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Leishmaniases are neglected tropical diseases that threaten about 350 million people

in 98 countries around the world. In order to find new antileishmanial drugs, an original

approach consists in reducing the pathogenic effect of the parasite by impairing the

glycoconjugate biosynthesis, necessary for parasite recognition and internalization by

the macrophage. Some proteins appear to be critical in this way, and one of them, the

GDP-Mannose Pyrophosphorylase (GDP-MP), is an attractive target for the design of

specific inhibitors as it is essential for Leishmania survival and it presents significant

differences with the host counterpart. Two GDP-MP inhibitors, compounds A and B,

have been identified in two distinct studies by high throughput screening and by a rational

approach based on molecular modeling, respectively. Compound B was found to be the

most promising as it exhibited specific competitive inhibition of leishmanial GDP-MP and

antileishmanial activities at the micromolar range with interesting selectivity indexes, as

opposed to compound A. Therefore, compound B can be used as a pharmacological

tool for the development of new specific antileishmanial drugs.
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INTRODUCTION

Leishmaniases are vector-borne neglected tropical diseases caused by a protozoan parasite from
the genus Leishmania and transmitted by hematophagous female phlebotomine sandflies. During
its life cycle, the parasite alternates from a promastigote motile form within the phlebotome to an
intracellular amastigote form in mammalian host macrophages. Leishmaniases can be classified in
three main groups according to their clinical manifestations: cutaneous, which is the most common
form, muco-cutaneous leading to nasal and oropharyngeal lesions and marked disfigurements, and
visceral, the most severe form, always fatal in the absence of adequate treatment. These clinical
manifestations can be provoked by several Leishmania species: for instance, L. major or L. mexicana
will give rise to cutaneous leishmaniasis, and L. donovani or L. infantum visceral leishmaniasis.
Only few drugs are currently available for the treatment of leishmaniases. Antimonials, which have
been historically used since 1920s, generate a strong toxicity at cardiac, renal, and hepatic levels
and select drug resistance. The other classical drugs, namely oral miltefosine, injectable liposomal
amphotericin B, and paromomycin, display some deleterious effects and now represent a potential
threat of drug resistance as well (Croft et al., 2006; Sundar and Singh, 2016; Ponte-Sucre et al.,
2017). The development of new antileishmanial treatments is thus crucial in this context.
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In order to overcome the limitations of the existing
treatments, rational approaches have been used to develop
new specific therapies for leishmaniases (Zulfiqar et al., 2017).
Among the different strategies elaborated, the identification
of new targets that are essential for parasite viability or
virulence is an attractive approach for the development
of specific antileishmanial compounds (Jiang et al., 1999;
Burchmore et al., 2003; Jain and Jain, 2018). Indeed, these
essential targets can be exploited by chemical screening in
order to characterize inhibitor scaffolds whose specificities are
optimized by pharmacomodulations, based on target three-
dimensional structures. In this way, targets from Leishmania
energy metabolism (i.e., glycolysis, folate or redox metabolism)
were first intensively studied (Aronov et al., 1999; Chowdhury
et al., 1999; Verlinde et al., 2001; Olin-Sandoval et al.,
2010; Colotti et al., 2013; Leroux and Krauth-Siegel, 2016).
Other biochemical pathways were also investigated, but the
characterized inhibitors met some limitations such as parasite
specificity, inhibitors synthesis cost and lack of in vivo activity
(Croft and Coombs, 2003).

TARGETING MEMBRANE
GLYCOCONJUGATE METABOLISM

There are two main ways to impair parasite development within
the host, considering proteins expressed in the amastigote form
as therapeutic targets. The first one relies on targeting some
biochemical pathways leading to an unbalanced metabolism,
toxic for the parasite. Many proteins have been considered
for this purpose (Aronov et al., 1999; Chowdhury et al.,
1999; Verlinde et al., 2001; Olin-Sandoval et al., 2010). The
second one considers that a relevant Achille’s heel consists
in avoiding macrophage-parasite interactions (Descoteaux
et al., 1995; Descoteaux and Turco, 1999; Podinovskaia and
Descoteaux, 2015; Lamotte et al., 2017). As host-Leishmania
interactions mainly rely on glycoconjugate recognition,
an inhibition of glycoconjugate biosynthesis could affect
this molecular recognition, and therefore reduce parasite
burden. Furthermore, as the glycosylation is a crucial
pathway for macrophage infection (Descoteaux et al., 1995;
Descoteaux and Turco, 1999; Pomel and Loiseau, 2013;
Podinovskaia and Descoteaux, 2015), we hypothesize that an
alteration of glycoconjugate structures would not easily select
drug resistance.

Mannose-containing glycoconjugates represent a
large proportion of the carbohydrates addressed at the
surface of a eukaryotic cell and are involved in many
biological processes such as intercellular recognition,
adhesion or signaling (Varki, 2007; Colley et al., 2017). In
Leishmania, a wide range of unusual mannose-containing
glycoconjugates [e.g., GlycosylPhosphatidylInositol (GPI)
anchors, LipoPhosphoGlycans (LPG), ProteoPhosphoGlycans
(PPG) or GlycosylInositolPhosphoLipids (GIPLs)] are
synthesized and are essential for parasite virulence
(Descoteaux and Turco, 1999; Pomel and Loiseau, 2013).
The biosynthesis of these glycoconjugates requires initially

the conversion of mannose into GDP-mannose. The mannose
moiety of this nucleotide sugar is then transferred into
nascent glycoconjugates to allow mannosylation reaction.
In eukaryotic cells, mannose can either be imported via
membrane transporters or be generated from the reaction
catalyzed by the PhosphoMannose Isomerase (PMI) on
fructose-6-phosphate originating from glycolysis to produce
mannose-6-phosphate (Figure 1A). In the mannosylation
pathway, the PhosphoMannoMutase (PMM) converts mannose-
6-phosphate in mannose-1-phosphate (Figure 1). The activated
form of mannose, GDP-mannose, is then produced by the
action of the GDP-Mannose Pyrophosphorylase (GDP-MP)
according to the following reversible enzymatic reaction
(Ning and Elbein, 2000):

Mannose− 1− P+ GTP ⇄ GDP−Mannose+ PPi

The GDP-MP is a ubiquitous enzyme found in bacteria, fungi,
plants, and animals and belonging to the family of nucleotidyl-
transferases. In mammalian organisms, GDP-MP was mainly
studied in swine (Szumilo et al., 1993; Ning and Elbein, 2000).
The swine native enzyme is a complex of about 450 kDa with
two distinct subunits: α (43 kDa) and β (37 kDa). In pig, as
well as in human, the β subunit displays the enzymatic activity,
while the α subunit would have a regulatory function (Szumilo
et al., 1993; Ning and Elbein, 2000; Carss et al., 2013; Koehler
et al., 2013). In human, α and β subunits share 32% identity.
Mutations in the genes coding for α or β subunits in human lead
to glycosylation disorders characterized notably by neurological
deficits and muscular dystrophies (Carss et al., 2013; Koehler
et al., 2013). Two β isoforms, named β1 and β2, have been
characterized in the human genome, displaying 90 and 97%
identity with the porcine β subunit, respectively. The human
β2 isoform is strongly expressed in a wide range of tissues, in
opposition to β1 which is only weakly expressed, especially in
liver, heart, and kidney (Carss et al., 2013). Additionally, the
β2 isoform shows a better homology with Leishmania mexicana
GDP-MP, compared to β1 (49% for β2 vs. 46% for β1). In bacteria,
GDP-MP are mostly dimeric, either mono- or bifunctional, the
latter displaying both GDP-MP and PMI activities in separate
domains of an individual enzyme (Shinabarger et al., 1991; May
et al., 1994; Ning and Elbein, 1999; Wu et al., 2002; Asencion
Diez et al., 2010; Pelissier et al., 2010; Akutsu et al., 2015).
Unlike in other organisms, leishmanial GDP-MP has been shown
to assemble as a hexamer of 240 kDa in several Leishmania
species (Davis et al., 2004; Mao et al., 2017). As this hexamer
can dissociate at low ionic strength conditions and at low protein
concentration, a mixture of the three forms may be present in the
reaction medium in vitro.

Both human and leishmanial GDP-MP have been reported
to display a high substrate specificity (Mao et al., 2017),
in agreement with previous studies performed in bacterial,
trypanosomal, and swine GDP-MP (Ning and Elbein, 2000;
Denton et al., 2010; Pelissier et al., 2010). The investigation
of the mechanism of reaction has shown a sequential ordered
mechanism in most bacterial GDP-MP like in some other
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FIGURE 1 | Mannose activation pathways and GDP-MP inhibitors. (A) Mannose activation pathways and glycoconjugate biosynthesis in Leishmania. The GDP-MP

substrates and products are indicated in blue. The GDP-MP is circled in red. (B) Chemical structures of compounds A,B. (C) Docking analyses of compound A (top)

and B (bottom) in LdGDP-MP (left) and hGDP-MP (right) catalytic sites. The protein surface is colored as a function of the charge density: red, white, and blue colors

indicating negative, neutral, and positive area, respectively. Magnesium ion is represented by a green sphere. The amino acids that make contact with compound A,B

in the catalytic sites are indicated in their one-letter code and number in the sequence (Adapted from Daligaux et al., 2016a; Mao et al., 2017).

nucleotidyl-transferases, with GTP fixation prior to mannose-1-
phosphate (Barton et al., 2001; Zuccotti et al., 2001; Asencion
Diez et al., 2010; Pelissier et al., 2010; Boehlein et al.,
2013). However, leishmanial and human GDP-MP have been
characterized by a sequential random mechanism (Mao et al.,
2017), in which the substrate binding order is not defined, in
agreement with a mammalian nucleotidyl-transferase (Persat
et al., 1983), suggesting that the GDP-MP mechanism of reaction
differs from bacteria to Leishmania and human.

A knockout of the gene encoding for GDP-MP in L.
mexicana lead to an absence of development in the macrophage
in vitro and to an absence of parasite persistence in vivo
(Garami and Ilg, 2001; Stewart et al., 2005). These results
show that GDP-MP is critical for amastigote survival and is
therefore an interesting drug therapeutic target to be exploited
for antileishmanial drug development. Likewise, GDP-MP has
been described to be essential for cell integrity and survival in
other microorganisms such as Trypanosoma brucei, Aspergillus
fumigatus, or Candida albicans showing the biological validation
as a potential therapeutic target of this enzyme in several
kinetoplastids and fungi (Warit et al., 2000; Jiang et al., 2008;
Denton et al., 2010). Additionally, a High-Throughput Screening

(HTS) assay, allowed the selection of leishmanial GDP-MP
inhibitors (Lackovic et al., 2010). From this study, the most
potent inhibitor identified was a piperazinyl quinoline derivative
(compound A; Figure 1B) demonstrating an in vitro activity on
L. majorGDP-MP and on intracellular parasite proliferation with
IC50 values at 0.58 and 21.9µM, respectively.

COMPUTATIONAL AND TARGET-BASED
DRUG DESIGN

A molecular model of the GDP-MP quaternary structure has
been generated in L. mexicana, confirming the hexameric
structure of the enzyme (Perugini et al., 2005). Based on this
model, GDP-MP hexamers would be assembled by a contact
between trimer structures in a head-to-head manner involving
only the N-terminal end of the protein. These results are however
in opposition to crystallography studies of other GDP-MP or
nucleotidyl-transferases, showing a tail-to-tail arrangement of
the C-terminal β-helices in their quaternary structures (Cupp-
Vickery et al., 2005; Jin et al., 2005; Pelissier et al., 2010;
Führing et al., 2015).
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As no GDP-MP crystal could be obtained in Leishmania,
molecular models of L. infantum and L. donovani GDP-MP
were generated using distinct sequence alignment strategies
and were compared with the human counterpart (Pomel
et al., 2012; Daligaux et al., 2016a). Both analyses showed a
structural conservation of a consensus sequence GXGXRXnK
in leishmanial and human GDP-MP corresponding to a
pyrophosphorylase signature motif, as well as the F(V)EKP
sequence previously described to be part of the GDP-MP
active site (Sousa et al., 2008). Interestingly, several specific
residues have been identified in the catalytic site of both L.
infantum and L. donovani GDP-MP compared to the human
counterpart (Pomel et al., 2012; Daligaux et al., 2016a). Moreover,
GDP-MP sequences share more than 85% of identity in the
Leishmania genus. Therefore, the differences identified between
the leishmanial and human catalytic sites could potentially be
exploited to design specific antileishmanial agents.

The GDP-mannose, as a substrate or a product of the GDP-
MP, has been selected as the basis for inhibitor design because
of its steric volume presenting the maximum of interactions
within the enzyme catalytic pocket (Mao et al., 2017). In this
work, the chemical approach to design leishmanial GDP-MP
inhibitors relied on the pharmacomodulation of the GDP-
mannose from the analysis of enzyme molecular models, by
substituting for example the mannose moiety by a phenyl
group, the pyrophosphate by a triazole or a phosphonate, the
ribose by an ether oxide group or a deoxyribose and the
guanine by different heterocycles such as purine analogs or
quinolines, especially two-substituted quinolines which have
been previously described to display promising in vitro and
in vivo antileishmanial activities (Fournet et al., 1993, 1994,
1996; Nakayama et al., 2005, 2007; Campos-Vieira et al., 2008;
Loiseau et al., 2011). Therefore, the presence of two-substituted
quinolines in these compounds designed could potentiate their
antileishmanial activities through GDP-MP inhibition.

CELL-FREE IN VITRO AND IN SILICO

EVALUATION OF COMPOUNDS ON
PURIFIED GDP-MPs

From the analysis of GDP-MP structural models, a library
of 100 compounds was designed and synthesized (Daligaux
et al., 2016b; Mao et al., 2017). These compounds were
evaluated on recombinant GDP-MP purified from L. donovani
(LdGDP-MP), L. mexicana (LmGDP-MP), and human (hGDP-
MP). In this work, the hGDP-MP corresponded to the β2
subunit displaying the enzyme activity and showing the
highest homology with leishmanial GDP-MP (see above).
This evaluation allowed to identify compound B, a quinoline
derivative substituted in position 2 with a methoxy-ethyl-
triazol-butyn-diisopropylphosphonate group (Figure 1B),
as a specific competitive inhibitor of LdGDP-MP with
a Ki at 7µM. In comparison, compound A, previously
identified from a HTS (Lackovic et al., 2010), displayed a
competitive inhibition of both LdGDP-MP and hGDP-MP
with Ki values at 62 and 20µM, respectively, reflecting a

lower affinity for the leishmanial enzyme compared to the
human counterpart.

A docking study of the identified competitive inhibitors on
GDP-MP structural models showed that compound A binds
to both LdGDP-MP and hGDP-MP with similar potency and
binding modes: the quinoline, piperazine, and tert-butyl groups
occupying the same position as the GDP-mannose nucleotide,
ribose and mannose moieties, respectively, in both catalytic sites
(Daligaux et al., 2016a; Figure 1C). In contrast, compound B

was found to bind more strongly to LdGDP-MP compared to
hGDP-MP, with the diisopropylphosphonate group located more
deeply in the leishmanial enzyme catalytic pocket compared
to the human one (Mao et al., 2017; Figure 1C). These in
silico data are in agreement with the non-selective inhibition
of both leishmanial and human GDP-MP by compound A and
the specific competitive inhibition observed with compound B

on LdGDP-MP.

CELLULAR IN VITRO ANTILEISHMANIAL
ACTIVITY AND CYTOTOXICITY OF
COMPOUNDS A AND B

Both compounds have been evaluated on L. donovani and L.
mexicana axenic and intramacrophage amastigotes in two host
cell models: the RAW264.7 macrophage cell line and primary
Bone Marrow Derived Macrophages (BMDM; Mao et al., 2017).
Compound A showed a moderate antileishmanial activity on
both L. mexicana and L. donovani with IC50 values between
30 and 50µM and between 12 and 28µM on axenic and
intramacrophage amastigotes, respectively (Mao et al., 2017;
Table 1). These data are in agreement with the IC50 previously
reported at 21.9µMon L. major intramacrophage amastigotes by
Lackovic et al. (2010). Moreover, this GDP-MP inhibitor showed
some cytotoxicity on both RAW264.7 and BMDMmacrophages,
giving a low Selectivity Index (SI) in both host cell models. On the
other hand, compound B exhibited a very interesting activity on
L. donovani axenic amastigotes with an IC50 at the micromolar
range (Mao et al., 2017; Table 1). However, it was inactive on
L. mexicana axenic amastigotes, in line with the data obtained
on the purified enzyme showing a specific competitive inhibition
of LdGDP-MP. In L. donovani intramacrophage amastigotes, the
activity of compound B was maintained with an IC50 at the
micromolar range in both host cell models (Mao et al., 2017;
Table 1). Interestingly, this compound was also active on L.
mexicana intramacrophage amastigotes with IC50 values at 1.5
and 8.6µM on RAW264.7 and BMDM cell models, respectively,
suggesting that an additional mechanism of action, distinct from
the parasite GDP-MP inhibition, may be involved. Moreover, no
cytotoxicity was observed with compound B on BMDM, giving a
promising SI above 94 and 12 in L. donovani and L. mexicana,
respectively (Mao et al., 2017; Table 1). Nevertheless, some
cytotoxicity was observed on RAW264.7 macrophages, giving
a low SI on this cell model. These differences could be due to
distinct mechanisms of drug uptake and accumulation between
host cell models, the BMDM being closer to physiological and
clinical conditions as they are primary macrophages.
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CONCLUSION AND FUTURE DIRECTIONS

The mannose activation enzyme systems leading to GDP-
mannose biosynthesis are essential for host-parasite interactions.
Thus, GDP-MP, but also PMI and PMM, are interesting
targets to be inhibited for impairing glycoconjugate biosynthesis.
In this review, we focus on GDP-MP, this enzyme being
responsible for GDP-mannose biosynthesis. GDP-MP is a
druggable protein involved in the host-cell/parasite interactions,
that has now been biologically and pharmacologically validated.
Although ubiquitous, molecular modeling on both leishmanial
and human GDP-MPs strongly suggests that specific inhibitors
could be designed. From a rational design of 100 compounds
based on leishmanial and human GDP-MP tertiary structural
models, compound B appeared to be the most promising. In
comparison with compound A which displayed a competitive
inhibition of both leishmanial and human GDP-MP with
moderate antileishmanial activities and a low SI, compound
B showed a specific competitive inhibition of LdGDP-MP
and an activity on both L. donovani and L. mexicana
intramacrophage amastigotes at the micromolar range giving
an interesting SI above 10 in the BMDM host cell model.
Therefore, the in vivo antileishmanial activity of this compound
should be analyzed in order to determine its potency for
the treatment of leishmaniasis. Further investigations will
address in vivo antileishmanial evaluation, pharmacokinetics,
and pharmacodynamics of compound B to confirm its status
as a hit. Furthermore, the pathways altered in the parasite
by compound B could be investigated in future works
through glycomics analysis in order to study the impact of
this inhibitor on the membrane glycoconjugate composition.
Pharmacomodulations of compound B would also allow to
optimize its selectivity and affinity for the target in Leishmania.
However, the large molecular volume of this compound required
to fill GDP-MP catalytic pocket (Mao et al., 2017), as well
as its high polarity, could present challenges for downstream
optimization. In order to assess the relative importance of GDP-
MP in the most pathogenic leishmanial species, comparative
functional analyses should be performed to optimize the
inhibitor strategy.

In conclusion, compound B can be considered as an original
and interesting hit to be optimized proving that GDP-MP
inhibition is a promising strategy to impair host-parasite
interactions. However, the capacity of this specific metabolism
alteration to prevent drug resistance emergence is still to
be proved.
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