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Leishmaniasis is an infectious disease caused by protozoans of the genus Leishmania.

The macrophage is the resident cell in which the parasite replicates and it is important

to identify new compounds that can aid in parasite elimination since the drugs

used to treat leishmaniasis are toxic and present side effects. We have previously

shown that treatment of Leishmania braziliensis-infected macrophages with DETC

(Diethyldithiocarbamate) induces parasite killing, in vivo. Thus, the objective of this study

was to further evaluate the effect of oxidants and antioxidants in L. braziliensis-infected

macrophages, following treatment with either oxidizing Hydrogen Peroxide, Menadione,

DETC, or antioxidant [NAC (N-Acetyl-Cyteine), Apocynin, and Tempol] compounds.

We determined the percentage of infected macrophages and number of amastigotes.

Promastigote survival was also evaluated. Both DETC (SOD-inhibitor) and Tempol

(SOD-mimetic) decreased the percentage of infected cells and parasite load. Hydrogen

peroxide did not interfere with parasite burden, while superoxide-generator Menadione

had a reducing effect. On the other hand, NAC (GSH-replenisher) and Apocynin

(NADPH-oxidase inhibitor) increased parasite burden. Tempol surfaces as an interesting

candidate for the chemotherapy of CL with an IC50 of 0.66 ± 0.08mM and selectivity

index of 151. While it remains obscure how a SOD-mimetic may induce leishmanicidal

effects, we suggest the possibility of developing Tempol-based topical applications for

the treatment of cutaneous leishmaniasis caused by L. braziliensis.

Keywords: L. braziliensis, oxidants, anti-oxidants, leishmaniasis, chemotherapy

INTRODUCTION

Leishmaniasis is zoonotic infection widely distributed from Asia to America which exhibits a high
mortality rate. The clinical forms of leishmaniasis depend on the infecting organism and the general
state of the host’s immune response and are divided in visceral leishmaniasis (VL) and tegumentary
leishmaniasis (TL). TL is characterized by cutaneous or mucosal lesions with low lethality, but with
high morbidity. CL caused by Leishmania braziliensis is distinguished from other leishmaniasis by
its chronicity, latency, and tendency to metastasize in the human host (Bittencourt et al., 2003).
Brazil along with nine other countries account for 70–75% of the global CL incidence (Alvar
et al., 2012). First choice drugs for leishmaniasis chemotherapy are pentavalent antimonials (Sbv)
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[Meglumine Antimoniate (Glucantime R©) and Sodium
Stibogluconate (Pentostam R©) (Croft and Coombs, 2003)]
which are significantly toxic and with reported drug resistance
(Llanos-Cuentas et al., 2008). Amphotericin B (Annaloro et al.,
2009) andMiltefosine (Machado et al., 2010) are also limited with
regards to toxicity, cost, and/or time of treatment, reinforcing
the need for new chemotherapeutic alternatives.

Leishmania promastigotes infect both resident macrophages
and monocytes recruited to the infection site. Macrophages
are the main host cell, where the parasite differentiates into
replicating amastigotes. Upon macrophage activation by IFN-
γ, NADPH oxidase generates O−•

2 through the transfer of
electrons from NADPH, coupling them to O2. In a phagosome
where leishmania parasites reside, O−•

2 may either undergo SOD
degradation to form H2O2 or be used to generate other ROS,
depending on expressed enzymes/cofactors availability and the
imbalance between oxidants and antioxidants results in oxidative
damage (Sies, 1993). ROS inhibits the growth of L. braziliensis
amastigotes and contribute to parasite killing (Novais et al.,
2014), while NO production alone does not suffice to control
infection (Carneiro et al., 2016).

As an evasion strategy, Leishmania induces IFN-β production
by infected macrophages, which on its turn induces the
expression of the enzyme superoxide dismutase (SOD1). The
enzyme SOD1 has an antioxidant function: it converts O−•

2
into molecular oxygen (O2) and hydrogen peroxide (H2O2),
the latter degraded by catalase. Survival of L. amazonensis
and L. braziliensis in the host depends on this process
(Khouri et al., 2009).

The SOD1-inhibitor diethyldithiocarbamate (DETC) kills
intracellular parasites in vitro and in vivo in a murine model
of cutaneous leishmaniasis (Khouri et al., 2010). We have
previously shown that DETC can be used as a topical treatment
in the cutaneous lesions caused by L. braziliensis (Celes
et al., 2016), suggesting that manipulation of the redox status
during in vitro infection with L. braziliensis can contribute
to the identification of novel therapeutic alternatives. To this
purpose, we incubated promastigotes and infected macrophages
with Glutahtione replenisher N-acetyl-cysteine (NAC) (Aldini
et al., 2018), SOD-mimetic Tempol (Wilcox, 2010) and O−•

2
-generator menadione (Hassan, 2013). Much to our surprise,
we observed that Tempol, a SOD-mimetic, was as effective as
DETC (SOD-inhibitor) and menadione (superoxide generator
via redox cycling (Criddle et al., 2006) with regards to its
ability to reduce macrophage infection by L. braziliensis,
suggesting novel yet unexplained effects of antioxidants over
Leishmania infection.

MATERIALS AND METHODS

Ethics Statements
Female BALB/c mice, 6–8 weeks of age, were obtained from
IGM/FIOCRUZ animal facility where they were maintained
under pathogen-free conditions. All animal work was conducted
according to the Guidelines for Animal Experimentation of
the Colégio Brasileiro de Experimentação Animal and of the
Conselho Nacional de Controle de Experimentação Animal.

The local Ethics Committee on Animal Care and Utilization
(CEUA) approved all procedures involving animals (CEUA
L001/12 IGM/FIOCRUZ).

Parasites
Leishmania braziliensis (MHOM /BR/00/BA788/GFP)
were grown in Schneider Insect medium (ThermoFisher
Scientific) supplemented with 100 U/mL penicillin, 100 mg/mL
streptomycin and 10% inactivated FBS (ThermoFisher Scientific)
at 26◦C until the stationary phase.

Infection of Bone Marrow-Derived
Macrophages (BMDM) With L. braziliensis

and Treatment With Oxidants and
Anti-oxidants
Bone marrow derived macrophages were obtained as described
(Weischenfeldt and Porse, 2008) and were resuspended in
DMEM medium (ThermoFisher Scientific) supplemented with
100 U/ml penicillin, 100 ug/ml streptomycin, and 10%
inactivated FBS (ThermoFisher Scientific) and seeded at density
of 3 × 105 cells per well in 24-well tissue plates. Monolayers
received 3 × 106 L. braziliensis promastigotes and were
incubated at 35 ◦C in supplemented DMEM medium for 24 h.
Infected macrophages were washed to remove non-internalized
parasites. Cultures were treated with Diethyldithiocarbamate
(DETC) (1 or 2mM) (Khouri et al., 2010; Celes et al.,
2016), Hydrogen Peroxide (100 or 150µM), N-acetyl cysteine
(NAC) (1, 5, or 10mM), Apocynin (APO) (20mM) (Paiva
et al., 2012), Tempol (4-Hydroxy-TEMPO) (0.5, 1, or 5mM)
(Hahn et al., 1997; Shilo and Tirosh, 2003; Kim et al., 2017)
and Menadione (1, 10, or 20µM) (Mittra et al., 2013), all
from SIGMA. Compounds were diluted in DMSO (vehicle).
Amphotericin B (0.25µg/mL, Invitrogen) was used as positive
control. After 48 h, cells were extensively washed, fixed, and
stained with hematoxylin and eosin (Fischer et al., 2008).
The number of infected cells and intracellular amastigotes
were counted by optical microscopy in 200 macrophages.
Cultures (control and infected macrophages) were performed in
quintuplicate. Alternatively, the rate of infection was evaluated
by flow cytometry. Briefly, cells were fixed in PBS with 2%
paraformaldehyde for 10min, and kept at 4◦C in the dark until
acquisition. Data were acquired in a Fortessa flow cytometer (BD
Biosciences, USA), for analysis by using FlowJo software (Tree
Star, Version 10.2).

Treatment of L. braziliensis Promastigotes
With Tempol, DETC, and Menadione
Stationary-phase promastigotes (3 × 105) were cultured
in supplemented Schneider in the presence of Tempol (1,
3, or 5mM), DETC (0.1, 0.5, or 1mM) and Menadione
(2, 5, 10, or 20µM), all from SIGMA. Promastigotes
were cultured in 96-well plates for up to 3 days and the
number of viable promastigotes was determined daily using
hemocytometer. All assays were performed in quadruplicate
and Schneider’s medium alone or medium containing vehicle
alone were used as a negative control. The half-maximal
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cytotoxic concentration (CC50) and half maximal effective
concentration (EC50) values of Tempol were determined
by a non-linear regression of the concentration-responses
curves using GraphPad Software. The selectivity index
(SI) was calculated as a ratio between CC50/EC50 obtained
with murine macrophages and intracellular L. braziliensis
amastigotes, respectively.

Statistical Analysis
For non-parametric data, analyzes were performed using
the Kruskal-Wallis test, followed by the Dunn’s multiple
comparisons test, for comparisons between three or more
groups. For all the analyzes the confidence interval of 95%
was established, being the values considered statistically
significant when p<0.05. Three biological replicates
were performed for each experiment. All analyzes were
done using GraphPad Prism Software version 5.0. Flow
cytometric analyzes were performed using FlowJo software
version 10.

RESULTS AND DISCUSSION

Herein, we tested a number of compounds for their ability to
modulate the oxidative stress in macrophages infected with L.
braziliensis. We hypothesized that compounds able to increase
ROS induce parasite elimination, building on previous studies
showing that such effect can be applied to the development of
topical formulations for the treatment of cutaneous leishmaniasis
(Celes et al., 2016).

BMDM were infected with L. braziliensis and treated
with DETC. DETC significantly reduced the percentage of
infected cells (Figure 1A) and the number of intracellular
parasites (Figure 1B). DETC (2mM) showed a leishmanicidal
effect similar to that of Amphotericin B, used to treat
human leishmaniasis and employed here as a positive control,
corroborating our previous findings that the elevation of
O−•
2 levels by DETC-mediated inhibition of SOD1 induces

L. braziliensis killing (Khouri et al., 2010; Celes et al., 2016).
H2O2 significantly reduced the number of infected cells
nor the number of amastigotes (Figures 1C,D, respectively),
indicating that the ROS responsible for parasite killing induced
by DETC is O−•

2 itself or another species which uses O−•
2

as a substrate. These results are in accordance with the
killing of L. braziliensis amastigotes by EGCG (Inacio et al.,
2014), shown to induce the production of superoxide anions,
hydrogen peroxide, and other reactive oxygen species (ROS)
(Suh et al., 2010), an effect inhibited by catalase-PEG. L.
donovani was reported to evade oxidative conditions by
removing H2O2 and allowing parasite survival (Channon and
Blackwell, 1985). More recently, resistance of L. donovani-
infected macrophages to H2O2− mediated apoptosis was
shown to be due to upregulation of thioredoxin and SOCS
(Srivastav et al., 2014).

Tempol is an antioxidant able to promote O−•
2 metabolism

at rates similar to SOD and able to permeate membranes freely
(Batinic-Haberle et al., 2010). It acts as an O−•

2 scavenger
that crosses cell membranes and therefore can be used to

scavenge O−•
2 in living phagocyte (Gariboldi et al., 1998). We

thus expected that Tempol, as an antioxidant molecule, would
also favor infection by L. braziliensis. Strinkingly, exposure
to Tempol significantly reduced the percentage of infected
cells (Figure 1E) and the number of amastigotes (Figure 1F),
controlling L. braziliensis infection, as seen with DETC.
Moreover, the combination DETC+Tempol also reduced the
percentage of infected cells (Supplemental Figure 1), as seen
individually with DETC (Figure 1). Tempol mimics superoxide
dismutase activity thus generating hydrogen peroxide and
water, destabilizing the oxidation. We can speculate that
the presence of Tempol increased H2O2 levels, interfering
with parasite viability. In this case, the concentrations of
H2O2 reached inside the phagosome would need to be
significantly higher than those obtained herein following
macrophage incubation with 50µM H2O2 (Figures 1C,D).
Alternatively, Tempol may have off-target leishmanicidal effects
superimposed to its anti-oxidant effects. Treatment with
Menadione also significantly decreased the percentage of
L. braziliensis-infected cells (Figure 1G) and the number of
intracellular parasites (Figure 1H). We can speculate that,
as seen with DETC (Celes et al., 2016), the presence of
Menadione may have elevated superoxide levels, leading to
parasite elimination.

In L. infantum-infected BMDM macrophages, addition of
Tempol during phagocytosis increases intracellular infection
(Gantt et al., 2001). In L. amazonensis-infected mice, SOD-
mimetic Tempol exacerbated lesion development and
increased parasite load after oral administration. This was
associated with reduction of nitric oxide and sequestration
of oxidizing molecules (Linares et al., 2008). Differences
in the pathogenesis of CL caused by L. amazonensis and
L. braziliensis have been reported regarding the role of
neutrophils, for example (Novais et al., 2009; Roma et al.,
2016; Carneiro et al., 2018). Therefore, we can speculate that
the microbicidal effect of Tempol observed herein, in vitro,
recapitulate such differences and thus warrant further in vivo
experiments, especially given Tempol’s ability to modulate
H2O2 levels.

We also verified the leishmanicidal effect of oxidants
on L. braziliensis promastigotes: DETC significantly
reduced L. braziliensis proliferation at all DETC
concentrations tested (Supplemental Figure 2A). As
seen with amastigotes (Figures 1E,F), SOD-mimetic
Tempol also inhibited the proliferation of L. braziliensis
promastigotes (Supplemental Figure 2B), similarly to
SOD-inhibitor DETC, although we did not observe
clear-cut dose-dependent effects. Menadione induced
promastigote killing (Supplemental Figure 2C). Lastly,
a combination of Tempol+DETC strongly reduced
parasite survival as seen with combinations of Menadione
+ Tempol and Menadione + DETC combinations
(Supplemental Figure 2D).

In parallel to the oxidants, we examined the effect of
antioxidants: N-Acetyl-Cysteine (NAC) is a synthetic precursor
of intracellular cysteine and glutathione, and its anti-ROS
activity results from its ability to directly remove free radicals
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FIGURE 1 | Oxidants reduce Leishmania braziliensis infection in vitro. Macrophages were infected with L. braziliensis for 24 h, and then exposed to different

concentrations of DETC (A,B), H2O2 (C,D) for 24 h, Tempol (E,F), and Menadione (G,H) for 24 h. Cells were stained with H&E and assessed for the percentage of

infection (A,C,E,F) and the number of amastigotes per 100 macrophages (B,D,G,H) by optical microscopy. Infected macrophages treated with Amphotericin B (AMB)

were used as positive controls. Data are shown as mean ± SEM. *p < 0.05; **p < 0.01, ***p < 0.001, all comparisons were against negative control (medium).
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FIGURE 2 | Anti-oxidants enhance in vitro infection with L. braziliensis. Macrophages were infected with L. braziliensis for 24 h, and then exposed to different

concentrations of NAC (A,B) and Apocycin (C,D) for 48 h. Cells were stained with H&E and assessed for (A,C) the percentage of infected macrophages and (B,D) the

number of amastigotes per 100 macrophages by optical microscopy. Infected macrophages treated with Amphotericin B (AMB) were used as positive controls. Data

are shown as mean ± SEM. *p < 0.05, **p < 0.01, all comparisons were against negative control (medium).

through the redox potential of thiols and indirectly by increasing
levels of glutathione in cells (Sun, 2010). L. braziliensis-infected
macrophages treated with NAC had a significantly higher
percentage of infection (Figure 2A) and a significantly increased
parasite load (Figure 2B). Similar results were reported in human
monocytes infected with L. braziliensis and incubated with NAC
(Novais et al., 2014). We believe that these effects are due
to the neutralization of ROS, since NAC restores glutathione
(GSH) and NAC may protect L. braziliensis from oxidative
stress just as it does with human red blood cells (Grinberg
et al., 2005). Alike NAC, exposure of L. braziliensis-infected
macrophages to APO did not change the percentage of infected
cells (Figure 2C), but induced an increase in the number of
amastigotes in cells, indicating that the source of ROS in
infected macrophages is indeed NADPH-oxidase respiratory
burst (Figure 2D).

Although news studies are needed to understand the
mechanisms by which Tempol acts to eliminate L. braziliensis, we
believe Tempol is an interesting candidate for the chemotherapy

of CL. Of note in BMDM, the IC50 of Tempol was determined
at 0.66mM ± 0.08mM, the CC50 was calculated as >100mM
and the selectivity index was established at 151. Tempol
presents low toxicity and has successfully completed phase
I clinical trials to be used topically against tissue damage
(Metz et al., 2004). Given that treatment options for CL are
currently limited and that the number of refractory cases
has increased, Tempol surfaces as a viable alternative for
further investigation.
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