicles.
On the plasma membrane, Syntaxin-1, CAPS, Munc13-1/2,
and Synaptotagmin-1 involved in the fusion of transport
vesicles and the plasma membrane, leading to secretion
(Martin, 2015). E. histolytica conserves a homolog of Syntaxin
(EHI_052830, E-value 1 × 10−18), Sec3 (EHI_148590, E-value
9 × 10−6), and Exo70 (EHI_142040, E-value 2 × 10−8). The
functionality of the apparently conserved basic amino acids
implicated for PtdIns(4,5)P2 binding should be verified for
the amebic homolog (Martin, 2015; K. Nakada-Tsukui data
not shown).

11.2. Endocytic Pathways
In the clathrin-dependent endocytic pathway, AP complex
connects membrane cargo receptors and clathrin via
PtdIns(4,5)P2 by recognizing the cytoplasmic region of the
cargo receptors and PtdIns(4,5)P2. In this process, single type I
PIP kinase, EHI_153770, is necessary to synthesize PtdIns(4,5)P2
from PtdIns4P. During the scission of the vesicles from the
plasma membrane, generation of PtdIns(3,4)P2 from PtdIns4P
by class II PI 3-kinase is necessary to recruit SNX9 (sorting nexin
that recognizes membrane curvature and PIs) in mammals.
However, E. histolytica does not possess either PX-domain
containing class II PI 3-kinases or BAR domain containing
SNXs, e.g., SNX9. However, it is conceivable that one or some
of six class I PI 3-kinases also have PtdIns4P 3-kinase activity
and some of putative SNXs lacking BAR domain have ability to

recognize PIs (N. Watanabe et al., data not shown). Therefore,
it is expected that as enclosed endosomes mature after closure,
PtdIns(4,5)P2 is subsequently dephosphorylated into PtdIns
and then further phosphorylated to PtdIns3P by the action of
type III PI 3-kinase, Vps34, which is present in E. histolytica
as a single protein. In mammals, a series of dephosphorylation
reactions involving PtdIns(4,5)P2 are regulated by OCRL1 and
Sac2 (Nakatsu et al., 2015) and Synaptojanins (Cremona et al.,
1999). Since Synaptojanins, which contain PI 5-phosphatase and
PI 4-phosphatase domains, are not conserved in E. histolytica,
the most highly transcribed PI 5-phosphatase, EHI_160860, out
of 6 type II PI 5-phosphatases, and one of two transmembrane
lacking Sac proteins, EHI_040380 and EHI_048570, are likely
involved in this process (Figure 4; Supplementary Figure S1).

11.3. Phago- and Trogocytic Pathways
During phagocytosis, one single type I PIP-kinase, EHI_153770,
and/or one or more of six class I PI 3-kinases are likely involved
in local enrichment of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 from
PtdIns4P in response to the signal from a not-yet-identified
ligand receptor (most likely galatose/N-acetylgalactosamine
specific lectin) for phagocytosis at the plasma membrane. Based
on the mRNA expression levels, five out of 6 class I PI 3-
kinase genes appear to be abundantly expressed at similar levels
and thus, it is not clear which is predominantly involved in
this process (Supplementary Figure S1). In mammalian THP-1
cells, isoform-specific roles of class I PI 3-kinases were reported:
p110α is involved in FcγR-mediated phagocytosis and oxidative
burst mediated by PMA or opsonized zymosan, but not in CR3-
mediated phagocytosis (Lee et al., 2007). On the other hand,
p110β is involved in Rab5 recruitment and activation during
phagosome maturation, while p110δ is involved in adhesion to
VCAM-1 (Kurosu and Katada, 2001; Ferreira et al., 2006; Thi
et al., 2012; Whitecross and Anderson, 2017).

In E. histolytica, two different modes of ingestion for target
uptake, phagocytosis and trogocytosis, have been observed, and
they have been shown to be regulated by different AGC kinases
in an isotype-specific manner. It is conceivable that different
receptors and class I PI 3-kinases are differentially involved in
these processes. Elucidation of the isoform-specific involvement
of class I PI 3-kinases in trogocytosis and phagocytosis shall be
important to understand the pathogenesis of E. histolytica.

On the enclosed phagosomes, PtdIns(4,5)P2 and
PtdIns(3,4,5)P3 are, as also seen in endocytosis,
dephosphorylated to PtdIns by PI-phosphatases and then
phosphorylated again to form PtdIns3P by class III PI 3-
kinase, such as OCRL1, NPP5B, SHIP, INPP5E, TMEM55a,
myotubularin, Sac2, and Vps34, in mammals (Cox et al.,
2001; Ai et al., 2006; Horan et al., 2007; Neukomm et al.,
2011; Bohdanowicz et al., 2012; Levin et al., 2017; Morioka
et al., 2018). Similarly, conversion of PIs on the E. histolyica
phagosomes is expected to proceed in a similar but possibly
modified fashion. Among a number of type II PI 5-phosphatases,
Sacs, myotubularins, and type III PI 3-kinase, we assume
the following members are likely involved in this process.
Among eight myotubularins that appear to be catalytically
active, three isotypes, EHI_016430, EHI_104710, and,
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EHI_024380, show relatively high expression and are likely
involved in this maturation process. Once phagosomes are
decorated with PtdIns3P, PtdIns3P is further phosphorylated
to PtdIns(3,5)P2 as phagosomes are further maturated. While
in mammals, PIKfyve is involved in this process, type III
PIP-kinase lacking FYVE domain, EHI_049480, may be
responsible for this reaction in E. histolytica. As described
above (section 6.3.1), type III PIP-kinases form complex
with Sac phosphatase and scaffold proteins (Sbrissa et al.,
2007; Botelho et al., 2008; Jin et al., 2008). Since two Sacs
lacking the transmembrane domain, EHI_040380 and
EHI_048570, are present in E. histolytica, it is possible that
one of them forms complex with EHI_049480, similar to
mammalian Sac3, while the other independently works in
endocytic and phagocytic pathways similar to mammalian Sac2
(Nakatsu et al., 2015; Levin et al., 2017).

11.4. Motility
In the regulation of cell motility, local accumulation of
PtdIns(4,5)P2 and PtdIns(3,4,5)P3 at the leading edge is
the key initial event. Similar to phagocytosis, type I PIP-
kinase, EHI_153770, and some of six type I PI 3-kinases
are likely involved in this process. Also, dephosphorylation
of PtdIns(3,4,5)P3 by PI 3-phosphatases, PTEN, and PI 5-
phosphatase, SHIP, at the side and the rear of the cell is
known to be indispensable to regulate local accumulation
of the lipid signal in mammals. In E. histolytica, some
of six PTEN homologs and six PI 5-phosphatases are
likely involved in this process. Among three of six amebic
PTENs that contain C2 domain and the putative cytosol
localization signal (see section 7.1.2), two showed significantly
higher expression levels than four other PTEN isotypes
(Supplementary Figure S1). Altogether, these data suggest
that these two PTENs, EHI_197010 and EHI_098450, may be
involved in the formation and maintenance of cellular polarity
in E. histolytica.

11.5. Nuclear Functions
It is conceivable that PI kinases and PIP phosphatases
that contain the nuclear localization signal have specific
roles in the nucleus such as chromatin regulation and
transcription. Such PI kinases and PIP phosphatases include
type I PIP-kinase, EHI_153770; PTEN, EHI_041900; MTM,
EHI_070120; and PI 5-phosphatase, EHI_046590. Also,
PTENs that lack the cytosol localization signal, EHI_041900,
EHI_010360, and EHI_054460, may also be involved in
nuclear functions.

12. CONCLUSION AND FUTURE
PERSPECTIVE

One of the hallmarks of E. histolytica as an invasive
eukaryotic pathogen is its extremely active cell motility
accompanied with elaborate cytoskeletal rearrangement and
membrane traffic. To enable such activities, spaciotemporal
regulation of PI-mediated signaling that controls transient
association with effector molecules is indispensable and

accomplished via concerted regulation of PI metabolism. The
E. histolytica genome encodes the majority of PI kinases and
PI phosphatases conserved in model organisms. Strikingly,
significant diversity of PI 3-kinases and PI 3-phosphatases
was observed in E. histolytica, as represented by a higher level
of complexity of class I PI 3-kinases, PTEN, MTM/MTMR,
and IMLRKs in this unicellular eukaryote relative to human,
which has a 100 times larger genome. The dependence
of E. histolytica on the complexity of the D3 phosphate
metabolism emphasizes the significance of PtdIns(3,4,5)P3-
centric pathways for pathogenesis and physiology
of E. histolytica.

On the other hand, the regulatory subunit of PI kinases,
except for class III PI 3-kinase, was not identified, suggesting
that their regulatory mechanisms had been gained only in
higher eukaryotes or had differently evolved in E. histolytica
in a lineage-specific fashion. The latter was also observed as
an example with PI 4-kinase regulator EFR3 which is not
conserved between the yeast and human. PtdIns4P metabolism
also appears to have uniquely evolved in E. histolytica. No
PtdIns4P-specific phosphatases that show similarity to the
canonical enzymes are conserved in E. histolytica. It harbors
only one PIP kinase, type I PIP kinase, which generate
PtdIns(4,5)P2 from PtdIns4P. PtdIns4P is known as one of
the major PIs and is important as it is the precursor of
the most abundant PI, PtdIns(4,5)P2. Since PtdIns(4,5)P2 is
indispensable for the regulation of actin cytoskeleton-dependent
processes, which is vital for the pathogenesis of the amoeba,
type I PIP kinase appears to be a rational drug target. Uniquely
expanded gene families, such as class I PI 3-kinases and PTENs,
may also be potential drug target. However, multiple enzymes
may have a redundant role as shown for mammalian PIPKI
(see section 6.1.1).

Besides expansion, certain families of PI kinases and
PI phosphatases in E. histolytica are structurally unique in
the sense that they have simpler domain configurations,
especially type III PIP kinases and PI phosphatases, relative
to their human counterparts with a exceptions such
as inactive myotubularin/LRR/ROCO/kinase (IMLRK).
Lineage-specific expansions of PIP phosphatases are
found in particular for OCRL1 type II PI 5-phosphatase
and IMLRK, some of which should be listed in the
roster of rational drug targets once their functions
are determined.

Extremely higher expression levels of two PTEN and one
PI 5-phosphatase genes relative to other genes involved in
PI metabolism may reflect the importance of phosphatases
rather than kinases in stopping the PI signals. PTEN has
also been reported to function as a protein phosphatase,
and thus, it is also possible that the high expression of
PTEN is because it has roles other than PI signaling
(Shinde and Maddika, 2016; Wozniak et al., 2017).

Furthermore, it has recently been demonstrated that
besides the phosphorylation status, type pf the acyl-chains
in the lipids are important in the regulation of lipid
functions (Choy et al., 2017). In mammals, the predominant
type found in PIs is 1-stearoyl-2-arachidonoyl (18:0/20:4)
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(Traynor-Kaplan et al., 2017). This acyl chain type is generated
by lysocardiolipin acyltransferase (LYCAT) (Imae et al., 2012),
whose deficiency persturbes PI-mediated-membrane traffic
(Bone et al., 2017). Mechanisms underlying such acyl-dependent
regulation of PI signaling and downstream cascades are just
about to unveil in the lipid research field and should be
explored in amebiasis research. Furthermore, a new family
of lipid transport proteins that mediate the regulation of PI
metabolisms in both the cytoplasm and the nucleus have
been described (Das and Nozaki, 2018). It may also be of
interest that several PI kinases and PI phosphatases as well
as several PI species are localized in the nucleus. However,
PI metabolism and physiological roles of PI in the nucleus is
poorly understood.
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Supplementary Figure S1 (Image 1) | Expression levels of PI kinases and PI

phosphatases in E. histolytica trophozoites. Relative expression levels of indicated

PI kinase and PI phosphatase genes of the HM-1:IMSS cl6 reference strain during

in vitro cultivation. Signal intensity was normalized against the transcript of RNA

polymerase II gene. Two bars represent the data from two independent

experiments (Husain et al., 2011; Penuliar et al., 2015).

Supplementary Figure S2 (Image 2) | Cytosolic localization signal in human and

E. histolytica PTEN. The cytosol localization signal of human PTEN was aligned

with the corresponding region of E. histolytica PTEN orthologs. Green underlines

depict the key amino acids for the signal and the amino acids conserved in PTENs

from human and E. histolytica are indicated with green boxes.

Supplementary Figure S3 (Image 3) | Conservation of consensus amino acid

sequences in PI 5-phosphatases. Amino acids of two consensus regions of PI

5-phosphatases, human OCRL1 and E. histolytica orthologs. Gray boxes indicate

conserved amino acids.

Supplementary Figure S4 (1–4) (Images 4–7) | Multiple alignment of class I PI

3-kinases. LKU domain and catalytic core are indicated by green and yellow bar,

respectively.

Supplementary Figure S5 (1–3) (Images 8–10) | Multiple alignment of PTEN.

Catalytic core is indicated by yellow bar.

Supplementary Table S1 (Tab 1 in Table 1) | Potential PI kinase orthologs in E.

histolytica. H. sapiens enzymes used as queries, and E-values are shown.

Supplementary Table S2 (Tab 2 in Table 1) | Potential PI phosphatase

orthologs in E. histolytica. H. sapiens enzymes used as queries, and E-values are

also shown.

Supplementary Table S3 (Tab 3 in Table 1) | Similarity between H. sapiens and

E. histolytica class I PI 3-kinases. H. sapiens isotypes used as queries, and

E-values are also shown.

Supplementary Table S4 (Tab 4 in Table 1) | Similarity between H. sapiens and

E. histolytica MTM and MTMRs. H. sapiens isotypes used as queries, and

E-values are also shown.

Supplementary Table S5 (Tab 5 in Table 1) | Similarity between H. sapiens and

E. histolytica PI 5-phosphatases.

Supplementary Table S6 (Tab 6 in Table 1) | Abbreviation list.
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