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The emergence of new resistance mechanisms, the failure of classical antibiotics in clinic,

the decrease in the development of antibiotics in the industry are all challenges that

lead us to consider new strategies for the treatment of infectious diseases. Indeed, in

recent years controversy has intensified over strains resistant to carbapenem and/or

colistin. Various therapeutic solutions are used to overcome administration of last line

antibiotics. In this context, drug repurposing, which consists of using a non-antibiotic

compound to treat multi-drug resistant bacteria (MDR), is encouraged. In this review,

we first report what may have led to drug repurposing. Main definitions, advantages

and drawbacks are summarized. Three major methods are described: phenotypic,

computational and serendipity. In a second time we will focus on the current knowledge

in drug repurposing for carbapenem and colistin-resistant bacteria with different studies

describing repurposed compounds tested on Gram-negative bacteria. Furthermore, we

show that drug combination therapies can increase successful by drug repurposing

strategy. In conclusion, we discuss the pharmaceutical industries that have little interest

in reprofiling drugs due to lack of profits. We also consider what a clinician might think of

the indications of these uncommon biologists to treat MDR bacterial infections and avoid

therapeutic impasses.

Keywords: repurposing, multi-drug resistance (MDR), bacteria, colistin resistance, carbapenam resistant

enterobacteriaceae

INTRODUCTION

Nowadays, despite recent scientific progress, infectious diseases must always be taken into
consideration. The World Health Organization (WHO) closely examines such concerns in order
to have an effective health system (World Health Organization, 2018). For 50 years, we have
been confronted with the end of the golden age of antibiotic discovery, while some antimicrobial
substances have existed for years (Gould, 2016). Due to significant progress that has largely
contributed to reducing the number of deaths from infectious diseases, pharmaceutical companies
have developed a decreasing interest in these drugs (Conly and Johnston, 2005).

In addition, the use of an antibiotic and the emergence of its resistance are inevitable and
intrinsically linked (Mohr, 2016). Although this is not a new phenomenon but a natural one,
WHO analysis warns against this serious situation which is the impact, nature and spread of global
antimicrobial resistance (Global Antimicrobial Resistance Surveillance System, 2019 Report Early
implementation). These resistant bacteria are found in every kind of environment: water, animals,
humans, plants and food (Rolain, 2013; Zenati et al., 2016; Bachiri et al., 2017; Tafoukt et al., 2017).
The inappropriate use of antimicrobial agents and the spread of antibacterial resistance are among
factors that lead to a high rate of resistance in clinical, animals, and even in environmental isolates
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(Roca et al., 2015; Bassetti et al., 2017). Partly because of drug
pressure, resistance can occur more easily and affect all types of
antibiotics as for the last-line antibiotics used in humanmedicine
drug for resistant bacterial infections (Biswas et al., 2012). In
recent years, we have seen an increase in the use of carbapenems
as a result of an increase in the carbapenem resistance of Gram-
negative bacteria (GNB) (Diene and Rolain, 2013). For example,
Monaco et al. showed in Italy that among 191 clinical strains
isolated from November 2013 to April 2014, 178 (93%) Klebsiella
pneumoniae had KPC enzymes (carbapenemases), with 76 (43%)
resistant to colistin (Monaco et al., 2014). Although the same
situation has been reported with colistin (Olaitan et al., 2014),
it has received more attention: last-line treatments may no longer
be effective, increasing the risk of spreading infections (Biswas
et al., 2012). To combat frequent epidemics and the challenge of
rapid spread, new alternatives to last resort treatments must be
considered to avoid treatment failure.

As a result, alternatives to antibiotics to treat resistant germs
should be a priority (Bassetti et al., 2017). The use of old drugs can
be a solution like “forgotten” antibiotics polymyxins, fosfomycin,
minocycline ormecillinam, which are still used in clinical settings
(Cassir et al., 2014). There is also a renewed interest in antibiotic
combinations to circumvent resistance (Lenhard et al., 2016).
For example, the synergistic activity of sulfonamide-associated
colistin was evaluated against colistin-resistant clinical bacteria
(Okdah et al., 2018). But “non antibiotic” solutions can also
been considered as alternatives for the therapeutic management
of infections (Aslam et al., 2018). Various studies showed that
Clostridium difficile can be inhibited using bacteriophages or
several ongoing trials use antimicrobial peptides as alternatives
or preventive treatments in the future (Aslam et al., 2018).

The fight to treat multi-drug resistant (MDR) infections
must also include a change in mentality. Rolain and Baquero
denounced the fact that society does not accept the use of
toxic but effective antibiotics in treatment of life-threatening
infections, but on the other hand society can tolerate potential
toxicities of other drugs, such as anti-cancer. With the progress
of medicine in the management of adverse reactions and the
improved monitoring of antibiotic concentrations, old drugs
or dosages rejected due to their adverse effects have to be
reconsidered (Rolain and Baquero, 2016). In this way, one
other promising alternative on which this review focuses is drug
repurposing, also called repositioning (Mercorelli et al., 2018).
This therapeutic shift is the subject of several studies in different
pathologies including cancer (Sleire et al., 2017), heart diseases
(Sun et al., 2018), Alzheimer’s disease (Kim, 2015) or depression
(Ebada, 2017).

In infectiology, repurposing studies are now being carried
out (Torres et al., 2016; Soo et al., 2017; D’Angelo et al., 2018;
Zheng et al., 2018; Miró-Canturri et al., 2019). In general, the
most common bacteria are first tested or those most at risk
or in a therapeutic deadlock. If this review focuses on drug
repurposing that have been tested on MDR bacteria, it seems
important to precise that resistance is rarely crossed and if a
molecule is active on a specific species, this compound will
potentially be active regardless of its resistance mechanisms.
This is because this molecule affects a new target, generally

independent of the antibiotic target, as we will see below with
ciclopirox (Carlson-Banning et al., 2013), gallium (Goss et al.,
2018), and zidovudine (Elwell et al., 1987). Therefore, it can
expand the scope to combinations tested on sensitive GNB as for
minocycline and polymyxin B tested with non-antibiotics drugs
(Schneider et al., 2017). It offers a diversified and still exploitable
field of possibilities (Schneider et al., 2017). For carbapenem
and colistin-resistant isolates, a few articles are published on this
specificity for which we are striving to synthesize them. The aim
is thus to identify an innovative therapeutic strategy against these
bacteria in a cost-effective and efficient way.

In this review, we will define drug repurposing and its
characteristics. We will then make an inventory of what has
already been published as a drug for reuse in general and in
particular to address the problem of carbapenem and colistin-
resistant bacteria. Finally, we will see what prospects exist for this
therapeutic strategy.

DISCOVERY OF AN ANTIBACTERIAL
POTENTIAL IN NON-ANTIBIOTIC DRUGS

What Does Drug Repurposing Mean?
A drug class is assigned to a molecule to describe and group
similary together drugs because of their therapeutic use, their
biochemical mechanism, by their way of action or their chemical
structure. As defined by Waksman in 1947, “an antibiotic is a
chemical substance, produced by micro-organisms, which has the
capacity to inhibit the growth of and even to destroy bacteria
and other micro-organisms” (Mohr, 2016). The current trend
therefore seems to be moving away from this definition. Indeed,
in recent years, drug repositioning seems to have been “a
promising field in drug discovery that identifies new therapeutic
opportunities for existing drugs” (Doan et al., 2011). The
common idea is that to accelerate discovery of new treatment,
using old drugs that could potentially treat disease for which
the treatments used no longer work or when we no longer have
therapeutic solutions must be used (Langedijk et al., 2015). Sir
James Black, pharmacologist and Nobel laureate said in 1888:
“The most fruitful basis for the discovery of a new drug is to start
with an old drug” (Chen et al., 2016). It could help to overcome an
initial bottleneck in drug development process. It may therefore
be a better compromise between risk and reward than other
approaches to drug development (Ashburn and Thor, 2004).

What Are Advantages and Drawbacks?
Drug repurposing present real economic advantages. All studies
about structure, pharmacological properties as bioavailability or
safety profiles for example have already been conducted. With
these drugs, it is possible to skip preclinical trials because toxicity
and pharmacokinetic are already known and a certain hindsight
has been taken for several years. Drugs canmove directly to Phase
2 to test their effectiveness (Mercorelli et al., 2018).

Repurposing drugs can offer new pathways or targets to study
new perspectives for curing diseases. As many antibiotics already
affect DNA, membrane or protein translation, other pathways
essential for bacterial growth, remain available for activity of
molecules, such as assimilation pathways of essential compounds
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FIGURE 1 | Main steps used for drug repurposing strategy.

like sugars or amino acids. Combined strategies that reduce
resistance can be used to achieve several targets that could affect
bacterial metabolism (Mercorelli et al., 2018; Zheng et al., 2018).

Moreover, this method is favorable to academic or
small laboratories because of disinterest of pharmaceutical
industries. Without patents, these industries do not see any
fruitful interest in it because of rapid emerging resistance
(Fernandes and Martens, 2017) and a narrower spectrum of
activity (Zheng et al., 2018).

On the other hand, this solution cannot be totally miraculous.
Drug repurposing does not work all the time due to the high
minimal inhibitory concentration (MIC) (Mercorelli et al., 2018)
or inconsistent plasma concentrations tolerated in humans.
Dose tested for this new indication is important and can lead
to human toxicity (Zheng et al., 2018), what society fears
(Rolain and Baquero, 2016). Concerning galenic, an optimization
of formulation can also be foreseen if a physico-chemical
incompatibility is observed.

How to Process to Repurpose Drugs?
Considered an innovative strategy (Doan et al., 2011), three
major methods can lead a drug to be repurposed, as shown in
Figure 1.

First, phenotypic assay can be performed by high throughput
and screening of commercial, public, pharmaceutical compound
libraries (Jung et al., 1997; Kim, 2015). These assays consist in
classical broth microdilution to identify a hit (Torres et al., 2016).
Once antibacterial activity is found, MIC assay is performed to
confirm results according to CLSI guidelines (Sun et al., 2016b).
Compared to other methods, phenotypic tests have the advantage
of being highly physiologically relevant because the effect is
observed directly on bacteria (Zheng et al., 2018).

Advances in genomics and bioinformatics modified drug
repositioning approach. It consists of in silico structure or
mechanism-based assays that work with virtual databases. This

has been made possible through the prospective development
of drug databases and activities, the exchange of information
on compounds in collaborative networks and the abundance
of resources on the Internet (Hodos et al., 2016). These new
calculation tools make it possible to analyse all the different
data accumulated in the field that man alone cannot study
because they are too complex. This can ensure the understanding
and prediction of molecules by generating hypotheses about
biological mechanisms (Hodos et al., 2016). Limit to these
approaches is that pathways, targets or other data must be already
known. Moreover, false positive and toxicity are problematic
issues found after identification of a hit (Mercorelli et al., 2018).
However, for emerging diseases, this could be a quick way to find
an effective molecule as was done for the coronavirus in 2013
(Law et al., 2013).

The last approach is random discovery and can include all
types of configurations. Indeed, the side effects of one drug
in one disease may be effective for another, such as for the
antidepressant bupropion reoriented as an anti-tobacco drug
(Hodos et al., 2016). It can be mere coincidence as sulfamides
were known for antibacterial properties and finally also employed
for antidiabetic ones (Deuil, 1956). However, these unexpected
observations could also potentially be identified by informatics
methods, in view of knowledge of compound side effects
(Hodos et al., 2016).

Despite all these techniques, if a molecule is identified, it must
then go through the steps of its clinical evaluation.

CURRENT KNOWLEDGE IN DRUG
REPURPOSING FOR CARBAPENEM AND
COLISTIN RESISTANCE?

Studies generally screen MDR bacteria to ensure a broader
spectrum of action (Hijazi et al., 2018) and sometimes bacteria
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TABLE 1 | Relevant repurposing reports for carbapenem and colistin resistant bacteria.

Compound Approved use or

known as

Activity -alone or

in combination

with-

Tested bacteria Resistance

phenotypes

(and/or)

References

Infectiology Zidovudine Antiretroviral Alone Escherichia coli

Klebsiella pneumoniae

Carbapenems

Colistin

Peyclit et al., 2018

Colistin E. coli

K. pneumoniae

Enterobacter cloacae

Pseudomonas

aeruginosa

Acinetobacter

baumannii

Carbapenems

Colistin

Hu et al., 2018; Loose et al.,

2018

Tigecycline E. coli

K. pneumoniae

Carbapenems Ng et al., 2018

Niclosamide Anthelminthic Colistin A. baumannii

K. pneumoniae

Colistin Ayerbe-Algaba et al., 2018

Alone Cebrero-Cangueiro et al., 2018

Pentamidine Antiprotozoal Rifampicin K. pneumoniae

E. coli

E. cloacae

Carbapenems

Colistin

Cebrero-Cangueiro et al., 2018

Aminoglycosides Cebrero-Cangueiro et al., 2018

Ciclopirox Antifungal Alone E. coli

K. pneumoniae

A. baumannii

Carbapenems Carlson-Banning et al., 2013

Oncology 5-fluorouracil Antineoplastic Zidovudine A. baumannii Carbapenems Cheng et al., 2019

Mitotane Antineoplastic Polymyxin B A. baumannii

P. aeruginosa

K. pneumoniae

Carbapenems

Polymyxin

Tran et al., 2018

Gallium Antineoplastic Alone ESKAPE species MDR Hijazi et al., 2018

Tamoxifen

Raloxifen

Toremifen

SERM Polymyxin B P. aeruginosa

K. pneumoniae

A. baumannii

Colistin Hussein et al., 2017

Central Nervous

System

Sertraline Antidepressant Polymyxin B P. aeruginosa

K. pneumoniae

Colistin

Carbapenems

Otto et al., 2019

Citalopram Antidepressant Polymyxin B A. baumannii

E. coli

K. pneumoniae

Colistin

Carbapenems

Otto et al., 2019

Fluspirilene Antipsychotic Colistin A. baumannii Carbapenems Cheng et al., 2019

Metabolism Bay 11-7082 Anti-inflammatory Colistin A. baumannii Carbapenems Cheng et al., 2019

Spironolactone Diuretic Polymyxin B E. coli Carbapenems Otto et al., 2019

Natural compound Resveratrol Stilbene Alone E. coli

Enterobacter

aerogenes

Seukep et al., 2016

Streptomycin K. pneumoniae MDR Seukep et al., 2016

Ciprofloxacin P. aeruginosa

Providencia stuartii

E. cloacae

Seukep et al., 2016

Colistin E. coli

K. pneumoniae

A. baumannii

Serratia marcescens

Proteus mirabilis

Colistin

Carbapenems

Cannatelli et al., 2018

Pterostilbene Anticancer

Antioxidant

Polymyxin B K. pneumoniae Colistin Zhou et al., 2018

Eugenol Essential oil Colistin E. coli Colistin Wang et al., 2018

SERM, Selective estrogen receptor modulator.
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only with colistin or carbapenem resistance to treat the ongoing
issue (Ayerbe-Algaba et al., 2018). Several major studies have
performed drug repurposing on MDR bacteria belonging to
the ESKAPE (Enteroccocus faecium, S. aureus, K. pneumoniae,
A. baumannii, Pseudomonas aeruginosa, Enterobacter species)
group (Table 1). Seven non-antibacterial compounds inhibited
the growth of an Acinetobacter baumannii strain resistant to
most antibiotics including carbapenems: 3 antineoplastics (5-
fluorouracil, 6-thioguanine and pifithrin-µ), 1 anti-rheumatic
(auranofin), 1 antipsychotic (fluspirilene), 1 anti-inflammatory
(Bay 11-7082), and 1 alcohol deterrent (disulfiram). Five-
fluorouracil and 6-thioguanine seemed to be the best candidates
for repurposing to treat MDR clinical A. baumannii. Their
IC90 values or MIC were lower than standard plasma drug
concentration levels in human, suggesting a possible use without
major adverse events (Cheng et al., 2019).

All mechanisms of action and targets are considered because
the objective is to escape therapeutic drug classes. Each
repurposed molecule can be used to study a new pathway
(Figure 2). An antifungal agent developed nearly forty years
ago, ciclopirox, also has good repurposing criteria, as shown
by an American study conducted in 2013 (Carlson-Banning
et al., 2013). Due to its excellent safety profile, it has already
been repurposed in various pathologies such as myeloma, or
as an anti-human immunodeficiency virus drug. It prevents
enzyme actions, essential for cellular metabolism or functions,
by inhibiting the availability of co-factors. Its activity was proved
against MDR E. coli, K. pneumoniae, and A. baumannii strains.

They demonstrated a novel mechanism of action: ciclopirox
affects the galactose and LPS salvage pathways (Carlson-Banning
et al., 2013). In addition, the bacterial activity of gallium has
been known for more than 80 years but is first used as an anti-
cancer agent. Due to its chemical similarity to iron, gallium
inhibits ferric redox reactions or pathways, and then bacterial
growth. In this matter, it has a broad spectrum of activity, in
particular MDR ESKAPE pathogens (Rangel-Vega et al., 2015;
Hijazi et al., 2018). In fact, a phase 2 trial in cystic fibrosis
patients assess the activity of gallium and suggests its safety and

FIGURE 3 | Annual number of publications on PubMed search engine with

“drug repurposing” keyword.

FIGURE 2 | Mechanisms of action of compounds tested alone on colistin or carbapenem resistant bacteria.
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efficacy for human infections (Goss et al., 2018). This once again
represents potential and promising targets for the control of
infectious germs.

It can be noticed that all pharmaceutical classes can be
involved, from anticancer to anti-inflammatory and also
antiparasitic drugs. Pachón-Ibáñez et al. and the study of
Stokes (Stokes et al., 2017) of the previous year showed that
pentamidine was effective against polymyxin resistant strains.
This antiprotozoal agent usually effective in trypanosomiasis,
leishmaniasis and some fungal infections was here tested
against 8 Enterobacteriaceae (5 K. pneumoniae, 1 E. coli
and 2 Enterobacter cloacae). Pentamidine was bactericidal
for 7 strains which carried out carbapenemases or showed
colistin resistance. Moreover, these effects potentiated
activity of other antibiotics due to a synergistic activity
with rifampicin, or aminoglycosides for E. cloacae. With
rifampicin, combination was effective against most of the strains
tested (Cebrero-Cangueiro et al., 2018).

In this context of drug reprofiling, various studies identified
the antiretroviral zidovudine, also called azidothymidine (AZT),
as an active molecule against resistant Enterobacteriaceae
(Doléans-Jordheim et al., 2011; Peyclit et al., 2018). The
interest in drug repurposing in MDR enterobacterial infections
has revived the forgotten antibacterial properties of this drug
mentioned for the first time in 1986 (Elwell et al., 1987). On
a series of Enterobacteriaceae with different colistin resistance
profiles (mcr-1 gene, mgrB or pmrB mutations), its antibacterial
action was confirmed with MICs ranging from 0.2 and 6.25µM.
Pharmacokinetic data showed that AZT concentrations found
would be compatible with plasma concentrations obtained for
doses used in human medicine (Peyclit et al., 2018). Due
to a relatively rapid mutation frequency (Doléans-Jordheim
et al., 2011) and resistant strains already reported (Lewin
et al., 1990a), it would appear that zidovudine is more
suitable for use in combination. Indeed, zidovudine was tested
in various associations with antibiotics from different class
(Lewin et al., 1990b; Mascellino et al., 1993). In a recent
article (Hu et al., 2018), checkerboard analysis with colistin
showed synergistic activity against 60.87% of the Extended
spectrum ß-lactamases (ESBL) E. coli, 87.1% of the ESBL K.
pneumoniae, 100% of NDM-1 producing strains and 92.31%
of colistin resistant (mcr-1) E. coli. With this bactericidal
combination, the activity of colistin has been improved, which
could reduce the dose of colistin for a better effect (Hu et al.,
2018). Patented in 2014 (Hu and Coates, 2014), it has been
enrolled in a Phase 1 clinical trial. Results showed that the
association had a bactericidal activity on plasma concentration
on mcr-1 positive strains and that it was well tolerated by
the healthy volunteers involved in the study (Loose et al.,
2018). Further human studies can be undertaken to confirm
these results, but they confirm that AZT can be a recovery
therapy against MDR bacteria and thus help clinicians avoid
therapeutic impasses.

Finally, in order to anticipate the emergence of resistance
in bacteria, some molecules have the significant advantage of
not being used alone, of focusing on multiple targets and thus
eradicating the infection as quickly as possible.

Drug Combination Therapy Increases
Successful Drug Repurposing
After finding a positive response to a new use, if it
does not sufficiently meet the criteria of efficacy, safety,
pharmacodynamics, non-toxicity, combination studies with
another drug may be considered in order to use it effectively.
Drug combinations consist on an association of two or more
drugs in order to enhance efficacy of therapeutic strategy
and increase chances of clinical applications. It broadens the
spectrum of activity of useful antibiotics, for example for serious
infections requiring urgent and effective treatment (Zheng
et al., 2018). The use of two or more drugs has an impact
on different targets, increasing the impairment of microbial
function and reducing the risk of resistance emergence (Zheng
et al., 2018). The main goal of drug association is to produce
a synergistic effect: effect produced by combination is greater
than that achieved with any of the drugs used alone. Moreover,
if one compound has low activity, another can potentiate and
increase it. This reduces the concentration of each individual
molecule and can therefore be used at lower doses. This is a real
advantage when one knows toxicity of certain drugs (Sun et al.,
2016a; Zheng et al., 2018). Sun et al. showed the use of drug
combinations reduced toxicity. It increased activity compared to
a single therapy when cytotoxicity was proven allowing the use
of some drugs in human medicine that were not conceivable on
their own (Sun et al., 2016a).

Drug Repurposing for Combination With
Known Antibiotics
Research in drug repurposing for combination with known
antibiotics on carbapenem and/or colistin-resistant bacteria
has mainly been conducted in association with polymyxins
drugs (Table 1). Niclosamide, an anthelmintic drug, known
to be active against most tapeworms, seems to interact with
the negatively charged outer membrane of colistin-resistant
strains leading to a synergistic effect with colistin. This
effect was observed on 18 strains with 13 colistin-resistant
A. baumannii (pmrB altered), and 2 colistin-resistant K.
pneumoniae (mgrB and pmrB altered) (Ayerbe-Algaba et al.,
2018). Colistin combination therapy with selective estrogen
receptor modulators (SERM) as tamoxifen, raloxifen and
toremifen also exhibited good activity against polymyxin-
resistant P. aeruginosa, K. pneumoniae, and A. baumannii.
Tested in-vitro concentrations could be achievable for human
concentration (Hussein et al., 2017; Schneider et al., 2017).
In 2019, fluspirilene and Bay 11-7082 have shown promising
results by resensitizing a resistant A. baumannii to overcome
colistin resistance (Cheng et al., 2019). Regarding polymyxin B,
synergistic activity with mitotane, an antineoplastic approved
for carcinoma treatment, was studied in-vitro on 10 strains
including carbapenem or polymyxin-resistant GNB. Tests were
also carried out on infections of mouse burn wounds, which
led to a promising result for the treatment of this type
of infection (Tran et al., 2018). Using knowledge of the
mechanisms of action, an approach was also tested with
some channel-blocking molecules. Indeed, these efflux pump
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inhibitors did not have an effect on bacteria alone but
combined with an antibiotic, they demonstrated restoration
of its activity. The effect is more or less strong but as
for neuroleptics (prochlorperazine, chlorpromazine, promazine)
associated with meropenem appear to be effective against MDR
A. baumannii (Yang and Chua, 2013).

Otto et al., showed a potential efficacy of 7 drugs,
including 3 antidepressants (amitriptyline, imipramine and
sertraline) and 4 antipsychotics (chlorpromazine, clonazepam,
haloperidol, and levopromazine) with polymyxin B against
20 tested GNB displaying various resistance mechanisms
including carbapenemases (Otto et al., 2019). Only sertraline,
chlorpromazine and levopromazine had a synergism effect with
polymyxin B against A. baumannii, E. coli and K. pneumoniae
isolates. Among all non-antibiotics, only spironolactone, which
had only a good efficacy against E. coli isolates, showed non-toxic
levels of minimum concentration for synergy with polymyxin
B (Otto et al., 2019). These findings show that non-antibiotics
molecules can be effective in combination but studies need to be
pursued to develop association with effective concentrations that
are clinically tolerated (Otto et al., 2019).

Natural Compounds for New Combinations
Should Not Be Excluded
Although some natural compounds are not FDA-approved, some
may also be part of this process for which a compound is used in
another known property. The stilbene and polyphenol resveratrol
is produced by various plants (as grapes and blueberries)
and is known to have various antioxidant properties and
chemopreventive activities. In the bark from Nauclea pobeguinii,
Cameroonian researchers found this compound and tested it
on GNB with MDR phenotypes. It was active alone and in
a synergy with streptomycin and ciprofloxacin (Seukep et al.,
2016). Rossolini et al. demonstrated in 2018 activity of resveratrol
as an antimicrobial agent in combination with colistin on a
panel of colistin-resistant (chromosomic or plasmid resistance)
GNB (Cannatelli et al., 2018). Resveratrol seems to potentiate
colistin activity and thus makes it possible to restore its action
among different species and resistance pathways. Thus, another
natural compound, pterostilbene, derived from blueberries and
grapes and known for its anticancer, anti-inflammatory and
antioxidant effects, appears to enhance polymyxin activity in vitro
and in vivo (Zhou et al., 2018). They demonstrated synergistic

FIGURE 4 | How to proceed with a DTR (difficult-to-treat resistant) bacteria.
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effects with colistin and with polymyxin B in mcr-1 positive
strains by 8-fold reducing MIC of polymyxin B with 32µg/ml
(Zhou et al., 2018). Pterostilbene could therefore affect mcr-
1 function and restore antibacterial activity of polymyxin B
in resistant isolates. Probably safe for human clinical practice
and possibly not exerting selective pressure associated with
the current ATB, it is therefore considered a good candidate
for drug repurposing (Zhou et al., 2018). Lastly, eugenol is a
phenylpropanoid present in essential oil of many plants. Thirteen
animal E. coli strains with colistin resistance were subjected to
MIC, time kill and checkerboard assays to evaluate combination
between colistin and eugenol (Wang et al., 2018). They observed
that mcr-1 gene expression was down regulated by eugenol
and suggested a possible binding between eugenol and MCR-1
protein. (Wang et al., 2018).

All these molecules are still being tested in vitro or in
clinical trials and none have yet received new indication
for MDR infection treatment. However, research on
drug repurposing is gaining new dynamism if we can
refer to the number of annual publications in recent
years (Figure 3).

PERSPECTIVES

In conclusion, this review therefore addresses two main aspects,
both the emerging drug repurposing strategy and resistance to
last-line antibiotics, carbapenems, and colistin. A new economic
model is to be considered for antibiotic development because
industries do not seem interested in this new strategy (Zheng
et al., 2018). Indeed, as antibiotics are not part of chronic
treatment strategies, this could not be as economically attractive
(Conly and Johnston, 2005). This disinterest in antibiotics
research is reflected in their absence in programs of future
developments of major pharmaceutical companies (Spellberg
et al., 2004). Start-ups or small companies, on the other hand,
can see an interest in taking back antibiotics that have failed
in clinical phases, for example. They believe they have different
drug development strategies and do not require as many benefits
to cover their costs compared to multinational pharmaceutical
companies (Fernandes and Martens, 2017). However, Phase
3 clinical trials for new and repurposed drugs remain very
expensive: it is estimated between $40million and $300million of
USD (Azvolinsky, 2017). With such a budget, this does not work
in favor of small firms.

As for the question of how to treat bacterial resistance, only
one answer has not been found and the future offers us new
possibilities. Various strategies are being considered as treatment
using fecal microbiota (Davido et al., 2017), antimicrobial
peptides (Hashemi et al., 2017) or bacteriophages (Parmar et al.,
2017). A Streptomyces sp. present in alkaline soil in Ireland has
been in the spotlight recently to inhibit growth of MDR bacteria
(Terra et al., 2018) which reminds of Flemming discovery.
Additionally, the discovery and studies on the CRISPR/Case9
system may suggest that it may be the ultimate weapon to
fight infectious diseases and thus control antibiotic resistance
(Doerflinger et al., 2017).

Question of drug repurposing remains rather wide. Although
this seems to be a better solution, drug combinations can
also lead to adverse interactions. First, toxic side effects can
be increased. Then, concerning compound galenic, physico-
chemical interactions and differences in stability, solubility
and conservation can result from the combination of two
molecules making it incompatible. Formulation then becomes
more complicated (Sun et al., 2016a). On the other hand, we
must change this vision where each drug belongs to only one
box. Clinicians may have difficulty understanding why a biologist
recommends the use of an anti-cancer or anti-inflammatory drug
to treat their cystic fibrosis patient’s bacteremia rather than a
last resort antibiotic they have always used. Communication in
this sense remains essential between health professionals and
clinical studies to prove these activities are critical. However, with
current knowledge on drug repurposing as antibacterial agents
and the problematic to find an alternative therapeutic in some
situations, screening of non-antibiotics in a “à la carte” way can
be an issue (Figure 4). In the area of personalized medicine,
we could imagine a personalized antibiotic susceptibility testing
in case of infection caused by a highly resistant bacterium. If
all last-line antibiotics have been tested and appear insufficient
to successfully treat the patient, testing non-antibiotic drugs
that are potentially active on the pathogen, alone or in
combination with antibiotics, could help clinicians use these
drugs. As previously reported by Kadri et al., these difficult-
to-threat bacteria refer to bacteria that are resistant to all
first-line antibiotics. It represents less than 1% of isolates and
those that are resistant to second-line antibiotics are even rare
(Kadri et al., 2018). This solution, combined with monitoring
of serum levels and adverse events such as dialysis of a
nephrotoxic drug (Rolain and Baquero, 2016), could offer great
potential for treating a patient with this MDR bacterium. The
problem remains to be able to routinely test a large panel
of molecules, in an automated, reproducible, and not too
expensive way.
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