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Probiotics have been used to treat a variety of diseases for decades; however, what

is the rationale for their application? Such a treatment was first proposed in the early

nineteenth century based on observations of decreased bifidobacterial populations in

children suffering from diarrhea, suggesting that oral intake of bifidobacteria could replete

this subpopulation of the microbiota and improve health. Since then, studies have shown

modifications in the gut or skin microbiota in the course of a variety of diseases and

suggested positive effects of certain probiotics. Most studies failed to report any impact

on themicrobiota. The impact of probiotics as well as of bacteria colonizing food does not

reside in their ability to graft in the microbiota but rather in sharing genes and metabolites,

supporting challenged microbiota, and directly influencing epithelial and immune cells.

Such observations argue that probiotics could be associated with conventional drugs for

insulin resistance, infectious diseases, inflammatory diseases, and psychiatric disorders

and could also interfere with drug metabolism. Nevertheless, in the context of a plethora

of probiotic strains and associations produced in conditions that do not allow direct

comparisons, it remains difficult to know whether a patient would benefit from taking

a particular probiotic. In other words, although several mechanisms are observed when

studying a single probiotic strain, not all individual strains are expected to share the same

effects. To clarify the role of probiotics in the clinic, we explored the relation between

probiotics and the gut and skin microbiota.
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A SHORT HISTORY OF PROBIOTICS

The first report of voluntary modification of the gut microbiota was described in ancient China
with the use of human feces to treat infections or food poisoning. Indeed, the intervention to
modify the microbiota via the use of fecal material has been described for more than 500 years,
but the use of specific strains of bacteria to obtain a specific clinical impact has been of interest
for only 50 years. In fact, the first definition of probiotics was produced in 1965 by Lilly and
Stillwell and was restricted to substances produced by bacteria that promote the growth of other
bacteria (Lilly and Stillwell, 1965).
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In 1989, the notion of a living microbial complement
appeared, although this definition was still linked only to
nutritional health (Fuller, 1989; Huis in’t Veld et al., 1994).
The last and current definition considers probiotics to be living
microorganisms that must be ingested in a sufficient amount
to have a positive effect on health that is not limited to the
nutritional effects (Guarner and Schaafsma, 1998; Hill et al.,
2014). All three definitions provide insight into how probiotics
can impact health: by impacting the resident microbiota,
intestinal epithelium cells and, globally, the immune system.

The first available probiotics contained only one species
of microorganisms, mainly those from the Saccharomyces or
Lactobacillus genera. Subsequent trials were collected in meta-
analyses that showed an advantage conferred by the use
of such probiotics on the prevention of infectious diarrhea
and post antibiotic diarrhea as colitis due to Clostridium
difficile (Goldenberg et al., 2017).

Subsequent forms of probiotics contained a larger variety
and number of microorganisms, ranging from 108 to more
than 1010 organisms. Most strains of probiotics were developed
for their capacity to resist low gastric pH, giving rise to a
plethora of variants with unknown physiological properties. Such
a great variety of microorganism associationsmakes comparisons
difficult, giving an impression of drug class effects and leading
to inadequate prescriptions of probiotics, while the lack of
independent studies obscures the probable physiological effects
associated with each of these strains (West et al., 2014; de Simone,
2019; Ohkusa et al., 2019). The prebiotic role of cell component
of dead probiotic bacteria is another confusing consideration
that is not enough studied. Next-generation probiotics have
better defined properties and clinical indications (Satokari, 2019).
However, in addition to the use of specific probiotics, it has
also been shown that the coevolution of humans with specific
bacteria has led to beneficial effects. One of the best examples
is the link between the bacteria Bacteroides plebeius in the
Japanese population. Indeed, bacteria colonizing foods challenge
the microbiota to adapt by lateral gene transfer, which is exactly
what B. plebeius, a commensal of the microbiota of Japanese
people, is showing. By inheriting enzymes produced by the
marine bacteria Zobellia galactanivorans, B. plebeius in the gut
allows the Japanese population to digest the algae polysaccharide
porphyrin (Hehemann et al., 2010; Sonnenburg, 2010).

In conclusion, the clinical science of probiotics is still
progressing slowly not only because of the evolution of the
field and the numerous novel bacteria discovered every year
but also because of the lack of well-conducted, independent
clinical trials since, given the diversity of probiotic candidates,
they are too often considered all equally potent and therefore
inadequately investigated.

PROBIOTICS IN THE GUT MICROBIOTA
ECOSYSTEM

The microbiota organizes as a focal ecosystem and changes from
one site to another, especially when comparing microbes living
in mucus or attached to the intestinal wall, known as the parietal

microbiota, with microbes living in food in transit and stools
known as the luminal microbiota (Sonnenburg et al., 2006; Lee
et al., 2013; Caballero et al., 2015). Microbiota composition
is dynamic and individualized depending on the influence of
diet, exposition to ingested probiotic bacteria, environmental
conditions of the intestine and other factors associated with
the host that will include “transiently” some new strains in the
ecosystem (Derrien and van Hylckama Vlieg, 2015; Zhang et al.,
2016).

The luminal microbiota is altered during a probiotic
treatment, reflecting survival during transit through the digestive
tract. The stool microbiota compositions before and after
probiotic courses ranging from 6 weeks to 6 months with daily
> 109 CFU Lactobacillus rhamnosus DR20, LGG, NCFM or LA-
5 or Bifidobacterium BB-12, W23, W52, W58, or Bi-07 were
evaluated by culture, 16S PCR or enzymatic tests on healthy
adult or infant stools. These probiotic bacteria were retrieved
in >90% of the subjects’ stools without affecting microbiota
composition or diversity when compared to those of the placebo
group; interestingly, Lactobacillus and Bifidobacterium strains
corresponding to probiotic bacteria were naturally retrieved in
2–31% of the untreated subjects (Larsen et al., 2011; Dotterud
et al., 2015; Rutten et al., 2015; Avershina et al., 2016; Laursen
et al., 2017). In another trial, L. rhamnosus DR20 became
dominant inside the population of lactobacilli in 6/10 subjects,
which represented 3.105 CFU per gram of stool, but 2 months
after treatment cessation, only 1/10 subjects was still colonized
(Tannock et al., 2000). Ten days after treatment with Lactobacillus
GG, the probiotic was retrieved in the stools of all subjects, as
the dominant lactobacilli and aerobic and anaerobic bacteria
were more numerous in stool samples (Alander et al., 1997).
However, is there any clinical implication of survival of the
probiotic bacteria in the luminal microbiota? It appears that
during a treatment with L. rhamnosus, Enterococcus strains were
retrieved at an increased frequency and number (Tannock et al.,
2000). This alteration could in turn promote or disrupt focal
colonies of interacting microorganisms, especially in the context
of colonization of multidrug resistant bacteria. Treatment with
fermented milk containing probiotics was associated with a
gain in microbiota evenness and increased enzymatic pathways
implicated in carbohydrate metabolism as well-yogurt intake
containing B. animalis ssp. lactis CNCM I-2497 increased the
level of potential butyrate producing bacteria that will in turn
influence systemic metabolism (Johansson et al., 1998; McNulty
et al., 2011; Ki Cha et al., 2012; Veiga et al., 2014; Zmora et al.,
2018).

Parietal microbiota alteration by probiotics could be even
more important for influencing systemic metabolism, such as
insulin resistance. Culture of biopsies of the distal colon of
subjects treated with 1.2 × 1011 Lactobacillus GG ATCC 53103
per day for 12 days revealed the presence of 1.6–5 × 105

Lactobacillus GG per biopsy in 4/5 subjects, which was 2-fold
higher than the number of Lactobacillus GG in the proximal
colon. Probiotic bacteria remain in the minority when compared
to the resident microbiota, and interestingly, the only subject
who was not colonized by the probiotic suffered from ulcerative
colitis (Alander et al., 1997).
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PROBIOTICS INTERACTION WITH
EUKARYOTIC CELLS

The bacterial wall or cytosolic molecules can directly interact
with immune cells, especially when immune cells and epithelial
cells sample the digestive microenvironment or when gut
barrier permeability is altered. The first mechanism could lead
to immunoregulatory functions, and the second mechanism
could lead to endotoxemia associated with insulin resistance,
diabetes, and increased cardiovascular morbidity (described later
in this review).

Transient probiotic colonization influence on gene expression
or metabolic pathways could be more significant than the
inclusion of a new strain, as suggested by studies completed
in twin pairs concordant for leanness or obesity, showing
that the core set of genes and metabolic pathways are better
preserved than the bacterial composition of the microbiota
(Turnbaugh et al., 2009). van Baarlen et al. investigated the
mucosal transcriptome response to three lactobacilli strains
and evaluated seven healthy volunteers successively treated
with 1010 Lactobacillus acidophilus Lafti-L10, Lactobacillus casei
CRL-431, L. rhamnosus GG, or placebo. Duodenal biopsies
were collected by endoscopy after each cycle of treatment.
RNA analyses revealed a strain-specific epithelial response:
L. acidophilus modulated regulation of the immune response,
hormonal regulation of tissue growth and development, and
ions homeostasis; L. casei modulated proliferation, Th1-Th2
balance and hormonal regulation of blood pressure; and
L. rhamnosus modulated wound healing, the IFN response
and ions homeostasis (van Baarlen et al., 2011). In the
case of Akkermansia muciniphila, the outer membrane
protein Amuc_1100 was shown to directly interact with
the TLR-2 receptor, thereby reinforcing the gut barrier,
decreasing inflammation and eventually improving health
status (Plovier et al., 2017).

PROBIOTICS AND THE GUT BARRIER
FUNCTION

Although gastrointestinal cells are continually exposed to
microbial antigens and metabolites, we live in perfect symbiosis
with these microorganisms. This arrangement is made possible
through various elements. Under normal conditions, gut barrier
function is highly efficient because of complex multidimensional
mechanisms, such as the presence of a mucus layer, tight
junction proteins, antimicrobial factors, immunoglobulin A,
and sentinels, including intraepithelial lymphocytes and other
adaptive immune cells (reviewed in Konig et al., 2016;Wells et al.,
2017).

In addition to the conventional immune aspects, the
interactions between gut bacteria and the immune system
have led to the breakthrough understanding that microbial
components or receptors also contribute to the regulation
of energy, glucose, and lipid metabolism (Cani et al., 2007;
Everard et al., 2014; Duparc et al., 2017) (for review Cani,
2018; Cani et al., 2019). Briefly, in 2007, Cani et al. proposed

the concept of metabolic endotoxemia (Cani et al., 2007).
Indeed, models of both genetic or diet-induced obesity and
diabetes were characterized by an increased level of circulating
lipopolysaccharides (LPS) (Cani et al., 2007). Notably, a small
increase in blood LPS (i.e., 2- to 4-fold above the basal levels)
was found to be a key factor triggering the onset of low-grade
inflammation and eventually insulin resistance during obesity
and related cardiometabolic disorders. Importantly, this finding
was later confirmed in several large human cohorts (Amar et al.,
2008; Gummesson et al., 2011; Lassenius et al., 2011; Laugerette
et al., 2011; Monte et al., 2011; Pussinen et al., 2011; Horton et al.,
2014; Jayashree et al., 2014; Radilla-Vazquez et al., 2016; Gomes
et al., 2017). However, the existence of metabolic endotoxemia
does not yet prove the causal link between the gut microbiota and
the onset of prediabetes.

It was then identified that the major mechanism involved
in the development of metabolic endotoxemia was directly
connected with an alteration of the gut barrier function and the
gut microbiota composition (Cani et al., 2008; Dewulf et al.,
2013). In addition to the specific changes in the composition
of the gut microbiota, it is proposed that T cells accumulate
in the gut of obese subjects consuming high-fat diets, an
observation that correlates with morbidity (Monteiro-Sepulveda
et al., 2015). In addition, it is suggested that specific immune
cells, such as mucosa-associated invariant T cells (MAITs)
(i.e., innate-like T cells) exhibiting elevated Th1 and Th17
cytokine production are decreased in obese and type 2 diabetic
patients (Magalhaes et al., 2015).

Along these lines, several reports have validated the fact that
manipulating the gut microbiota by using probiotics as well as
fecal material transplantationmay affect host metabolism (Vrieze
et al., 2012; Khan et al., 2014; Udayappan et al., 2014; Kootte
et al., 2017). The relevant literature focuses largely on various
strains, ranging from classical probiotics, such as the bacteria
Lactobacillus and Bifidobacterium or the yeast Saccharomyces
boulardii, to more recent candidates, such as A. muciniphila
and Faecalibacterium prausnitzii, which are considered next-
generation beneficial bacteria (Figure 1) (O’Toole et al., 2017).
All these candidates have promoted reinforcement of the gut
barrier, reduced inflammation, and eventually improved glucose
homeostasis (for review Cani and Van Hul, 2015; Bron et al.,
2017; O’Toole et al., 2017; Hiippala et al., 2018).

Several dozens of specific strains of Lactobacillus or
Bifidobacterium have been studied in various protocols and
models (for review Cani and Van Hul, 2015; Bron et al., 2017;
Borgeraas et al., 2018; Hiippala et al., 2018). The yeast S. boulardii
is also widely studied in the context of gut barrier dysfunction
and inflammation. Moreover, the beneficial effects of this yeast
are explained by mostly antimicrobial and antitoxin activities
but also by trophic effects on the gut mucosa (McFarland, 2010).
More recently, it has been shown that A. muciniphila acts as
a gatekeeper, consequently improving gut barrier function by
restoring mucus layer thickness, tight junction proteins, and
production of specific antimicrobial and bioactive lipids with
anti-inflammatory properties (Figure 1) (Everard et al., 2013;
Plovier et al., 2017; Grander et al., 2018; Hanninen et al., 2018).
These activities suggest that A. muciniphila interacts with the
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FIGURE 1 | How probiotic influence the microbiota and the course of diseases. Probiotics and next-generation beneficial bacteria influence eukaryotic cells by

different mechanisms. For instance, Short Chain Fatty Acids (SCFAs) are able to activate specific G-protein coupled receptors (e.g., GPR41/43) expressed on

enteroendocrine L-cells, thereby triggering the secretion of different gut peptides (i.e., GLP-1, GLP-2) involved in the regulation of energy metabolism and gut barrier

function. SCFAs can also modulate gene transcription through the inhibition of histone deacetylase activity. Besides SCFAs, some gut microbes dialogue with the host

cells through the production of other specific metabolites or cell components. Therefore, such interactions result in a variety of effects on the host ranging from the

improvement of behavior in psychopathological conditions (e.g., alcoholism, autism), but also impacts on skin health and host metabolism by the mean of immune

interaction and Gut—Brain—Skin axis. Also, bacteria colonizing the normal microbiota as Barnesiella have been associated with a reduced susceptibility to gut

colonization with Vancomycin resistant Enterococcus, whereas, Lactobacillus treatment reduced the carriage of multi-drug resistant potential pathogens.

host mucosal defense by acting on different targets, and today,
it is even considered a next-generation beneficial microbe
(Cani and de Vos, 2017). For the first time, A. muciniphila
has been administered to humans. The proof-of-concept study
showed that overweight or obese subjects supplemented with
A. muciniphila for 3 months displayed a lower plasma LPS
as well as better insulin sensitivity and lower systemic and
liver inflammatory markers than control subjects. Therefore,
although not considered a probiotic, A. muciniphila is showing
promising preliminary data in humans (Depommier et al.,
2019). Similar to A. muciniphila, F. prausnitzii is another
commensal depleted in obese subjects and type 2 diabetic

patients and also during inflammatory bowel diseases (Sokol

et al., 2008; Thingholm et al., 2019) that displays specific
anti-inflammatory properties on the gut (Sokol et al., 2008).
Among the different mechanisms involved in reinforcement
of the gut barrier, the bacteria and yeast detailed above act via
different pathways, including the production of short-chain
fatty acids (e.g., butyrate and propionate) that contribute to the
regulation of numerous functions ranging from the regulation
of gene expression via histone deacetylases to binding to specific
G protein-coupled receptors, such as GPR-43 and GPR-41
(Le Poul et al., 2003; Kimura et al., 2014). By activating GPR-
41 and GPR-43 expressed on enteroendocrine L-cells, both

propionate and butyrate promote the secretion of gut peptides
such as glucagon-like peptide-1 and−2 (GLP-1 and GLP-2)
involved in the regulation of insulin sensitivity and gut barrier
function, respectively (Nohr et al., 2013; for review Rastelli et al.,
2019) (Figure 1).

It is worth noting that different strains are not equally potent
in terms of their impact on the gut barrier, inflammation, body
weight or fat mass, and glucose metabolism. This observation
may be explained by the differentmechanisms of action described
earlier. Hence, it is critical to emphasize the need to consider
the metabolic effects of some bacteria as strain specific, which
cannot be generalized to all the members of a given genus. In
other words, although several mechanisms are observed when
studying a single strain, not all individual strains are expected to
share the same effects.

PROBIOTICS IN PSYCHOPATHOLOGY

A large number of human and animal studies support the fact
that the gut microbiota plays an important role in cognitive
development and function, mood and emotion regulation, and
interpersonal interactions and communications, in part through
the role of the immune system in neuronal differentiation,
axonal development, and synaptic plasticity, serving as a major
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actor in neuro-immune integration (Figure 1) (Sarkar et al.,
2018). Furthermore, impairments in gut microbiota composition
have been associated with various psychiatric disorders, such
as autism spectrum disorders, major depression, and alcohol-
related disorders. For instance, the gut microbiota of depressed
patients showed a decrease in richness and diversity associated
with an increase in proinflammatory status and cortisol level
and alterations in tryptophan metabolism. The transplantation
of the microbiota of depressed patients to microbiota-depleted
rats induced characteristics of depression at both the behavioral
and physiological levels (Kelly et al., 2016). Various pathways
have been suggested to explain the relationship between the gut
and the brain, including humoral pathways that may transfer
inflammatory factors or metabolites, changes in tryptophan
metabolism induced by inflammation that may alter neuronal
responsiveness, or neural pathways, in particular through vagus
nerve activity. This gut-to-brain interaction raises the interesting
possibility that the addition of probiotic supplements might
serve as an intervention in psychopathology. In 1910, Hubert J.
Norman and Georges Porter Philipps had already observed an
improvement in depression symptoms after lactic bacilli intake.
Since then, numerous efforts have been made to assess the
effects of probiotics, using mainly various strains of lactobacilli
or Bacillus infantis. In animal models, probiotic supplementation
was shown to at least partially reverse the behavioral alterations
observed in the germ-free model, observed in models of
maternal separation-induced depression, or induced by exposure
to acute stressors. In human studies, probiotics were shown to
improve the inflammatory status of irritable bowel syndrome, to
decrease anxiety in chronic fatigue syndrome and psychological
distress in healthy volunteers and to modify the treatment of
emotional information by the brain, as measured by fMRI
scans. The mechanism of action of probiotic supplementation
has been shown to not radically alter the gut microbiota
composition. Therefore, it is suggested that probiotics target
specific interventions. Questions remain, however, regarding the
mechanisms by which probiotics might influence behaviors. A
gut pathogen, such as Campylobacter jejuni, could influence
behavior without inducing inflammation. Bravo et al. (2011)
showed that administration of L. rhamnosus was associated
with a decrease in stress-induced anxiety-like behaviors and
corticosterone levels and with a regulation of GABA receptor
mRNA expression in the brain, effects that were not observed
in vagotomized animals, which supports the importance of the
vagal nerve in the effects of probiotics (Bravo et al., 2011).
However, other studies show that F. prausnitziimay exert a direct
psychophysical effect by improving gut function and intestinal
bowel syndrome (Miquel et al., 2016) by mechanisms described
in the gut barrier section of this review.

PROBIOTIC ERADICATION OF ANTIBIOTIC
RESISTANCE

Multidrug resistant bacteria, such as vancomycin resistant
enterococcus (VRE), carbapenemase-producing enterobacteria
(CPE), and extended-spectrum beta-lactamase (ESBL)-carrying
strains, represent a major public health issue because they

are potential pathogens associated with a high mortality rate
(Caballero et al., 2015). Prevention strategies could be based
on the use of probiotics to prevent colonization of the colon
microbiota (Figure 1).

Transient colonization withmultidrug resistant bacteria could
result in the transfer of antibiotic resistance genes in commensals
or potential pathogens, resulting in the persistence of the
resistance gene in the microbiota, which could be responsible
for an increased risk of lethal infection due to the delay
in introducing an effective antibiotic (Kaushik et al., 2019).
Clinical case reports showed that fecal transplantation was able
to decolonize the microbiota of ESBL-carrying and naturally
resistant bacterial strains (Singh et al., 2014; Crum-Cianflone
et al., 2015; Millan et al., 2016). Likewise, the microbiota
composition in hospitalized patients was shown to impact the
susceptibility to colonization with multidrug resistant bacteria,
and the use of probiotic strains such as L. plantarum or L.
fermentum was associated with a reduction in colonization with
naturally resistant pathogens, such as Acinetobacter baumannii,
Pseudomonas aeruginosa, or Candida albicans (Singhi and
Kumar, 2016; Soltan Dallal et al., 2017). In vitro, culture
supernatants of Clostridium butyricum, C. difficile, Clostridium
perfringens, Enterococcus faecium, and L. plantarum suppressed
the growth and gene resistance transmission of ESBL-carrying
bacteria and CPE (Kunishima et al., 2019).

VRE seems less adapted to survival in the gut microbiota
and more susceptible to decolonization than other multidrug
resistant bacteria. The gut microbiota in patients suffering from
hematological malignancies is less frequently colonized with VRE
in the presence of Barnesiella (Ubeda et al., 2013). Treatment with
Barnesiella or Lactobacillus paracasei CNCM I-3689 reduced VRE
colonization in a mouse model (Figure 1) (Tannock et al., 2000;
Crouzet et al., 2018). In clinics, one case report showed VRE
decolonization after a fecal graft for the treatment of C. difficile
colitis (Stripling et al., 2015).

SKIN BARRIER AND PROBIOTICS

A large variety of niches host bacteria, such as Staphylococcus,
Corynebacterium and Propionibacterium, which represent 60%
of bacterial strains, along with archaea, viruses, fungi, and
even mites. Propionibacterium dominates oily sites, such as
the forehead; Staphylococcus prefers moist sites, such as elbow
creases and feet; and fungi, primarily of the genus Malassezia,
live all over the body but are most common in oily areas,
such as the face and back (Chen et al., 2018). The microbiota
acts in a web-like interaction to suppress virulence-related
genes and promote genes associated with commensalism; by
producing bioactivemolecules, themicrobiota influences adnexal
development, tumorigenesis, aging, sensory nerve function, and
the innate immune system (Figure 1) (reviewed in Belkaid and
Tamoutounour, 2016).

As proposed in the epimmunome theory, the barrier status is
fundamental for skin defense and immune orientation (Swamy
et al., 2010). Skin immune conditions, such as rosacea, acne,
and atopy, are associated with skin barrier disruption, and the
restoration of the barrier is associated with an improvement
in clinical outcomes (Deng et al., 2019). A local application
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of the probiotics L. bulgaricus, L. acidophilus, or L. plantarum
improves the outcome of acne by reducing skin colonization by
Cutibacterium acnes (Bowe and Logan, 2011; Muizzuddin et al.,
2012).

Soluble proinflammatory molecules, such as substance P,
associated with the propagation of skin inflammation, are
reduced after local application of L. paracasei, and keratinocyte
expression of the NF-kB pathway is inhibited after local
application of Streptococcus salivarius K12 (Cosseau et al.,
2008; Gueniche et al., 2010). Likewise, production of the anti-
inflammatory molecule IL-10 by dendritic cells is increased
after local application of Vitreoscilla filiformis extracts on atopic
dermatitis (Gueniche et al., 2008; Volz et al., 2014; Breton et al.,
2017).

Oral probiotics could improve skin health by a gut-brain-
skin (GBS) axis that reduces systemic and brain inflammation.
The GBS axis improves nutrient absorption, which favors barrier
synthesis (reviewed in Bowe and Logan, 2011). Oral ingestion
of Lactobacillus reuteri diminishes perifollicular inflammation
(Arck et al., 2010; Gueniche et al., 2014). Other probiotics
targeting skin disorders improved atopic dermatitis, healing
burns and scars, and even aging skin (Krutmann, 2012).

PROBIOTICS AND PHARMACOLOGIC
THERAPIES

The gutmicrobiota has an impact on drug absorption and hepatic
metabolism and produces active metabolites that cannot be
formed in the liver (Spanogiannopoulos et al., 2016). In addition,
the response to or side effects of therapeutics could be influenced
by some probiotics. B-glucuronidases produced by Escherichia
coli, Bacteroides vulgatus, and Clostridium ramosum reactivate
irinotecan from its inactive glucuronide form that is excreted
via bile into the gastrointestinal tract in its toxic form, which
is responsible for severe digestive toxicity (Wallace et al., 2010;
Guthrie et al., 2017).

The gut microbiota affects the clinical response to anti-
PD-1 immunotherapy in patients with advanced melanoma;
a higher abundance of the Ruminococcaceae family and
Faecalibacterium in fecal samples of patients was associated with
longer progression-free survival (Gopalakrishnan et al., 2018).
Dysbiosis induced by antibiotics was also associated with a
poorer response to anti-PD-1 immunotherapy in cancer patients,

while the abundance of A. muciniphila improved the therapeutic
effect of these drugs (Routy et al., 2018). Fecal microbiota
transplantation from cancer patients qualified as responders to
anti-PD-1 immunotherapy into antibiotic-treated mice resulted
in increased efficacy of immune therapy, with a positive
correlation between these beneficial impacts and the abundance
of A. muciniphila (Routy et al., 2018). In the same study, mice
with a poor response despite fecal microbiota transplantation
were supplemented with A. muciniphila, restoring the efficacy of
anti-PD-1 therapy.

The E. coli strain Nissle 1917 increased amiodarone
bioavailability in rats, while probiotic strains of L. casei
slowed, although non-significantly, amiodarone absorption
(Matuskova et al., 2014, 2017). Kim et al. showed that oral
administration of L. reuteri K8 to mice reduced the area under
the curve of acetaminophen compared with that of control
mice (Kim et al., 2018).

CONCLUSION

Modulating the microbiota by using probiotics or next-
generation beneficial microbes constitutes a future perspective
for the development of either nutritional or pharmaceutical tools
to maintain health (Figure 1). Nevertheless, additional clinical
research is needed to translate research into clinical practice,
to refine the clinical indication of specific probiotic strains, to
better understand the postbiotic effect of substances released by
probiotic bacteria and the parabiotic effect of inactivated bacterial
cell (Taverniti and Guglielmetti, 2011).
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