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Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) represent the most

common agents of sexually transmitted rectal infections among men having sex with

other men (MSM). In this study, we assessed the bacterial composition of the rectal

microbiota associated with CT and/or NG infections in a cohort of men reporting

unsafe rectal intercourse. A total of 125 rectal swabs were collected and four groups

were compared: non-infected subjects (n = 53), patients with CT (n = 37), or NG

rectal infection (n = 17) and patients with contemporary positivity for CT/NG (n = 18).

CT and NG infections were detected by a real-time commercial test and the rectal

microbiota composition was analyzed from rectal swabs through sequencing of the

hypervariable V3-V4 regions of the 16S rRNA gene. The rectal microbiota of all subgroups

was dominated by Prevotellaceae, Enterobacteriaceae, and Ruminococcaceae families.

Irrespective of the analyzed subgroup, we found that the rectal environment of all the

enrolled MSM was rich in Prevotella and Escherichia genera. Moreover, a shift in the

bacterial composition between patients with sexually transmitted rectal infections and

controls was noticed: infected patients were characterized by a depletion of Escherichia

species, associated with an increase of anaerobic genera, including Peptoniphilus,

Peptostreptococcus, and Parvimonas. Overall, the presence of rectal symptoms did

not significantly modify the rectal microbiota profiles among the four groups of analyzed

patients. We confirmed that HIV-positive patients are characterized by a lower bacterial

richness than HIV-negative subjects. However, we found that the presence of HIV has

a different impact on bacterial rectal communities compared to CT and NG infections,

modifying the relative abundance of several genera, including Gardnerella, Lactobacillus,

Corynebacterium, and Sutterella. Information about the rectal microbiota composition

in CT and NG infections could shed light on the pathogenesis of these conditions and

could contribute to the onset of new strategies for their control.
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INTRODUCTION

Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are
the etiological agents of the most common sexually transmitted
rectal infections (STIs) in men having sex with other men (MSM)
(Danby et al., 2016; Tao et al., 2016).

These infections are often asymptomatic, acting as a
significant reservoir for their further spread; if left untreated, they
can lead to several sequelae and complications (Grov et al., 2016;
Foschi et al., 2018a). Moreover, missed rectal infections could
contribute to the onset of alarming multi-drug resistance in N.
gonorrhoeae (Unemo and Shafer, 2014). In addition, chlamydial
and gonococcal rectal infections are associated with an increased
risk of HIV infection transmission (Barbee et al., 2017).

To the best of our knowledge, no information about
the composition of the rectal microbiota during ongoing C.
trachomatis or N. gonorrhoeae infections is currently available.
The characterization of the bacterial environment of the rectal
mucosa, where chlamydial and gonococcal infections originate
and proliferate, could be crucial to better understand the
pathogenesis of these rectal STIs.

Several studies comparing fecal collection and rectal biopsies
for microbiome analysis show that the intestinal lumen and
mucosa can be colonized by distinct microbial communities
(Araújo-Pérez et al., 2012; Tang et al., 2015). The mucosal
microbiota is in close contact with the intestinal epithelium, thus
interacting more directly with the host immune system than the
fecal bacteria (Tang et al., 2015). As a consequence, mucosal
microbiota is possibly linked to disease development (Goto
and Kiyono, 2012). Moreover, there are significant differences
in terms of nutrient availability between the epithelial mucus
layer and the gut lumen environment (Igartua et al., 2017).
Fecal samples reflect what is held in the luminal environment,
including bacteria ingested with food, whereas direct sampling
of the intestinal mucosa is more representative of the
interactions between the endogenous microbiome and the host
(Ingala et al., 2018).

Biopsies are able to capture the diversity of microbial
populations in the mucosal layer, where adherent bacteria
reside (Sonnenburg et al., 2004). Unfortunately, procedures for
obtaining colorectal biopsies (i.e., sigmoidoscopy, anoscopy, or
colonoscopy) are expensive, time-consuming and invasive, often
leading to patient discomfort. Previous works have shown that
rectal swabs are suitable to assess the characteristics of the gut
microbiota (distal gastrointestinal tract), being an appropriate
alternative to mucosal biopsy specimens (Budding et al., 2014;
Bansal et al., 2018; Zhang et al., 2018). In this context, it has
been hypothesized that microbiota profiles derived from rectal
swabs can be used for clinical diagnostics and large-scale studies
(Budding et al., 2014).

The bacterial composition of the ano-rectal mucosa has been
previously studied in different conditions. As an example, Kelley
et al. demonstrated that MSM engaging in condomless receptive
anal intercourse harbor a peculiar rectal mucosal environment,
characterized by an enrichment of Prevotellaceae and a depletion
of Bacteroidaceae (Kelley et al., 2017).

In this study, we assessed the bacterial community profiles
of the rectal microbiota associated to CT and/or NG infections
by analyzing rectal swabs collected from a cohort of MSM.
These data could be useful to set up new diagnostic/prognostic
tools, to find correlations with the presence of peculiar clinical
or behavioral aspects (e.g., rectal signs/symptoms, onset of
complications, etc.), as well as to evaluate the possibility of a
different susceptibility to STIs based on the rectal microbiota
composition. It follows that intriguing perspectives for the
control of rectal CT and NG infections, in terms of prevention
and treatment, could be opened.

MATERIALS AND METHODS

Study Population and Sample Collection
Eligible patients were selected from a group of MSM attending
the STI Outpatients Clinic of S. Orsola-Malpighi Hospital
in Bologna (Italy) and reporting unsafe rectal intercourse.
Exclusion criteria were: being under the age of 18 years;
antibiotic treatments in the month before the study; presence
of inflammatory bowel diseases (IBD); presence of infectious
intestinal pathologies; use of enemas within 3 days before
sampling. Moreover, samples positive for Mycoplasma
genitalium, HSV and Treponema pallidum rectal infections
were further excluded from the study.

In particular,M. genitalium rectal infections were not included
in the study as a group apart, despite their growing and well-
recognized importance (Bissessor et al., 2016; Foschi et al.,
2018a), because of the low number of cases found during the
study period (i.e., 5 single M. genitalium infections and 2 N.
gonorrhoeae/M. genitalium co-infections).

For all the patients reporting gastrointestinal symptoms
(e.g., diarrhea, tenesmus, etc.), the presence of an infectious
gastroenteritis was excluded by means of microscopic (i.e., stool
microscopy for protozoa and helminths), culture-based (i.e.,
stool cultures for pathogenic Salmonella, Shigella,Campylobacter,
and Yersinia species), serological (i.e., anti-HAV IgM antibodies),
or molecular approaches (i.e., stool PCR for adenovirus,
rotavirus, norovirus, Clostridium difficile toxins, and Escherichia
coli pathotypes).

Personal data and information about ano-rectal symptoms
were recorded for each patient. Afterwards, a clinical
examination was carried out, evaluating the perianal skin
for the presence of lesions (e.g., ulcers, condylomas). No
anoscopy was performed.

An ano-rectal swab (E-Swab, Copan, Brescia, Italy) for the
molecular detection of C. trachomatis, N. gonorrhoeae, M.
genitalium,HSV, andT. pallidumwas collected from each patient.
The adequacy of rectal mucosal sampling in terms of cellularity
degree was confirmed by means of PCR, targeting the human
beta-globin gene (Mujugira et al., 2015).

Clinical and microbiological data about HIV infection were
recorded, under the patient’s consent. All patients were managed
following the regular STIs evaluation of the Clinic: (i) serological
screening for HIV in previously negative subjects or in those who
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had never performed it; (ii) monitoring through RNA viral loads,
CD4 cells count and CD4/CD8 ratio for patients with known
HIV infection.

Peripheral blood CD4 and CD8 lymphocytes were counted
by flow cytometry (FACScan, Becton and Dickinson, Mountain
View, CA, USA). HIV serology was performed with Architect
HIV Ag/Ab Combo assay (Abbott, Wiesbaden, Germany)
as a screening test, using VIDAS HIV DUO Quick assay
(bioMerieux, Marcy l’Etoile, France) and INNO-LIA HIV I/II
Score (Innogenetics, Gent, Belgium) as confirmatory tests. HIV-
RNA viral load measurements were performed by a real-
time PCR assay (COBAS AmpliPrep/COBAS TaqMan HIV-
1 Quantitative Test; Roche Molecular Systems, Pleasanton,
CA, USA).

On the basis of microbiological results, eligible patients were
allocated in one of the following groups: “no rectal infection”
(negativity for rectal CT and NG), “CT” (positivity for CT,
irrespective of the serovar), “NG” (positivity for NG), and
“CT/NG” (contemporary positivity for rectal CT and NG).

The study protocol was reviewed and approved by the Ethical
Committee of St. Orsola-Malpighi Hospital (78/2017/U/Tess).
A written informed consent to the work was collected from
all subjects.

Diagnosis of Rectal Infections and C.

trachomatis Typing
Ano-rectal swabs were processed by Versant CT/GC DNA 1.0
Assay (Siemens Healthineers, Tarrytown, NY, USA), a duplex
real-time PCR test detecting the presence of CT and/or NGDNA,
as described in Marangoni et al. (2015).

Starting from the remaining DNA eluate of the Versant
PCR plate, each sample was tested for M. genitalium with
an in-house quantitative PCR assay, as previously described
(Foschi et al., 2018b).

Rectal HSV and T. pallidum infections were excluded by
means of a multiplex molecular approach (FTD genital ulcer, Fast
Track Diagnostics, Esch sur Alzette, Luxembourg).

Serovar identification of CT-positive samples was achieved by
an omp1 gene semi-nested PCR followed by RFLP analysis, as
described in Foschi et al. (2018c).

Analysis of the Rectal Microbiota
Hypervariable V3-V4 regions of the bacterial 16S rRNA gene
from rectal swab genomic DNA were amplified. PCR conditions
as well as primer sequences were retrieved from Illumina
16S Sample Preparation Guide (https://support.illumina.com/
documents/documentation/chemistry_documentation/16s/16s-
metagenomic-library-prep-guide-15044223-b.pdf) (Illumina,
San Diego, CA, USA); primer selection was originally described
in Klindworth et al. (2013). Indexed libraries were prepared by
equimolar (4 nmol/L) pooling and sequenced on Illumina MiSeq
platform with a 2 × 300 bp run, according to manufacturer’s
instructions (Illumina).

The 16S rRNA raw sequences were merged using Pandaseq
(Masella et al., 2012), then low quality reads (i.e., showing
stretches of bases with a Q-score <3 for more than 25%
of their length) were discarded. A subset of 50,000 reads

for each sample was randomly extracted, in order to obtain
a similar number of reads for each sample. Bioinformatic
analyses were conducted using the QIIME pipeline (release
1.8.0; Caporaso et al., 2010), clustering filtered reads into
Operational Taxonomic Units (OTUs) at 97% identity level.
Taxonomic assignment was performed via the RDP classifier
(Wang et al., 2007) against the Greengenes database (release
13.8; (ftp://greengenes.microbio.me/greengenes_release/gg_13_
8_otus), with a 0.5 identity threshold.

Biodiversity and distribution of the microorganisms were
characterized via alpha- and beta-diversity evaluations. Alpha-
diversity was measured using Chao1, observed species, Shannon
diversity, Good’s coverage and Faith’s phylogenetic diversity
(PD_whole_tree) metrics; statistical evaluation among alpha-
diversity indices was performed by a non-parametric Monte
Carlo-based test, using 9,999 random permutations. Weighted
and unweighted UniFrac distances and permanova (“adonis”
function) in the R package “vegan” (version 2.0–10; Oksanen
et al., 2013) were used to compare the microbial community
structure in beta-diversity analysis.

Statistical Analysis
Differences in clinical and demographic parameters were tested
by Chi-square test or ANOVA test, using Prism 5.02 version for
Windows (GraphPad Software, San Diego, CA, USA).

Unless otherwise stated, p < 0.05 were considered as
significant for each statistical analysis.

For each phylogenetic level, only taxa present at >1%
average relative abundance in at least one of the experimental
categories, were considered, in order to focus on the major
players of the rectal microbiota. Differences in abundances of
bacterial taxa among experimental groups were analyzed by
Kruskal-Wallis followed by Dunn’s post-hoc tests, and applying
a Benjamini-Hochberg correction for multiple testing, using
MATLAB software (Natick, MA, USA). Due to the exploratory
nature of our experiments, a FDR threshold <0.15 was chosen in
order to not miss any potentially relevant difference in bacterial
groups. Since the correction for multiple comparisons did not
change the significance of taxonomic data results, for clarity,
uncorrected p-values were reported in the text.

Correlation between bacterial genera and CD4/CD8 ratio or
viral loads for HIV-positive individuals was calculated via the
Pearson’s correlation coefficient; only correlations showing a
p-value of the linear model <0.05 were reported.

To evaluate the respective contributions of HIV and CT or
NG infections on rectal microbial changes, a two-way ANOVA
was conducted in R, by taking advantage of the “aov” function of
the R package “stats” (Chambers et al., 2017), applied to take into
consideration type II errors. For this purpose, a cut-off p-value of
0.05 was accepted. Variables that were not-normally distributed
were transformed according to Box and Cox (2018).

DATA AVAILABILITY

Raw reads are available in NCBI Short Read Archive
(SRA, http://www.ncbi.nlm.nih.gov/sra) under accession
number PRJNA545872.
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TABLE 1 | Primary demographic and clinical characteristics of the enrolled subjects.

No infection

(n = 53)

CT

(n = 37)

NG

(n = 17)

CT/NG

(n = 18)

p-value

Mean age (years ± SD) 34.4 ± 9.1 34.0 ± 9.0 31.0 ± 9.3 30.8 ± 10.4 0.48

Rectal symptoms 0/53 (0.0%) 24/37 (64.8%) 3/17 (17.6%) 7/18 (38.9%) <0.0001

Rectal bleeding – 2/24 (8.3%) 0/3 (0.0%) 1/7 (14.2%)

Rectal discharge – 14/24 (58.3%) 2/3 (66.6%) 3/7 (42.8%)

Tenesmus – 4/24 (16.6%) 0/3 (0.0%) 2/7 (28.5%)

Diarrhea – 2/24 (8.3%) 1/3 (33.3%) 0/7 (0.0%)

Ano-rectal pain – 6/24 (25.0%) 1/3 (33.3%) 4/7 (57.1%)

HIV infection

Yes 11/53 (20.7%) 21/37 (56.7%) 3/17 (17.6%) 5/18 (27.7%) 0.0002

No 40/53 (75.5%) 14/37 (37.8%) 11/17 (64.8%) 12/18 (66.6%)

Unknown 2/53 (3.8%) 2/37 (5.4%) 3/17 (17.6%) 1/18 (5.5%)

CD4/CD8 ratio 0.77 ± 0.3 0.79 ± 0.5 0.94 ± 0.4 0.82 ± 0.4 0.94

(Mean ± SD; min–max) (0.35–1.48) (0.27–2.62) (0.51–1.36) (0.34–1.37)

Viral load (copies/mL) 36,176 ± 203,714 ± 15,777 ± 289 ± 0.48

(Mean ± SD) 109,609 480,317 27,318 642

CT serovars

LGV (L2 serovar) – 20/37 (54.0%) – 6/18 (33.3%) -

Non-L serovars

D – 7/37 (18.9%) – 3/18 (16.6%)

E – 5/37 (13.5%) – 4/18 (22.2%)

F – 0/37 (0.0%) – 1/18 (5.5%)

G – 4/37 (10.8%) – 2/18 (11.1%)

H – 1/37 (2.7%) – 2/18 (11.1%)

RESULTS

Study Population
A total of 151 MSM were, at first, included in the study,
but 26 of them were, subsequently, excluded due to low
quantity of raw sequencing reads (i.e., <20,000). The final
dataset consisted of 125 samples, divided into 4 groups: negative
subjects (“no infection,” n = 53), patients with CT rectal
infection (“CT,” n = 37), patients with NG rectal infection
(“NG,” n = 17), and patients with concurrent positivity for
CT and NG (“CT/NG,” n = 18). The 26 excluded samples
were composed by 8 non-infected, 3 CT, 14 NG, and 1
CT/NG patients. For the final dataset, the average number of
obtained sequences was of 44,091 ± 9,764 reads (range: 20,407–
50,000 reads).

To evaluate whether the number of subjects included was
sufficient to detect significant variations between the groups,
a sample size calculation was performed, using existing data
regarding the shift of the rectal mucosal microbiota during HIV
infection (Nowak et al., 2017). In particular, we focused on
several bacterial genera that differed significantly between HIV-
negative and HIV-positive treated subjects. With a significance
level of 0.05 and a power of 80%, we determined that 17 patients
per group would be sufficient to detect significant variations
in the rectal microbiota composition between the different
experimental conditions.

Details regarding primary demographic and clinical
characteristics of the enrolled subjects are shown in Table 1.
All the patients denied receptive anal intercourse, as well as the

use of lubricants in the 3 days prior to the enrollment. During
ano-genital examination, no ulcers, warts, or herpetic lesions
were noticed.

It is worth to underline that the presence of rectal symptoms
was mainly found in patients with a single chlamydial infection
(64.8%). This aspect was associated with the high proportion of
cases of lymphogranuloma venereum infection (LGV; L2 serovar
by CT molecular typing) found in this group (54.0%). Indeed,
80.0% (16/20) of LGV cases were characterized by various ano-
rectal symptoms (e.g., anal pain, rectal discharge, bleeding), in
contrast to the 47.1% (8/17) of patients with non-L serovar
infections. Non-L CT cases (29) were mainly due to serovars
D (34.5%) and E (31.0%), followed by serovars G (20.7%),
H (10.3%), and F (3.5%). In the whole dataset, a total of 40
subjects (40/125; 32.0%) were HIV-positive. These cases were
mainly found in the group of patients with CT rectal infections,
with a significant association between the presence of HIV and
chlamydial L2 serovars (p = 0.0003). Most of the HIV-positive
patients (27; 67.5%) were characterized by a well-controlled
infection, with undetectable or very low viral loads (<20 RNA
copies/mL). The CD4/CD8 ratio ranged between 0.27 and 2.62,
with a mean of 0.80± 0.46.

Rectal Microbiota Structure
Characterization
Alpha-diversity analysis showed significant differences in
biodiversity of infected subjects grouped together (Observed
Species, p = 0.035; Shannon, p = 0.009). In particular, all three
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FIGURE 1 | Structure of the rectal microbiota. Microbial composition from

rectal swabs of the different analyzed groups: control subjects (no infection,

blue), patients with C. trachomatis (CT, yellow) infection, patients with N.

gonorrhoeae infection (NG, green), and subjects positive contemporary for

both pathogens (CT/NG, red). (A) Alpha-diversity rarefaction curves of Chao1

index. (B) Principal Coordinates Analysis (PCoA) plot based on unweighted

Unifrac distance (beta-diversity). Each point corresponds to a sample. For

each experimental group, the SEM-based confidence ellipse and the average

value centroid are depicted. The second and third principal coordinates

are represented.

groups with rectal infections were characterized by a slightly
higher bacterial diversity compared to controls (Figure 1).
Comparisons between each experimental groups and uninfected
patients did not show any statistical significance; detailed data
for all the metrics (Chao1, observed species, Shannon diversity,
Good’s coverage, and Faith’s phylogenetic diversity) are reported
in Table S1.

Principal coordinates analysis (PCoA) showed that infected
subjects were significantly separated from patients without rectal
infections, both grouping all infected patients together (p < 0.01
for both weighted and unweighted distances) and comparing
each group with controls (for all pairwise comparisons:
unweighted Unifrac, p < 0.03; non-infected subjects vs.
CT, weighted Unifrac, p = 0.01) (Figure 1 and Figure S1),
highlighting significant differences in the composition of rectal
microbiota. Within the group with single CT rectal infection,
we found significant differences in beta-diversity between L2
(n = 20) and non-L (n = 17) CT serovars (p = 0.01 for both
weighted and unweighted distances).

Overall, the presence of rectal symptoms, as well as the age
of patients, did not significantly modify the rectal microbiota
profiles among the four groups of patients analyzed. Indeed, no
significant differences were found when comparing symptomatic
vs. asymptomatic subjects within the different groups (data not
shown). Comparing uninfected controls (n = 53) with all the
asymptomatic infected patients (n = 38), significant differences
in alpha and beta-diversity were found, indicating that the
presence of CT or NG infection, not of the symptoms, was
responsible for microbial changes.

Moreover, HIV-negative subjects showed a higher bacterial
diversity compared to HIV-positive ones (Shannon’s index,
p = 0.039) within non-infected subjects. Analyzing together the
three groups of infected subjects, a significant difference in beta-
diversity (weighted Unifrac, p= 0.05; unweighted, p= 0.02) was
found in the comparison between HIV-positive (n = 29) and
HIV-negative (n = 37) patients. However, as shown in Figure 2,
within the four groups of subjects, the significance was retained
only for patients positive for single C. trachomatis rectal infection
(HIV-positive vs. HIV-negative: unweighted, p = 0.02; weighted,
p= 0.03).

Taxonomic Composition of Rectal
Bacterial Communities
At phylum level, all samples were characterized by Firmicutes,
Bacteroidetes, and Proteobacteria (Figure 3A), with no
significant differences in their abundances across groups.
Firmicutes and Bacteroidetes dominated the rectal microbiota
of all MSM groups, with relative abundance (rel. ab.) ranging
from about 36–39% and from about 28–33%, respectively.
Fusobacteria and Actinobacteria were less represented in the
rectal microbiota composition, never exceeding ∼10% of rel. ab.
in all the groups (Table S2).

As for the family level, Prevotellaceae (rel. ab., 19–
24%), Enterobacteriaceae (7–16%), and Ruminococcaceae (7–
9%) were the most abundant groups. Enterobacteriaceae,
Tissierellaceae, Peptostreptococcaceae, Carnobacteriaceae, and
Leuconostocaceae were found significantly different (p ≤ 0.02,
Kruskal-Wallis test for all taxa) (Figure 3B and Table S3). In
particular, patients with single CT and NG infections were both
characterized by significant lower levels of Enterobacteriaceae
(p = 0.006 and p = 0.01, respectively) and higher amounts of
Peptostreptococcaceae (p = 0.0001 and p = 0.0002, respectively)
compared to non-infected controls. On the other hand, in
subjects with a contemporary CT/NG rectal infection, we
observed a decreasing trend for Enterobacteriaceae (p = 0.09),
while Tissierellaceae, Peptostreptococcaceae, Carnobacteriaceae,
and Leuconostocaceae were found significantly more relatively
abundant compared to controls (p ≤ 0.01).

At genus level, Prevotella was the most represented genus in
all groups, followed by Escherichia (Figure 3C). Patients with
single CT and NG infections exhibited lower levels of Escherichia
species compared to non-infected individuals (p = 0.002 and
p = 0.01, respectively) (Table 2 and Figure 3D). In all infected
patients, this observation was associated with a significantly
increased relative abundance of several anaerobic genera, such
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FIGURE 2 | Principal Coordinates Analysis (PCoA) plot regarding HIV infection per group, based on weighted Unifrac distance (beta-diversity). For the HIV-status of

each experimental group, a SEM-based confidence ellipse is depicted. The second and third principal coordinates are represented.

as Peptoniphilus, Peptostreptococcus, and Parvimonas (p < 0.05)
(Figure 3D). Subjects with a contemporary CT/NG positivity
were also characterized by significantly higher levels of
Granulicatella, unclassified Fusobacteriaceae, and Pasteurella (p
≤ 0.012 in all tests), the latter being increased also in NG
single-infection group (p= 0.005).

Considering the rectal microbiota profiles at genus level of
HIV-positive vs. HIV-negative patients, a negative correlation
between Escherichia and Prevotella genera was noticed within
the control group (i.e., no infection): Escherichia genus tended
to increase in parallel with a depletion of Prevotella (Figure S2).

By means of a multivariate model (two-way ANOVA), we
investigated the respective contribution of HIV and CT or NG
infections on the rectal microbiome changes. We found that
infections had a different impact on bacterial rectal communities
compared to HIV-status. Indeed, the presence of HIV affected
the levels of different bacterial communities compared to rectal
infections, with the exception of Granulicatella (Table S4).

Globally, as detailed in Table 3, HIV-positive patients were
characterized by significantly higher levels of Gardnerella,
Lactobacillus, and Granulicatella genera, with a depletion of
Corynebacterium, Sutterella, and Ruminococcus compared to
HIV-negative patients.

In HIV-infected patients, CD4/CD8 ratio was positively
correlated to Ruminococcus (R = 0.313), Sutterella (R = 0.588),
and Mitsuokella (R = 0.314) genera. Moreover, we found
a positive correlation between HIV viral loads and
Acidaminococcus (R = 0.431), Dorea (R = 0.328), Actinomyces
(R = 0.324), and Lachnospira (R = 0.313) genera. No negative
correlations were found.

DISCUSSION

To the best of our knowledge, this is the first report assessing
the bacterial composition of the rectal environment in case of
sexually transmitted infections due to C. trachomatis and N.
gonorrhoeae in a group of MSM.

For this purpose, ano-rectal swabs collected from patients
reporting unsafe intercourse underwent sequencing of V3-V4
regions of 16S rRNA bacterial gene. Ano-rectal specimens are
non-invasive, easy-to-collect, and particularly suitable to assess
the microbial characteristics of the distal gastrointestinal tract
(Zhang et al., 2018).

However, with no anoscopy, this kind of sampling collects
material from the entire intestinal lumen, instead of from
specific sites of rectal infection (e.g., ulcers, local inflammation).
Therefore, additional studies with a more targeted sampling
will be needed for an in-depth understanding of the dynamics
occurring during rectal infections.

First, we observed that Prevotella species dominated the rectal
microbiota of all the subjects, irrespective of the analyzed group.
These data confirmed the results of Armstrong et al. showing that
the gut microbiome of MSM is more likely to be Prevotella-rich
than that of men having sex with women (MSW) and females (3.9

times higher relative abundance of Prevotella) (Armstrong et al.,
2018). Similarly, it has been shown that the rectal microbiota

of MSM engaging in condomless receptive anal intercourse, is
enriched for the family Prevotellaceae, probably because of the
mechanical microtrauma and deposition of semen resulting in
transient damages and inflammatory responses able to affect the
gut commensal microbiota (Kelley et al., 2017).
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FIGURE 3 | Taxonomic composition of the rectal microbiota. Stacked bar charts of taxonomy relative abundances at (A) phylum, (B) family, and (C) genus level for

the different subgroups. Only phyla, families and genera present at relative abundances >1% on average in at least one subgroup are reported. Remaining taxa are

grouped in the “Other” category. (D) Boxplots of the relative abundances of (1) Escherichia (2) Peptostreptococcus (3) Peptoniphilus genera in the different subgroups

considered.
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TABLE 2 | Average relative abundance of main microbial genera.

Average (stdev) Kruskal-Wallis/Dunn’s test

No infection CT NG CT/NG K-W p-value CT NG CT/NG

Prevotella 20.54 (11.63) 22.81 (10.31) 24.24 (7.92) 19.76 (9.78) – – – –

Escherichia 11.72 (18.33) 5.15 (12.77) 4.88 (8.99) 4.86 (6.61) 0.016 0.002 0.01 –

Fusobacterium 3.50 (5.64) 4.79 (5.31) 4.39 (5.65) 3.50 (3.70) – – – –

Faecalibacterium 4.22 (4.65) 3.86 (3.54) 4.13 (5.36) 3.38 (3.33) – – – –

Bacteroides 3.33 (4.32) 2.54 (3.82) 4.50 (4.92) 3.45 (5.67) – – – –

Dialister 2.65 (2.60) 3.18 (2.13) 3.13 (1.75) 2.51 (1.93) – – – –

Oscillospira 2.94 (3.63) 2.28 (2.05) 1.82 (2.07) 2.85 (3.82) – – – –

Streptococcus 2.02 (4.90) 1.23 (2.36) 1.92 (3.51) 3.30 (6.37) – – – –

Campylobacter 1.67 (2.81) 2.06 (2.60) 2.42 (2.49) 2.07 (2.73) – – – –

Sneathia 1.60 (4.72) 2.20 (4.28) 1.77 (2.79) 2.55 (5.82) – – – –

Sporobacterium 0.88 (1.86) 1.78 (3.51) 1.79 (3.26) 2.88 (4.46) – – – –

Finegoldia 1.83 (2.55) 1.48 (1.79) 1.19 (1.85) 1.16 (1.44) – – – –

Peptoniphilus 0.85 (1.21) 2.12 (2.14) 1.70 (2.16) 2.08 (3.14) 0.002 <0.001 – 0.01

Porphyromonas 0.87 (1.69) 2.01 (3.63) 1.79 (2.75) 1.90 (2.70) – – – –

Peptostreptococcus 0.60 (1.11) 1.92 (2.86) 1.83 (1.83) 1.42 (1.13) <0.001 <0.001 0.001 <0.001

Roseburia 0.96 (1.30) 1.14 (1.55) 1.17 (2.15) 0.63 (0.95) – – – –

Granulicatella 0.48 (0.94) 1.11 (2.14) 1.23 (2.52) 1.00 (1.74) 0.022 0.009 – 0.005

Corynebacterium 1.73 (4.41) 0.97 (2.01) 0.26 (0.39) 0.35 (0.57) – – – –

Enterobacter 1.35 (4.76) 1.09 (5.44) 0.31 (1.21) 0.40 (1.63) – – – –

Staphylococcus 2.35 (6.36) 0.72 (2.48) 1.38 (4.86) 0.66 (1.70) – – – –

Haemophilus 2.12 (5.09) 0.64 (1.34) 0.71 (1.58) 3.91 (10.20) – – – –

Neisseria 0.06 (0.35) 0.00 (0.01) 4.82 (7.11) 7.09 (14.75) <0.001 – <0.001 <0.001

Uncl. Fusobacteriaceae 0.51 (1.36) 1.00 (1.53) 0.50 (0.56) 0.95 (1.98) 0.035 0.005 – 0.019

Parvimonas 0.40 (1.10) 0.99 (1.46) 1.15 (2.54) 0.66 (1.19) 0.002 0.001 0.003 0.01

Pasteurella 1.16 (4.22) 0.03 (0.08) 0.27 (0.74) 0.01 (0.03) 0.022 – 0.012 0.005

Enterococcus 0.63 (1.97) 0.06 (0.12) 1.12 (2.91) 0.30 (0.68) – – – –

Chlamydia 0.01 (0.03) 1.05 (1.85) 0.00 (0.00) 0.90 (1.87) <0.001 <0.001 0.014 <0.001

Other 29.54 31.78 25.36 30.69

Data are expressed as mean ± standard deviation (stdev). For each genus, significant p-values of the non-parametric Kruskal-Wallis test and of pairwise comparison (Dunn’s test) vs.

non-infected patients are reported. Only the most significant genera present at relative abundances >1% on average in at least one subgroup, are listed.

Second, we noticed an interesting shift in the bacterial
composition between patients with sexually transmitted rectal
infections and controls. Infected patients were characterized
by a depletion of Escherichia species, associated with increased
abundances of mainly anaerobic genera, including Peptoniphilus,
Peptostreptococcus, and Parvimonas.

Although further investigations are needed to understand the
reasons behind these microbial changes, we can hypothesize that
the inflammatory responses induced by chlamydial/gonococcal
infections could affect and modify the composition of the
rectal microbiota. Indeed, the oxygen consumption by the
pathogens themselves or by the recruited leukocytes could favor
the proliferation of strict anaerobes, as the members of the
Peptostreptococcaceae family.

During the infection, N. gonorrhoeae elicits a strong
inflammatory response with the release of proinflammatory
cytokines and a significant influx of neutrophils (Quillin
and Seifert, 2018). Despite the differences in life cycles and
pathogenesis, in a similar way, C. trachomatis recruits natural

killer (NK) cells and neutrophils to the site of infection with
the production of cytokines and metalloproteinases (Vasilevsky
et al., 2014). This “proinflammatory milieu” could alter the
equilibrium of the bacterial communities of the rectal mucosa,
with a depletion of some species.

Moreover, for their nutritional requirements, chlamydia
and gonococcus could modify specific metabolic pathways,
leading to the preferential proliferation of anaerobes in the
rectal microbiota.

Nevertheless, we cannot rule out that the depletion of E.
coli precedes CT or NG infection, acting as a risk factor
that promotes pathogens establishment and replication on the
rectal mucosa. If so, new antibiotic-free preventive approaches
based on E. coli probiotic administration could probably be
considered in the near future. It should be remembered
that probiotic formulations of E. coli (e.g., Escherichia coli
Nissle 1917) have been successfully employed for fighting
infectious and inflammatory bowel diseases (Losurdo et al., 2015;
Sonnenborn, 2016). The high inhibitory effect displayed by E. coli
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TABLE 3 | Average relative abundance of rectal microbial communities showing

significant differences between HIV-positive and negative subjects.

HIV-positive HIV-negative p-values

Phylum

Fusobacteria 8.81 ± 9.09 5.96 ± 8.27 0.03

Family

Corynebacteriaceae 1.00 ± 3.14 1.19 ± 3.30 0.014

Carnobacteriaceae 1.16 ± 0.21 0.64 ± 0.21 0.014

Alcaligenaceae 0.46 ± 0.57 0.89 ± 1.41 0.016

Fusobacteriaceae 6.10 ± 6.37 4.07 ± 5.55 0.04

Genus

Unclassified Bacteroidales 0.36 ± 0.53 0.21 ± 0.40 0.002

Gardnerella 0.64 ± 1.88 0.12 ± 0.37 0.009

Corynebacterium 1.00 ± 3.14 1.19 ± 3.30 0.014

Sutterella 0.46 ± 0.57 0.88 ± 1.41 0.018

Lactobacillus 0.10 ± 0.42 0.27 ± 2.31 0.018

Granulicatella 1.15 ± 2.10 0.64 ± 1.47 0.02

Ruminococcus 0.37 ± 0.60 0.74 ± 0.98 0.02

Data are expressed as mean ± standard deviation (stdev). For each phylum, family, or

genus, significant p-values of the non-parametric Mann-Whitney t-test are reported.

Nissle against various intestinal pathogenic bacteria and yeasts
(i.e., Salmonella, pathogenic E. coli, Shigella, Yersinia, Listeria,
Candida) could be potentially applied also to rectal sexually
transmitted infections, such as CT and NG (Sassone-Corsi and
Raffatellu, 2015).

Our data disagree with previously shown observations
for other inflammatory conditions affecting the colorectal
mucosa, such as Clostridium difficile infections and ulcerative
colitis, which are characterized by higher concentrations of
Enterobacteriaceae, primarily E. coli, in the rectal environment
(Ohkusa and Koido, 2015; Schäffler and Breitrück, 2018).
Presumably, each pathological agent or condition acts
differently on the rectal microbial environment, leading to
peculiar changes that can be used as specific fingerprints for
diagnostic/prognostic purposes.

It is worth mentioning that the presence of rectal symptoms
had no impact on the rectal microbiota profiles. This means that
different factors, other than microbial environment, affect the
presence of rectal symptoms (e.g., bacterial virulence, bacterial
loads, age, local factors, individual susceptibility). Information
about rectal inflammation grading (e.g., myeloperoxidase,
proinflammatory cytokines) would help in elucidating the
complex interactions between infection, immunity andmicrobial
local communities (Heiligenberg et al., 2013).

Interesting data emerged when rectal microbiota features
were looked at taking into account the HIV-status. As a first
observation, we confirmed that HIV-positive patients were
characterized by a lower bacterial diversity than HIV-negative
subjects. Indeed, it has been previously shown that HIV infection
is characterized by a reduced bacterial richness in the gut
microbiome, with the depletion of some commensal species and
the enrichment of a few opportunistic pathogens (McHardy et al.,
2013; Noguera-Julian et al., 2016). Presumably, these microbial

changes are associated with patient’s immune dysfunction,
considering that an early antiretroviral therapy (ART) helps to
preserve gut microbial richness, normalizing the reduction in
alpha-diversity (Nowak et al., 2015).

Nevertheless, other authors showed that untreated HIV
infection does not significantly alter the rectal microbial
composition (Nowak et al., 2017), and that several potential
modifying factors should be taken into account, such as the
presence and type of ART, prophylactic antibiotic treatments,
HIV viral load and the immunological status (Noguera-Julian
et al., 2016; Armstrong et al., 2018).

When evaluating the respective contribution of HIV and
rectal infections on the microbial changes, we confirmed that
CT or NG infections were the driver of the major shift toward
anaerobes. Even if present, HIV infection affected the rectal
microbiome composition differently than rectal infections.

We noticed that microbial composition of the rectal
environment was affected by HIV only in C. trachomatis positive
patients, whereas no differences were detected for NG, CT/NG
and non-infected subjects.

However, it is necessary to observe that, in the CT group,
significant differences in the microbial rectal habitat were
detected on the basis of infecting serovars (L2 vs. non-L);
thus, considering the strong association between HIV and LGV
infection found in our setting, it is not possible to gain insight
into their different contribution on the changes of the rectal
microbiota composition. Further investigations will be needed to
shed light on the dynamics that take place on the rectal mucosa
during HIV and LGV infection.

Even in the case of well-controlled infections, HIV can perturb
the equilibrium of the immune system, with various phenotypic
and functional alterations on different cell populations (Mohan
et al., 2014). Thus, we can speculate that HIV-positive and
negative patients respond differently to the presence of a bacterial
rectal infection. For that reason, HIV positivity affected the
composition of the rectal microbiota only with an ongoing rectal
infection, whereas in the control group no HIV-based effect
was observed.

We are fully aware that several limitations could have affected
our results. At first, sequencing of V3-V4 regions of the bacterial
16S rRNA gene allows a reliable taxonomic identification only
down to the genus level; species-level identification would be
helpful for a thorough comprehension of the dynamics of
the rectal microenvironment, but this could be obtained only
with the more in-depth and expensive technique of shotgun
metagenome sequencing (i.e., direct sequencing of bacterial
genomes in a community).

Moreover, more exhaustive information about the patients
(e.g., use of PrEP; compliance and type of HIV antiretroviral
therapy; number of sexual partners; date of the last sexual
intercourse) would have been useful to find deeper correlations
between clinical/behavioral factors and microbiome alterations.

Finally, this is a cross-sectional study with no sampling during
the follow-up period; thus, further prospective investigations,
including a larger number of subjects, will be essential to
understand if the alterations of the rectal microbiota precede or
follow chlamydial/gonococcal infections.
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In conclusion, we elucidated some of the microbial changes
that occur in the rectal mucosa during chlamydial/gonococcal
infections in MSM. These data could open new perspectives for
the control of sexually transmitted infections in this high-risk
group (e.g., by using probiotics for prevention), as well as help in
a thorough comprehension of the complex interactions between
pathogens, commensals and the host.
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