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Fungi have been used since ancient times in food and beverage-making processes and,

more recently, have been harnessed for the production of antibiotics and in processes

of relevance to the bioeconomy. Moreover, they are starting to gain attention as a key

component of the human microbiome. However, fungi are also responsible for human

infections. The incidence of community-acquired and nosocomial fungal infections

has increased considerably in recent decades. Antibiotic resistance development, the

increasing number of immunodeficiency- and/or immunosuppression-related diseases

and limited therapeutic options available are triggering the search for novel alternatives.

These new antifungals should be less toxic for the host, with targeted or broader

antimicrobial spectra (for diseases of known and unknown etiology, respectively) and

modes of actions that limit the potential for the emergence of resistance among

pathogenic fungi. Given these criteria, antimicrobial peptides with antifungal properties,

i.e., antifungal peptides (AFPs), have emerged as powerful candidates due to their

efficacy and high selectivity. In this review, we provide an overview of the bioactivity

and classification of AFPs (natural and synthetic) as well as their mode of action

and advantages over current antifungal drugs. Additionally, natural, heterologous and

synthetic production of AFPs with a view to greater levels of exploitation is discussed.

Finally, we evaluate the current and potential applications of these peptides, along with

the future challenges relating to antifungal treatments.

Keywords: antifungal peptides, antimicrobial peptides, mycoses, antimicrobial resistance, production, new

therapies

INTRODUCTION

Fungi are extraordinary, ubiquitous organisms that play critical roles in complex ecosystems. These
eukaryotes range from giant forms to microscopic unicellular molds and yeasts. In recent years
fungi have been recognized as an integral part of our commensal microbiota at different body sites
(e.g., gut, oral cavity, skin, lung, vagina), although there is no consensus on what constitutes the
standard mycobiome composition (Huffnagle and Noverr, 2013; Enaud et al., 2018; Kapitan et al.,
2018) and some studies point out that gut fungi may come from oral and dietary sources (Auchtung
et al., 2018). Indeed, fungi have been used as a source of food and for food processing for thousands
of years (Campbell-Platt and Cook, 2008). Fungi are also routinely employed in many industrial
processes including the production of peptides, enzymes, vitamins, organic acids, and antibiotics
(Money, 2016; Mukherjee et al., 2018).

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2020.00105
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2020.00105&domain=pdf&date_stamp=2020-03-17
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:paul.cotter@teagasc.ie
https://doi.org/10.3389/fcimb.2020.00105
https://www.frontiersin.org/articles/10.3389/fcimb.2020.00105/full
http://loop.frontiersin.org/people/925912/overview
http://loop.frontiersin.org/people/866196/overview
http://loop.frontiersin.org/people/503981/overview
http://loop.frontiersin.org/people/72037/overview


Fernández de Ullivarri et al. Perspectives on Antifungal Peptides

However, fungal infections, or mycoses, have become a serious
threat to human health, causing a wide range of infections in
humans. It is estimated that fungal diseases affect more than
one billion people globally, of whom 150 million suffer from
severe infections (Bongomin et al., 2017). These range from
superficial and subcutaneous life quality-debilitating infections
affecting the skin, keratinous tissues and mucous membranes
(Kaushik et al., 2015), to systemic infections that can be life-
threatening involving the brain, heart, lungs, liver, spleen, and
kidneys (Rautemaa-Richardson and Richardson, 2017). The
latter are especially worrying in the case of immunocompromised
patients with HIV/AIDS or autoimmune diseases, and in those
undergoing anticancer chemotherapy or organ transplantation.

The main human fungal pathogens are Candida albicans,
Cryptococcus neoformans, and Aspergillus fumigatus, but,
worryingly, non-albicans Candida spp. such as C. auris,
in addition to other infectious agents such as Histoplasma
capsulatum or Malassezia furfur are emerging. For a
comprehensive review on main fungal pathogens affecting
humans see (Roemer and Krysan, 2014).

Four major classes of antifungal agents dominate the market:
azoles, which inhibit the synthesis of ergosterol; polyenes,
which interact with fungal membrane sterols physicochemically;
echinocandins that inhibit glucan synthesis; and fluorinated
pyrimidines, which interfere with pyrimidine metabolism,
leading to the inhibition of DNA and RNA biosynthesis
(Roemer and Krysan, 2014). However, the high mortality
of invasive fungal infections, the long course of treatments
required, narrow spectrum activity and cross-resistance due
to similar mechanisms of action across drugs has triggered
the search for safer alternatives with reduced toxicity or
other enhanced features. As eukaryotes, a particularly great
challenge is to identify pathogen-specific targets not present in
human cells.

Monoclonal antibodies, cytokine immunotherapy, vaccines
and antimicrobial peptides (AMPs) have emerged as new
biopharmaceuticals to prevent or treat fungal infections (Nicola
et al., 2019). There is an increasing interest in peptides as
promising novel antibiotic agents. Peptides can mimic natural
ligands and therefore function as agonists or antagonists.
Regarding their use as drugs, peptides are highly selective,
effective and well-tolerated (Fosgerau and Hoffmann, 2015).
Among the broader peptide category of antimicrobials, AMPs are
gene-encoded conserved molecules produced by all organisms,
from bacteria to humans. Compared with conventional
antibiotics, which are generally targeted against bacteria or
fungi, AMPs can exhibit broad antimicrobial activity including
bacteria, fungi, parasites, viruses, protozoa and even some cancer
cells (Hancock and Chapple, 1999). Being effective against this
broad range of targets might imply different modes of action and
prevent bacteria and fungi from developing resistance. AMPs
produced by higher organisms are involved in the innate and
secondary immune responses against microbes, while those
produced by bacteria frequently kill other bacteria competing
for the same ecological niche (Zhang and Gallo, 2016). AMPs
also confer protection by contributing to gut homeostasis, and
modulation of host inflammatory responses. Notably, AMPs
with a narrow antimicrobial spectrum have particularly great

therapeutic potential as they are less likely to cause disruption of
the host microbiota.

In this review we provide an overview of the bioactivity
and classification of AMPs with antifungal activity, known as
antifungal peptides (AFPs), as well as their mode of action
and advantages over current antifungal drugs. Additionally,
natural, heterologous and synthetic production of AFPs with
a view to greater levels of exploitation is discussed. In this
regard, Figure 1 shows a general overview on AFP development.
Finally, we evaluate the current and potential applications of
these peptides, together with future challenges in relation to
antifungal treatments.

TYPES OF ANTIFUNGAL PEPTIDES AND
BIOACTIVITY

As of November 2019, there were 1,133 peptides with antifungal
properties reported in the Antimicrobial Peptide Database
(APD3) (Wang et al., 2016). AFPs have been classified following
a number of different criteria, such as structure or mode
of action. However, the most accepted classification is based
on the peptide origin: natural, semisynthetic or synthetic (De
Lucca, 2000). Here, we summarize some of the most important
features of natural peptides and we describe how synthetic AFPs
are designed.

Natural Peptides
Natural AFPs are produced by a number of different species of
Bacteria, Archaea, and Eukarya isolated from natural sources (De
Lucca andWalsh, 1999).Most natural AFPs have been discovered
by testing their antagonistic activity in vitro against pathogenic
fungi (Mania et al., 2010; Freitas and Franco, 2016; McNair et al.,
2018). However, with the rise of sequencing technologies and
the drop in associated costs, new strategies for prediction and
discovery of new AFPs are emerging. New methods such as
template-based, docking simulations, hidden Markov model and
other sequence-based methods allow for novel in silico prediction
of AFPs (Schneider and Fechner, 2005; Fjell et al., 2007, 2008;
Robinson, 2011; Garrigues et al., 2017; Agrawal et al., 2018).

Natural AFPs are grouped in families according to their origin
(Table 1). Those produced by bacteria and fungi are arguably of
greatest interest with respect to medical applications (Essig et al.,
2014). Although some other sources, such as plants, are a rich
source of AFPs, they are mainly employed for other purposes,
such as the control of phytopathogens, and thus, they are not
further discussed in this review (De Lucca, 2000). Notably, the
first archaeal AMP with antifungal and anti-biofilm capabilities
against clinical fungal pathogens was recently reported (Roscetto
et al., 2018).

Typically, natural AFPs adopt an α-helix structure, β-
hairpin or sheet (containing two cysteine residues) or mixed
α-helix/β-sheet structures upon interaction with membranes.
Some of these peptides are rich in specific amino acids
and, as a result, are classified as glycine-rich, proline-rich,
arginine-rich, histidine-rich, and tryptophan-rich (Bondaryk
et al., 2017). However, the structure of most AFPs has not yet
been determined.
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FIGURE 1 | The antifungal peptide development process. As with any drugs, AFPs must undergo several stages of development to reach clinical use. When the

candidate molecule shows promise as a therapeutic (Discovery) it must be characterized (In vitro characterization). In order to facilitate this, sufficient amounts of the

peptide must be available (Production). Finally, the molecule will be subjected to formulation processes and preclinical tests before going into clinical trials and receive

approval (Development and market).

Posttranslational modifications also play a major role in the
final three-dimensional structure and bioactivity of AMPs but,
unfortunately, cannot be predicted with current in silico tools
(Agrawal et al., 2018). The most common posttranslational
modifications in natural AFPs involve glycosylation or the
addition of carbohydrates, normally observed in asparagine,
or serine/threonine residues (Guo et al., 2012; Bednarska
et al., 2017). The latter has been shown to improve antifungal
activity in some cases. Other modifications include halogenation
such as chlorination (Andreu and Rivas, 1998; Shinnar et al.,
2003), phosphorylation, which can increase stability (McDonald
et al., 2011) or hydroxylation, mainly observed at lysine,
arginine, tryptophan, and phenylalanine residues with differing
effects on antifungal activity (Houwaart et al., 2014; Akkam,
2016). Finally, cyclization of AMPs, which is not considered a
posttranslational modification, improves antimicrobial activity

in general, reduces toxicity and improves stability against
proteases (Akkam, 2016).

Semisynthetic and Synthetic Peptides and
Structure Activity Relationships (SAR)
Criteria for Their Design
Antimicrobial semisynthetic and synthetic peptides are generally
made with a view to improving pharmacological properties,
reducing side effects and/or lowering the immunogenicity
of natural peptides. Pharmaceutical formulation will also
help to enhance their stability and bioavailability. As
an example of synthetic transformation, it was found
that the hemolytic activity of the natural echinocandin
B AFP was significantly reduced by the replacement
of the linoleoyl side-chain with either octyloxybenzoyl

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 March 2020 | Volume 10 | Article 105

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Fernández de Ullivarri et al. Perspectives on Antifungal Peptides

TABLE 1 | Natural AFPs families with clinical applications.

Origin Family name Chemical characteristics Mode of action Active against Examples References

Archaea Cryptic CAMP-like Cationic Targets cell wall (still

being investigated)

Candida spp. VLL-28 Roscetto et al., 2018

Bacteria Iturin Small cyclic peptidolipids

with a lipid-soluble β-amino

acid linked to a peptide with

D- and L- amino acids.

Lysis by pore formation

in membranes

niger

albicans

F. oxysporum

Iturin A

Bacillomycin F

Bacillomycin L

Landy et al., 1948; De Lucca and

Walsh, 1999; De Lucca, 2000

Syringomycins Small cyclic

lipodepsipeptides

Forms voltage-sensitive

ion channels

Alters protein

phosphorylation and

H+-ATPase activity

Pore formation

Candida spp.

Cryptococcus

spp.

Aspergillus spp.

Syringomycin-E

(SE)

Syringostatin A

Syringotoxin B

Sinden et al., 1971; De Lucca

and Walsh, 1999; De Lucca,

2000

Fungi Nikkomycins Peptide nucleosides Inhibit chitin

biosynthesis

Blastomyces

dermatitidis, C.

albicans

Nikkomycin X, Z McCarthy et al., 1985; Hector

et al., 1990; De Lucca and

Walsh, 1999; De Lucca, 2000

Polyoxins Peptide nucleosides Inhibit chitin

biosynthesis

C. albicans Polyoxin A, B, D Suzuki et al., 1965; Isono et al.,

1969; Hori et al., 1974; De

Lucca and Walsh, 1999; De

Lucca, 2000

Echinocandins Cyclic hexapeptides with

N-linked acyl lipid side

chains

Inhibit glucan synthesis Candida spp.

Aspergillus spp.

Echinocandins,

pneumocandins,

aculeacins,

mulundocandins,

WF11899

De Lucca and Walsh, 1999; De

Lucca, 2000; Eschenauer et al.,

2007

Aureobasidins Cyclic depsipeptide Lysis by altering actin

assembly and

delocalizing chitin in

fungal walls /

sphingolipid synthesis

inhibition

B. dermatitidis

Candida spp.

Aureobasidin A Endo et al., 1997; De Lucca,

2000

Leucinostatins Contains five unusual amino

acids, 4-methylproline

(MePro), 2-amino-6-

hydroxy-4-methyl-

8-oxodecanoic acid

(AHMOD),

threo-β-hydroxyleucine

(HyLeu),

three 2-aminoisobutyric acid

(Aib), and β-alanine (b-Ala)

Uncouplers

mitochondria

Candida spp. Leucinostatins A,

B, D, H and K

De Lucca and Walsh, 1999; De

Lucca, 2000; Abe et al., 2018

Amphibians Magainins Helical, amphiphilic Lysis by dissipating ion

gradient in cell

membranes

C. albicans Magainin 2 De Lucca and Walsh, 1999; De

Lucca, 2000

Dermaseptins Linear, cationic, lysine-rich Lysis by interacting with

lipid bilayers

flavus

fumigatus

F. oxysporum

Dermaseptin Mor et al., 1991; De Lucca and

Walsh, 1999; De Lucca, 2000

Skin-PYY Similar to neuropeptide NPY

and gastrointestinal peptide

PYY, C- terminal α-helix

domain conserved

Membrane disruption C. neoformans

C. albicans

A. fumigatus

Skin-PYY Vouldoukis et al., 1996; De

Lucca, 2000

Plants Defensins Small, highly stable,

cysteine-rich peptides

Membrane pore

formation (carpet or

toroidal pore), ion efflux,

induction of reactive

oxygen species and

programmed cell

death.

C. albicans, C.

krusei, A. flavus

and Fusarium

solani

RsAFP1, RsAFP2,

SPE10, NaD1

Bondaryk et al., 2017; Sher

Khan et al., 2019

Insects cecropins Linear Cell lysis A. fumigatus Cecropins A and B De Lucca et al., 1998; Bondaryk

et al., 2017

(Continued)
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TABLE 1 | Continued

Origin Family name Chemical characteristics Mode of action Active against Examples References

Cysteine-rich

peptides

Hairpin-like beta-sheet

structure

Cell lysis C. albicans Defensins,

Drosomycin,

thanatin

Dimarcq et al., 1998; Bondaryk

et al., 2017

Peptides from

aquatic

sources

Aciculitins Cyclic peptides and lipid

residues

Cell lysis C. albicans Aciculitins A-C Bewley and Faulkner, 1994;

Bondaryk et al., 2017

Theonegramide Glycopeptide with unusual

amino acids

Unknown C. albicans Theonegramide Bewley and Faulkner, 1994;

Bondaryk et al., 2017

Laxaphycins Cyclic peptides Unknown C. albicans Laxaphycins A, B,

D and E

Bondaryk et al., 2017

Defensins β-sheet Chitin binding C. albicans Tachycitin, “big

defensin”

Bondaryk et al., 2017

Mammalian α-defensins β-sheet with cysteines

forming intramolecular

disulphide bonds

Cell lysis C. albicans

C. neoformans

HNP-1, HNP-2,

HNP-3, NP-1,

NP-2, NP-3, NP-4

De Lucca and Walsh, 1999; De

Lucca, 2000

β-defensins β-sheet with cysteines with

a disulphide motif different

from α-defensins. Amino

termini are blocked with a

pyroglutamyl residue

Cell lysis C. albicans Tracheal

antimicrobial

protein (TAP)

Gallinacins−1,−1α, 2

De Lucca and Walsh, 1999; De

Lucca, 2000

Protegrins

Cathelicidins

Cationic, cysteine-rich

β-defensins

Pore formations and

lysis

C. albicans Protegrins 1, 2

and 3

De Lucca and Walsh, 1999; De

Lucca, 2000; Bondaryk et al.,

2017

Histatins Basic and neutral helical

peptides

Induction of cell death,

osmosis stress

C. albicans Histatins 1, 3, 5 Koshlukova et al., 1999; De

Lucca, 2000; Bondaryk et al.,

2017

(cilofungin) or pentyloxyterphenyl (anidulafungin) side
chains (Emri et al., 2013).

Structure-activity relationships (SAR) are a key element
used for the design and development of synthetic peptides
(Lum et al., 2015). There are several biophysical properties
that can determine antifungal activity, such as net charge,
stereospecificity, hydrophobicity, amphipathicity, secondary
structure and peptide length, with some of these characteristics
being interdependent. These properties have been extensively
reviewed previously (Akkam, 2016). Most AFPs are cationic,
but neutral and anionic AFPs have also been described. When
present, cationic charges play a role in the electrostatic binding of
AMPs to negatively charged membranes. Therefore, an increase
in the positive net charge beyond a threshold might lead to a
stronger activity on the membrane. However, positive charges are
not a prerequisite for antimicrobial activity, and anionic peptides
interact with the membrane peptide through specific amino
acid distributions (Yeaman and Yount, 2003; Lakshminarayanan
et al., 2014).

Most AFPs are non-stereospecific (Akkam, 2016). In the same
way, there is no dominant conformation among AFPs. Thus,
the main differences between peptides come from sequence and
secondary structure variation (Emri et al., 2013). Hydrophobicity
and amphipathicity are essential factors for peptide membrane
interactions and membrane permeabilization (Lum et al., 2015),
and important variables in the design of synthetic peptides.
Hydrophobicity is defined as the percentage of hydrophobic
residues within a peptide, ranging between 30 and 60% for

most AMPs. An increase in hydrophobicity and amphipathicity
usually correlates with an increase in antifungal activity, but also
with higher hemolytic activity. The presence of tryptophan is
also linked to hemolytic activity since it interferes with lipid
polymorphism in the membranes (Schibli et al., 2002).

The peptide length of AFPs is important for the secondary
structure and mode of action. Most AFPs have 11–40 residues.
It has been described that 7–8 amino acids are needed to
form amphipathic structures in AMPs (Bahar and Ren, 2013),
while <20 amino acids limit the ability of a peptide to form
transmembrane structures in the fungal membrane (Rothstein
et al., 2001; Akkam, 2016). Nevertheless, longer lengths may also
affect cytotoxicity, stability and manufacturing costs. In order to
overcome these hurdles, short antimicrobial peptides (SAMPs),
containing 2–10 amino acids, are attracting attention as less toxic
andmore stable alternatives. Overall, SAMPs have simpler amino
acid composition and they are easier to synthesize and modify
chemically with a view to improving toxicity, stability, half-life or
specificity. Moreover, they are also less immunogenic (Duncan
and O’Neil, 2013; Fox, 2013).

Some of the semisynthetic and synthetic peptides studied
with a view to clinical applications are summarized in Table 2.
Considering all of the factors mentioned above, different
strategies have been employed for synthetic peptide design.
Combinatorial libraries generate model peptides suitable for
SAR studies (Blondelle and Lohner, 2000). The template-based
strategy, known as de novo design, uses peptides with known
antifungal activity as scaffolds (Lum et al., 2015). As an example,
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Agrawal et al., performed in silico studies by machine learning
techniques based on AFP and non-AFP sequences revealing a
higher frequency of certain residues (C, G, H, K, R, and Y) and
the prevalence of R, V, K at N-terminus and C and H at the
C-terminus of peptides (Agrawal et al., 2018).

Another strategy is to target virulence traits (Bondaryk et al.,
2017). However, this approach is not efficient enough due to the
expression of different virulence factors in fungi cells. For this
reason, the generation of molecules with multiple ligands like
dendrimers, or tree-like molecules, that have radially distributed
layers of branches named generations, have been explored
(Esfand and Tomalia, 2001).

MODELS OF MECHANISMS OF ACTION

Whereas some peptides have primarily antifungal activity, such
as lipopeptides (e.g., echinocandins) or histidine-rich (e.g., the
linear histatins or branched HK), membrane-disrupting peptides
(e.g., magainins, protegrins) have a broader antimicrobial
spectrum, including bacteria, fungi and viruses. Here, we
summarize the hypothetical mechanisms of action of AFPs with
activity against fungal pathogens.

Peptides With Primarily Antifungal
Properties
Inhibition of 1,3-β-Glucan Synthesis
β-glucan synthase is involved in cell wall integrity. Cyclic
lipoproteins can non-competitively inhibit it, resulting in
destabilization of the cell wall, leading to susceptibility to
osmotic stresses and cell lysis. 1,3-β-glucans are involved in
the division septum and assembly of the acropore wall as well;
consequently, β-glucan synthase inhibitors affect these structures.
β-glucan synthase is ubiquitous among fungi including Candida,
Aspergillus, Cryptococcus, and Pneumocystis species. However, in
mycelious fungi, it is found in tips of the growing hyphae, which
makes them less sensitive. Inhibition of β-glucan synthase results
in negative feedback, causing cell cycle arrest. Echinocandins
and pneumocandins, aculeacins (A-D, F), mulundocandins and
WF11899 (A, B, and C) as well as the killer toxin fromWilliopsis
mrakii, WmKT are representative β-glucans synthase inhibitors
(Guyard et al., 2002; Matejuk et al., 2010; van der Weerden et al.,
2013).

Inhibition of Chitin Biosynthesis in the Cell Wall
Chitin, found in the fungal cell wall, is essential to maintain
cell integrity and is absent in vertebrates. Aureobasidins are
cyclic lipophilic 8-mer depsipeptides with an α-hydroxyacid
that display two mechanisms of action: the disruption of cell
wall/membranes by altering the assembly of actin and chitin
(Endo et al., 1997) and the interruption of sphingolipids synthesis
(Nagiec et al., 1997). Several members of the aureobasidin family
exert anti-Candida activity. Nikkomycins are structural analogs
of uridine diphosphate N-acetylglucosamine, a major constituent
of chitin. These AFPs have been shown to inhibit the synthesis
of chitin in C. albicans in both in vitro and in vivo studies
(McCarthy et al., 1985) while human cells were not affected. They
also show significant activity against C. immitis, B. dermatitidis,

and moderate activity against H. capsulatum (Hector et al., 1990;
Clemons and Stevens, 1997), but these agents are not active
against filamentous fungi.

Selective Activity on Membranes
Rs-ARF2 is a 50 amino-acid residue plant defensin that has
three-stranded β-sheets and an α-helix, structure that is
stabilized by four disulfide bonds. Rs-ARF2 targets the fungus-
specific membrane glucosylceramide inducing membrane
permeability, which causes Ca2+ uptake, efflux of K+ and
medium alkalinization. This defensin also induces the
production of toxic reactive oxygen species intracellularly.
Rs-AFP2 and analogs (with arginines replacing neutral amino
acids) were found to inhibit A. flavus and Fusarium solani, C.
albicans and C. krusei. C. glabrata, which does not contain this
fungus-specific ceramide, is not inhibited. This peptide and its
analogs (e.g., NaD1, Rs-ARF1, SPE10) have little cytotoxicity
against mammalian cells at dosages that are inhibitory to fungal
pathogens (Matejuk et al., 2010; Sher Khan et al., 2019).

Iturins, produced by Bacillus subtilis, are cyclic peptides with
a lipophylic β-amino acid linked to a D and L amino acids,
causing pore formation in membranes and leakage of key ions
(Besson and Michel, 1984). Their antimicrobial activity is limited
primarily to fungi, with little effect on bacteria. Unfortunately,
iturins are toxic to mammalian cell membranes. In contrast to
most antimicrobial peptides which are cationic, iturins can be
anionic (bacillomycin L) or neutral (iturin A). One member of
the family, bacillomycin F effectively inhibitsA. niger,C. albicans,
and C. tropicalis. Although this group of peptides is effective
against dermatomycoses in humans and animals, they induce
high levels of hemolysis (Latoud et al., 1986).

The mammalian peptide Histatin 5 contains seven histidines,
four arginines, and three lysines which allow the peptide adopting
an α-helical conformation in non-aquous environments (Raj
et al., 1998). Histatin 5 binds to the Ssa2p, a 70-kDa cell wall
protein required for the internalization of histatin 5 into cells
(Li et al., 2006). The polyamine transporters Dur3 and Dur31
are necessary for the uptake of the peptide as well (Kumar et al.,
2011), which needs to be translocated, not endocyted to exert
an effect on C. albicans cells (Jang et al., 2010). If the cell is
under respiratory metabolism, histatin 5 disrupts the integrity of
mitochondrial membrane (Helmerhorst et al., 1999). Propidium
iodide (PI) uptake and ATP release also occurs despite cell lysis
does not appear to be induced by the peptide (Helmerhorst
et al., 1999; Koshlukova et al., 1999). Subsequent ATP binding
to surface P2X receptors induce signaling cascades leading to
cell death.

Broad Spectrum Antimicrobial Peptides
Most AMPs affect a number of organisms including bacteria,
fungi, and envelope-containing viruses. The most representative
non-specific AMPs can be grouped as linear peptides (e.g.,
cecropins, magainins, cathelicidins, bombinins, lactoferrin-
derived peptides) or cyclic peptides (e.g., mammalian defensins,
poultry gallinacins, macrocyclic peptides, syringomycins,
tachystatins) (Matejuk et al., 2010). Membrane disruption by
the formation of toroidal pore is common to most peptides,
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TABLE 2 | Examples of semisynthetic and synthetic AFPs with clinical applications.

Origin Name Structure Mode of action Active against References

Semisynthetic Cilofungin (LY 121019) Lipopeptide Glucan synthesis C. albicans

A. fumigatus

Pfaller et al., 1989; De Lucca, 2000

LY 303366 Lipopeptide Glucan synthesis Candida spp. Karlowsky et al., 1997; De Lucca, 2000

FK 463 Lipopeptide Glucan synthesis Candida spp.

Aspergillus spp.

De Lucca, 2000; Mikamo et al., 2000

L-693,989 Lipopeptide Glucan synthesis C. albicans

P. carinii

Balkovec et al., 1992; De Lucca, 2000

PMAP-23 α-helix Membrane C. albicans Lee et al., 2002; Bondaryk et al., 2017

KU2 α-helix Membrane C. albicans Lum et al., 2015; Bondaryk et al., 2017

KU3 α-helix Membrane C. albicans Lum et al., 2015; Bondaryk et al., 2017

Synthetic dF21-10K Linear-kaxins Membrane C. albicans

C. tropicalis

Burrows et al., 2006; Bondaryk et al., 2017

KSL-W α-helix decapeptide Membrane C. albicans Semlali et al., 2011; Bondaryk et al., 2017

B4010 Tetravalent dendron—Polylysine

dendrons (PLL)

Membrane C. albicans Lakshminarayanan et al., 2014; Freitas and

Franco, 2016; Bondaryk et al., 2017

L1 Polyamidoamine (PAMAM)

dendrimers

Intercalation with DNA Candida spp. Ottaviani et al., 2016; Bondaryk et al., 2017

Killer peptide (KP) Dimeric; β-sheet Unknown Candida spp.

Cryptococcus

neoformans

P. carinii

Paracoccidioides

brasiliensis

A. fumigatus

Magliani et al., 2011

resulting in leakage of essential molecules and ions with general
loss of membrane functionality. Additional mechanisms include
membrane thinning, formation of non-bilayer intermediates
by interchelation of peptide-membrane, formation of anionic
lipid-peptide domains, lipid flip-flop, demixing and clustering,
and alteration of membrane potential (Shai, 2002; Bechinger
and Lohner, 2006; Huang, 2006; Melo et al., 2009; Nguyen
et al., 2011; Rautenbach et al., 2016). In addition, some of
the peptides may have other effects such as DNA damage,
apoptosis induction, inhibition of DNA replication and RNA or
protein synthesis.

For supplementary reviews on the mechanisms of action and
classification of antimicrobial peptides see reviews by Matejuk
(Matejuk et al., 2010), van der Weerden (van der Weerden et al.,
2013), and Rautenbach (Rautenbach et al., 2016).

Advantages of AFPs
Existing antifungal agents exhibit a diversity of drawbacks
that reduce their efficiency as therapeutic tools against fungal
infections. The existence of only a few approved classes of
antifungal drugs and the increasing antifungal resistance further
complicates the selection of an appropriate antifungal therapy
(Sanguinetti et al., 2015; Pappas et al., 2018). Ergosterol synthesis,
ergosterol in membranes and cell wall synthesis are the targets of
azoles, polyenes and echinocandis, respectively. The low diversity
of mechanisms of action of current treatments represents a
problematic situation when fungal pathogens are multi-resistant
to antifungals (Rautenbach et al., 2016). Furthermore, existing
antifungal drugs are associated with adverse drug reactions such

as hypokalemia, infusion reaction, nephrotoxicity, hepatotoxicity
and gastrointestinal affections, among others (Chen et al., 2011;
de Souza et al., 2016; Kyriakidis et al., 2017; Pappas et al.,
2018). Some antifungal drugs affect common eukaryotic targets
present both in pathogenic fungi and human cells (Rautenbach
et al., 2016). This makes the development of novel efficient
and non-toxic antifungal therapies more difficult than that of
antibacterial ones.

AFPs have diverse advantages over the current antifungal
drugs, which are directly related to their mechanisms of action
and molecular targets. AFPs are particularly promising because
they can recognize multiple microbial targets, thus reducing the
possibility of resistance development (Rautenbach et al., 2016),
a topic that is discussed in more detail in the following section.
These microbial targets include fungal membranes, different
cell wall components and molecules related to physiological
processes, such as RNA, DNA and protein synthesis and cell cycle
(van der Weerden et al., 2013; Bondaryk et al., 2017).

Regarding the absence of side effects, several AFPs target
specific conserved fungal molecules, such as glucosylceramide,
mannosyldiinositol phosphorylceramide, enzymes related to
ergosterol or β-glucan synthesis, among others. This translates
into high pathogen selectivity and reduces the probability of
cytotoxicity against mammalian cells (Rautenbach et al., 2016).
However, it does not ensure the absence of cytotoxicity (e.g.,
aculeacins, a type of echinocandin that targets the fungal 1,3-
β-glucan synthase, displays hemolytic activity) (Matejuk et al.,
2010). Over the last 13 years, three echinocandins, anidulafungin,
caspofungin, and micafungin, have been approved in Europe and

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 March 2020 | Volume 10 | Article 105

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Fernández de Ullivarri et al. Perspectives on Antifungal Peptides

USA (Pound et al., 2011; Beyda et al., 2012). These peptides
are poor substrates for cytochrome P450, which translates into
both lower hepatotoxicity and pooled risk for discontinuation of
treatment (3.7–4.8%) compared to other antifungals (Kyriakidis
et al., 2017). The synthetic peptide killer peptide (KP) is another
example that has demonstrated very promising antifungal
activity without cytotoxicity against peripheral mononuclear
blood cells in vitro or side effects in murine trials. This peptide
seems to have a specific interaction with 1,3 β glucans and only
the dimeric form of the peptide is active (Magliani et al., 2011).

In addition, AFPs show reduced cytotoxicity (Matejuk et al.,
2010). Two reasons may explain this phenomenon. Firstly, there
is a stronger interaction between the negatively charged fungal
membrane (due to the higher content of phosphatidylinositol
and phosphatidic acid) and the cationic charges of the
peptides, in contrast to mammalian cell membranes, which are
predominantly neutral to host mammals (due to the high content
of phosphatidylcholine). Secondly, some AFPs target membrane
lipids unique to fungi and absent from mammalian cells, which
also reduces toxicity (Nguyen et al., 2011; Rautenbach et al.,
2016).

Accumulating evidence demonstrates that the therapeutic
activity of AMPs is multifactorial and not mediated only by
their direct antimicrobial effect. Host defense peptides (HPDs),
like defensins and cathelicidins families, often exert angiogeninc,
immunomodulatory and anti-inflammatory effects and may also
induce the recruitment of the adaptive immune response, which
has been reported in several papers and reviews (Zasloff, 2002;
Hirsch et al., 2008; Steinstraesser et al., 2009; Magliani et al., 2011;
Hsieh and Hartshorn, 2016; Li et al., 2017).

Resistance to AFPs
Membrane remodeling of C. albicans has been associated
with its resistance to current non-peptide antifungal drugs,
mainly ergosterol-sphingolipid-rich lipid rafts containing multi-
drug resistance (MDR) proteins attached to the membrane
(Mukhopadhyay et al., 2004; Pasrija et al., 2005, 2008; Shahi
and Moye-Rowley, 2009). In the case of resistance to AMPs and
AFPs it is important to note, as discussed previously, that these
peptides frequently function through membrane interaction, but
that additional modes of action for microbial inhibition have also
been demonstrated (Wu et al., 1999). Microorganisms, such as
fungi, evolve rapidly, and can adapt quickly when exposed to
antibiotics and antifungal drugs. However, it is important to note
that cell membranes are slower to evolve. The rapid and potent
effect on membrane, coupled with other inhibitory mechanisms
exhibited by AFPs, de novo resistance is less likely to emerge in
target microorganisms (Yeung et al., 2011).

As is the case for currently used antimicrobial drugs, the
overuse of AFPs could accelerate the occurrence of fungal
resistance. This issue complicates the application of antifungal
therapeutics. Indeed, extensive echinocandin usage in hospitals
has led to an increase in the number of strains with acquired
(secondary) resistance to these first-line antifungals, especially
among strains of C. glabrata (Sanguinetti et al., 2015; Pappas
et al., 2018). The potential for the emergence of high level
resistance to AMPs has been debated, but it is likely to occur

at a reduced rate relative to that observed for other antifungals,
though it will depend on how the antimicrobial peptide is
administered. Besides, although a lower target concentration is
required, the absence or change in the specific fungal target
through spontaneous mutation can naturally lead to resistance.
However, such modification of conserved molecules could,
in turn, result in reduced pathogen virulence. In addition,
combination therapy, involving the use of AMPs with antibiotics
or with other peptides, will likely reduce the development of
resistance markedly (Matejuk et al., 2010; Rautenbach et al.,
2016).

PRODUCTION OF AFPS

Despite progress relating to the discovery and characterization
of AMPs, their application remains challenging (Wimley
and Hristova, 2011). There is a need for effective AMP
production in sufficient amounts and purity to more extensively
investigate their structure–function relationships, efficacy and
safety, especially in clinical treatments. Efficient production
is also required to serve market requirements should these
investigations be successfully completed. There are three major
strategies that one could employ to achieve this, i.e., direct
isolation from natural producers, heterologous expression or
chemical synthesis.

Natural Production
Currently, there are not many AMPs that are produced from
their natural sources for clinical use. The purification of peptides
from natural sources is laborious and expensive due to their low
abundance and the multiplicity of compounds present in those
sources (Vriens et al., 2014). Because of this, most industrial-scale
productions of AMPs are performed by heterologous expression
or chemical synthesis. Brief descriptions of two approaches
for industrial-scale AMP production from natural sources
are presented here: microbial fermentation and proteolysis of
food proteins.

Echinocandins are exceptional examples of AMPs produced
by microbial fermentation, and further chemical modification in
case of the semisynthetic variants. Industrial-scale production
of echinocandins is based on fermentation since they possess a
high-complexity chemical structure. However, little information
has been published about these processes. Echinocandin B,
pneumocandin B0 and FR901379 are the natural echinocandins
produced for commercial purposes from A. rugulosus,
Glarea lozoyensis and Coleophoma empetri, respectively.
The optimization of the fermentation process is essential to
obtain a competitive product, since the fermentation and
purification costs of natural echinocandins are the main variables
that influence the overall production costs of semisynthetic
derivatives. The clinical applications of natural echinocandins
is limited by certain undesirable properties, such as a strong
hemolytic activity, as discussed previously (Emri et al., 2013).

Industrial scale AMPs can also be obtained by proteolysis of
food proteins and the release of encrypted peptides. Agyei and
Danquah (2011) offered a brief description of the process for
manufacturing pharmaceutical-grade peptides by this approach.
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The process involves, firstly, the acquisition of raw materials:
food protein and proteolytic enzymes/or microorganisms. By-
products from dairy, fish and meat industries are suitable
cheap sources for proteins (Sibel Akalin, 2014; Ryder et al.,
2016). The second step involves protein hydrolysis. The use
of enzymatic hydrolysis is preferred over in situ microbial
fermentation, particularly in food and pharmaceutical industries
due to the lower or absent output of organic solvents and
toxic chemical in the process and product (Sibel Akalin,
2014; Ryder et al., 2016). Under industrial-scale conditions,
the use of immobilized enzymes offers several advantages
over the conventional soluble enzymes, such as milder and
controlled conditions and recycling of enzymes used (Sewczyk
et al., 2018). The final step is fractionation and isolation
of the bioactive peptides. Ultrafiltration, precipitation with
solvents and liquid chromatography techniques (e.g., ion
exchange, gel filtration) have been proposed for purification
of peptides, however, their current implicit high costs make
them prohibitive for large scale applications. It is estimated
that up to 70% of the capital and operating costs in industrial
biotechnology processes may correspond to the separation
and purification stages (Brady et al., 2008). Electro-membrane
filtration (EMF) is being established as an alternative method for
the purification of bioactive peptides. It combines electrophoresis
with conventional membrane filtration, being more cost-effective
than chromatographic techniques (Bazinet and Firdaous, 2013).
AMPs with antifungal activity, such as casocidin-I, kapacin A and
lactoferrin-derived peptides can be produced by these methods
as well.

Recombinant Production of AFPs
Considering the often low amounts of AMPs obtained by
purification from natural sources and the high costs and
difficulties that may arise from chemical synthesis (Li et al., 2010;
Hou et al., 2017), recombinant production of AMPs provides a
solid option to make these peptides accessible at low cost and
high efficiency.

Genetically modified microorganisms facilitate the
production and functional expression of any bioactive
molecule but, importantly, also allow the production of
bioengineered and encrypted peptides that would not be
achievable otherwise (Wibowo and Zhao, 2019). Moreover, new
sequencing technologies have made available a vast amount
of genomic, transcriptomic and metabolic data, providing the
means to further explore known and novel AMPs and the
rational design of new antifungal peptides (Amaral et al., 2012;
Porto et al., 2012; Tracanna et al., 2017).

However, the success of recombinant production can
be highly variable. Understanding the composition and
physicochemical properties of AMPs influences the selection
and design of hosts and expression system. The choice of host,
codon bias, protein expression vector, number of copies of the
plasmid and fusion proteins can influence the correct synthesis,
folding, and secretion of the recombinant peptide through the
cell machinery (Deng et al., 2017). There are two other aspects
to bear in mind: the toxicity of the AMP for the host and the
high instability and susceptibility of peptides to degradation by

proteases. To overcome this, AMPs can be synthesized in a form
that is fused to another protein (fusion proteins) or in inactive
forms (Kosobokova et al., 2016) initially.

Escherichia coli, yeasts (mainly Pichia pastoris) and plants
are the most common recombinant expression platforms
for biopharmaceutical proteins. Comprehensive reviews have
previously reviewed the different heterologous production
platforms available for AMPs (Sanchez-Garcia et al., 2016;
Deng et al., 2017). Most AFPs produced by recombinant
platforms target plant phytopathogens rather than human
fungal pathogens. However, many of these AFPs may represent
underutilized resources whose antifungal activity against human
fungal pathogens is waiting to be discovered. In the next
subsection, a brief overview of the production of AFPs in
different hosts with clinical applications is provided.

Production of AFPs in Bacteria
E. coli is by far the bacterial species that is used most
widely as a host for heterologous production of peptides and
proteins (Li, 2011). Its genetic configuration is well-known, it
is easy to manipulate and there is a broad variety of protein
expression vectors and host strains available. The pET vectors
(Novagen) are the most commonly used. Among the expression
strains, the most popular are E. coli BL21 (DE3), deficient
in proteases that may lead to protein degradation, or pLysS
Origami and Rosetta and C41 (DE3) (Novagen), employed when
disulfide bond formation is needed (Rosano and Ceccarelli,
2014). Many E. coli strains are unable to export proteins
across their outer membrane, and proteins are secreted into
the cytoplasm or periplasm generating inclusion bodies (Singh
et al., 2015). Therefore, AFPs produced by E. coli are usually
purified by sonication methods followed by reversed-phase
chromatographies, giving relatively low yields. Several examples
of AFPs production in E. coli are shown in Table 3.

Bacillus subtilis has also been explored as host for AFPs
production. This includes plectasin (Zhang et al., 2015),
cathelicidin (Luan et al., 2014), and the hybrid cecropin A–
melittin (Ji et al., 2017) (Table 4). B. subtilis is a well-studied
species, is non-pathogenic, has been approved by the Food
and Drug Administration as a Generally Regarded As Safe
(GRAS) microorganism and does not exhibit codon bias. It
also reaches high cell density and releases proteins directly to
the extracellular medium, simplifying the purification process.
However, B. subtilis secretes proteolytic enzymes that can degrade
the secreted recombinant proteins. Luckily, optimization of the
cloning strategies and construction of protease-negative mutants
are fostering its wider use (Cui et al., 2018).

Lactic acid bacteria (LAB) have been extensively used
for the heterologous production of bacteriocins, antibacterial
peptides secreted by bacteria (Rodríguez et al., 2003; García-
Fruitós, 2012). Genera such as Lactobacillus, Leuconostoc,
Pediococcus, Lactococcus, Streptococcus, and Enterococcus (König
and Fröhlich, 2017) can be part of the human microbiota at
different body sites (George et al., 2018) and, for some of these
genera, specific strains have been used as probiotics (Harzallah
and Belhadj, 2013). However, the production of AFPs in LAB is
challenging due to the antimicrobial sensitivity of the host. Choi
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TABLE 3 | Expression of antifungal peptides in E. coli.

Type of AFP Name Source Host Expression

vector

Fusion partner Antifungal spectrum Yield References

Defensin PvD1 Phaseolus vulgaris L.

(common bean)

Escherichia coli

Rosetta Gami DE3

pET-32 EK/LIC Thioredoxin Candida albicans Unknown de O Mello et al., 2014

Hybrid peptide

(lactoferricin+cecropin)

LF15-CA8 Hyalophora cecropia

(giant silk moth)

Bovine lactoferricin

(encrypted peptide)

E. coli BL21 (DE3) pGEX-4T-2 GST Lactoferricin: C. tropicalis,

C. krusei, C. albicans, C.

glabrata, Aspergillus spp.,

Cryptococcus spp.

10 mg/mL Feng et al., 2014; Fernandes and

Carter, 2017

Lactoferricin Lactoferricin

B

Mammals E. coli BL21 (DE3) pET21d MMIS Lactoferricin:

C. tropicalis, C. krusei, C.

albicans, C. glabrata,

Aspergillus spp.,

Cryptococcus spp.

Unkown Kim et al., 2006; Fernandes and

Carter, 2017

Cecropin CeA Hyalophora cecropia

(giant silk moth)

E. coli BL21 (DE3) pET-30a ELK16 self-assembly

peptide (GyrA intein)

C. tropicalis, C. krusei, C.

albicans, C. glabrata,

Aspergillus spp.,

Cryptococcus spp.

6.2 mg/mg wet

cell

Wang et al., 2018

Peptidyl nucleoside

antibiotics

Nikkomycin Streptomyces

ansochromogenes

E. coli BL21 (DE3) pET23b His tag C. albicans 800 mg/L Li et al., 2005

Echinocandins PH HtyE A. pachycristatus E. coli BL21 Gold pET-28b(+) His tag Candida spp., Aspergillus

spp.

75 mg/L Mattay et al., 2018

Magainins Magainin-2 Xenopus laevis (African

frog)

E. coli BL21 (DE3) pET-21a Carbohydrate-binding

module, His tag

C. albicans,

C. neoformans

S. cerevisiae

Unkown Zasloff, 2002; Ramos et al., 2013

Dermaseptin Dermaseptin

S4

Phyllomedusinae frogs

(amphibian skin)

E. coli strain BL21

(DE3)

pGEX-4T-1 Glutathione

S-transferase (GST)

C. neoformans and A.

fumigatus

Unknown Belaid and Hani, 2011; Song

et al., 2014

Chitin-binding cysteine

rich

Tachycitin horseshoe crab

hemocyte (Argopecten

irradians)

Escherichia coli

BL21 (DE3)/pLysS

pET-22b() None Paecilomyces variotii,

Aspergillus spp., F.

oxysporum, Neurospora

crassa, B. cinerea, and

Alternaria brassicola

1 mg/L Kawabata et al., 1996; Suetake

et al., 2002

Defensin HBD5/

HBD6,

HBD26, HBD27

Mammal E. coli BL21 (DE3) pET-32a (+) Thioredoxin AHis6 C. albicans Unknown Huang et al., 2008, 2009
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TABLE 4 | Expression of antifungal peptides in other bacteria and yeasts.

Type of AFP Name Source Host Expression

vector

Fusion partner Antifungal spectrum Yield References

BACTERIA

Cyclic lipopeptide Iturin A Bacillus

amyloliquefaciens and

B. subtilis

B. amyloliquefaciens Genome

shuffling

Protoplast fusion

technology

Saccharomyces

cerevisiae, plant

pathogens

172.22

mg/L

Shi et al., 2018

Defensin Plectasin Pseudoplectania nigrella B. subtilis pGJ148 Small

Ubiquitine-like

modifier (SUMO)

Candida albicans 5.5 mg/L Zhang et al., 2015

Polyoxins Polyoxin P

Polyoxin O

Streptomyces

ansochromogenes, S.

cacaoi

S. ansochromogenes pPOL None Alternaria kikuchiana,

Aspergillus fumigates,

Rhizoctonia solani,

Botrytis cinerea and

Trichoderma viride

Unknown Li et al., 2012

Human beta defensin HBD-1 Humans Lactococcus lactis

A164

pOED1 DsbC-Tag C. albicans Unknown Choi et al., 2005

YEASTS

De novo designed peptide PAF102 Combinatorial screen

against the

phytopathogen

Penicillium digitatum

Pichia pastoris pGAPHA Plant oleosin P. digitatum, Magnaporthe

oryzae, Fusarium

oxysporum and B. cinerea

180 mg/L López-García et al., 2015; Popa

et al., 2019

Big defensin AiBD Argopecten irradians

(mollusk)

P. pastoris GS115 pPIC-9K None C. albicans Unknown Saito et al., 1995; Zhao et al.,

2007

Cathelicidin Protegrin 1 (PG1) Mammals P. pastoris X-33 pJ912 His tag C. albicans 104

mg/mL

Huynh et al., 2018

Cathelicidin Protegrin 1 (PG1) Mammals P. pastoris X-33 pPICZα-A His tag C. albicans 15.6/100mL Niu et al., 2015

Transferrin family pLF (Porcine

lactoferrin)

Sow’s milk P. pastoris GS115

(his4)

pPIC9 None C. tropicalis, C. krusei,

and C. albicans

Unknown Pecorini et al., 2005; Fernandes

and Carter, 2017

Plant defensin HsAFP1 Heuchera sanguinea

(coral bells)

P. pastoris X-33 pPICZαA None S. cerevisiae, C. albicans,

and

F. culmorum

40 mg/L Aerts et al., 2011; Vriens et al.,

2015

Radish defensin RsAFP2 Raphanus sativus L.

(radish seeds)

P. pastoris strain

GS115

Unknown None Alternaria spp., Fusarium

spp., Trichoderma spp.

100 mg/L Terras et al., 1992; Vriens et al.,

2016

Chitinase VuChiI Vigna unguiculata (L.)

(walp.Cow pea)

P. pastoris KM71H pPICZαA Histag P. herquei 18 mg/L Landim et al., 2017
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et al. (2005) attempted the heterologous production of HBD-1 in
a nisin Z L. lactis producer, but toxicity to the host was apparent
(Choi et al., 2005) (Table 4).

In addition to being outstanding secondary metabolite
producers, including of antibacterial and antifungal peptides
(Harir et al., 2018), in their own right, Streptomyces species also
offer many potential advantages as hosts for the expression and
secretion of proteins (Baltz, 2010). In a small number of cases
they have also been used for the heterologous production of AFPs
(Li et al., 2012; Roldán-Tapia et al., 2017) (Table 4).

Several fusion partners have been used to facilitate the
production of AFPs in bacteria (Li, 2009; Costa et al., 2014).
Examples of AFPs produced by E. coli, Bacillus, Streptomomyces
and L. lactis using different fusion partners are shown in Table 4.
The His-tag, widely used beyond E. coli and consists of a short
chain of six histidine residues. The His-tag is often combined
with other, fusion tags to improve the production, solubility
and recovery of the recombinant protein. Thioredoxin (TRX)
and glutathione S-transferase (GST) are ubiquitous enzymes
involved in redox and detoxification processes, respectively,
which are often used as N-terminal fusion tagsTRX helps with the
formation of disulphide bridges of the target protein, especially
in strains unable to do so. On the other hand, GST functions
as a chaperone that enhances the expression and solubility of
recombinant proteins. In addition, GST-tagged fusion proteins
can be purified by glutathione affinity chromatography, which
facilitates the purification process. MMIS is a modified form
of the magainin intervening sequence (MIS) that prevents the
antimicrobial activity of the fused peptides until they are released.
ELK16 is a self-assembling peptide that induces the formation
of cytoplasmic inclusion bodies in E. coli. Carbohydrate-binding
modules have also been used to enhance purification of AMPs
though a cellulose matrix. More innovative fusion partners
include protoplast for iturin production (Shi et al., 2018). Overall,
fusion partners increase the solubility of the target peptides and
protect them from degradation, but there is no evidence of
higher yields.

Production of AFPs by Yeasts
With respect to heterologous expression, yeasts are fast growing
and easy to manipulate genetically. Moreover, they are capable
to perform correct protein processing and post-translational
modifications. The methylotrophic yeast Pichia pastoris has been
the preferred yeast for AMP production and for recombinant
expression of AFPs (Table 4). Pichia protein expression vectors
contain the alcohol oxidase gene promoter (AOX 1), inducible
by the addition of methanol, which allows the overexpression
of the gene introduced downstream. Three strains have been
most widely used to produce AFPs: P. pastoris X-33, P. pastoris
GS115, and P. pastoris KM71H. The strains differ in their
genotypes, which affects the selection of selectable markers,
typically antibiotic resistance genes or auxotrophic markers. His-
tags are commonly used here also to facilitate the purification
of recombinant proteinsaffinity metal-chelating chromatography
(Niu et al., 2015; Landim et al., 2017). Plant oleosin fusion
technology (Ling, 2007; Bhatla et al., 2010) has also been used

for the production of iturin A (Popa et al., 2019). Table 4 shows
some examples of AFPs produced by P. pastoris for clinical use.

Production in Fungi
Filamentous fungi are a well-known source of metabolites and
enzymes (Hoffmeister and Keller, 2007), e.g., they naturally
produce a wide range of primary metabolites such as organic
and fatty acids, and important secondary metabolites, including
the antibiotics penicillin, cephalosporin and griseofulvin, or the
cholesterol lowering agent lovastatin (Alberti et al., 2017). The
attraction of filamentous fungi as hosts for protein recombinant
production relates to their relatively inexpensive growing
requirements and their ability to naturally secrete large amounts
of proteins into the growth medium. They can also perform
complex posttranslational modifications including glycosylation,
proteolytic cleavage and multiple disulphide bond formation.
Moreover, they are very useful when whole synthetic pathways
need to be recreated. Species such as Aureobasidium pullulans,
Penicillium chrysogenum, and P. digitatum have been used to
produce AFPs. A. pullulans has been used to produce several
bioactive molecules, such as pullulan, a polysaccharide with
numerous applications in health and the food industry, β glucan,
and a wide variety of extracellular enzymes. It has also been
reported to produce the antibacterial exophilin A, liamocins
and heavy oils (Chi et al., 2009). Notably, A. pullulans has
also been used to produce aureobasidin A as a consequence
of homologous recombination (Table 5) (Slightom et al., 2009).
P. chrysogenum and P. digitatum have also been successfully
used to produce NFAP2 and AfpB, respectively. P. chrysogenum
is known to produce a cationic antifungal protein which
inhibits zoopathogens and plant-pathogenic fungi. This host
has undergone many improvements to optimize fermentation
conditions. Finally, P. digitatum was originally known as a fruit
pathogen but has been used for the homologous production
of AfpB.

Production in Plants
Plant-based expression systems have been explored as production
hosts for recombinant expression of AMPs due to their
capacity for large scale production and their cost-effectiveness.
Advantages of plants are their capability to perform appropriate
glycosylation, folding, and disulphide bond formation of
recombinant AMPs. There are different genetic approaches to
produce AMPs in plants: using whole plants, tissue specific
expression, tissue culture, or transient expression (Holaskova
et al., 2015). Nuclear transformation has been the preferred
technique for plant-derived therapeutic proteins followed by
purification from transgenic plants. The tobacco plant (Nicotiana
tabacum) is the most commonly used transgenic expression
system and strains of the bacterial species Agrobacterium
tumefaciens are the most popular intermediate hosts (Desai et al.,
2010). Setting up a higher plant production platform is more
expensive than using bacteria, yeast or fungi. However, once
the system is established, it is easier to handle and provides
high capacity for scale-up. Moreover, plant-based systems do
not generally need control of production. Chahardoli et al. used
tobacco whole plants as a platform to produce a lactoferrin and
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TABLE 5 | Expression of antifungal peptides in fungi and plants.

Type of AFP Name Source Host Expression

vector

Fusion partner Antifungal spectrum Yield Reference

FUNGI

Aureobasidins Aureobasidin A (BP-1938) Aureobasidium pullulans A. pullulans pCR2.1 TOPO None Candida spp. Unknown Slightom et al., 2009

Cysteine rich Neosartorya fischeri

antifungal protein 2 (NFAP2)

N. fischeri Penicillium

chrysogenum Q176

GRAS-FDA

pSK275nfap None Candida spp. 15 mg/L Tóth et al., 2018

Cysteine rich AfpB P. digitatum CECT 20796

(PHI26)

P. digitatum

P. pastoris X-33

pBHt2

pPICZαA

None Saccharomyces cerevisiae,

P. italicum,

P. expansum,

Botrytis cinerea,

Magnaporthe oryzae,

Fusarium oxysporum,

P. digitatum

12–20mg

protein/l

(P. digitatum)

1.2–1.4 mg/l

(P. pastoris)

Garrigues et al., 2018

PLANTS

Lactoferrin-derived

peptides

Lactoferrin+lactoferrampin

chimera

Bovine milk Nicotiana tabacum pBI121 His tag C. tropicalis, C. krusei, C.

albicans, C. glabrata,

Aspergillus spp.,

Cryptococcus spp.

4.8µg/g fresh

weight

Chahardoli et al., 2018

Dermaseptin Dermaseptin B1 Skin glands of the South

American hylid frog,

Phyllomedusa bicolor

Nicotiana tabacum pGSA1285 Tandem repeat of

Cladosporium

fulvum Avr4 effector

protein CBD

Agrobacterium tumefaciens

(PTCC 1654), Pectobacterium

carotovorum (PTCC 1675),

Pseudomonas aeruginosa

(PTCC 1558), Xanthomonas

campestris (PTCC 1473), and

Ralstonia solanacearum

(ATCC 11696) bacteria,

Alternaria alternata (PTCC

5224) and Pythium spp.

Unknown Shams et al., 2019
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lactoferrampin 34 amino acid chimera. To our knowledge this is
the first study to produce an AFP in plants (Table 5) (Chahardoli
et al., 2018).

Chemical Synthesis
Chemical synthesis of peptides can be divided in two types:
solid- (SPPS) or liquid (solution) phase peptide synthesis (LPPS).
In general terms, LPPS is suitable for large-scale manufacture
of short peptides or structures that are not easily prepared by
SPPS. SPPS is generally used for lower scales or to provide
mechanistic insights about peptides and offers the potential for
the creation and production of more cost-effective antifungal
therapies (Matejuk et al., 2010). Currently, Fmoc SPPS is the
preferred method for peptide chemical synthesis due to the
versatility and low cost of very high-quality building blocks.
The diversity of synthetic peptides entering clinical trials has
increased over the last 13 years, stimulating advances in Fmoc
SPPS technologies in response to the growing demand for
medicinal chemistry and pharmacology (Behrendt et al., 2016).
Several groups have synthesized linear (Tran et al., 2008;Magliani
et al., 2011; Konno et al., 2015; Cools et al., 2017; Park et al., 2018)
and cyclic peptides (Mosca et al., 2000; Schaaper et al., 2001;
Konno et al., 2015; Ng-Choi et al., 2019) using Fmoc SPPS.

The long process of isolation and characterization of new
natural AMPs delays their clinical use. In this regard, Fmoc
SPPS is at the forefront in the design of therapeutic peptides
since it permits the easy alteration of features such as
hydrophobicity, polarity, charge, structure, and it may also
enhance activity and overcome the limitations of natural peptides
(Freitas and Franco, 2016). The rational design of synthetic
sequences is a new approach of relevance, and results from
optimizing the sequence and chemical characteristics shared by
different AMPs (pharmacophoric patron) (Freitas and Franco,
2016). Ideally, an antifungal peptide agent should be short,
as mentioned previously. De novo peptide design may help
reducing production costs, potential toxicity and lability, as well
as increasing the in vivo activity (Steckbeck et al., 2014).

Unfortunately, Fmoc SPPS is currently far from meeting
its potential and still cannot compete with the template-based
process of expression for the large-scale demand of therapeutics
(Behrendt et al., 2016). However, it should be noted that
companies specialized in the large-scale manufacture of peptides
are currently being established, claiming productions frommulti-
10 kg/lot (SPPS) to multi-100 kg/lot (LPPS)1. This suggests that
the versatility of chemical synthesis is on its way to reach the
cost-efficiency and scale of peptide expression.

CURRENT AND POTENTIAL
APPLICATIONS IN HUMAN MEDICINE

Combined Therapy With Other Drugs
A recurrence of disease and establishment of chronic fungal
infections may result when antifungal treatments are not
sufficiently effective. Thevissen (2016) proposed that more efforts

1Synthesis—PolyPeptide. Available online at: https://www.polypeptide.com/
commercial-manufacturing/ (accessed August 12, 2019).

should focus on combination therapy in addition to screening
for novel antifungal compounds. Synergy between the combined
compounds is the main objective of combination therapy,
thereby increasing their activity and diminishing their toxicity
on the host. Another option is combining an antimycotic (either
currently used or novel AMP) with an enhancer molecule
that, for example, weakens one or multiple pathogen tolerance
mechanisms, such as biofilms, without direct antifungal activity.
Either way, it is essential to demonstrate efficacy and safety of the
combination before proceeding to clinical trials.

Limited data from clinical trials are available in this regard. A
study performed by Candoni et al. showed for the first time that
early mortality of patients with invasive aspergillosis was reduced
by combined treatment with two antifungal agents (Candoni
et al., 2014). In a retrospective study published in 2017, Lee et al.
analyzed records from a pediatric department in South Korea
and described how the combined therapy of voriconazole and
caspofungin was an effective and safe treatment for children with
leukemia (Lee et al., 2017). In vitro and in vivo studies suggests
that AFPs are excellent candidates for this type of approaches
and have a great potential for clinical success. Lactoferrin-derived
peptides such as Lf(1-11) and bLfcin have shown synergy with
azole antifungal drugs or amphotericin B, greatly reducing the
minimal inhibitory concentrations (MICs) against C. albicans, C.
glabrata, C. krusei, C. parapsilosis, C. tropicalis, and fluconazole-
resistant strains of C. albicans (Wakabayashi et al., 1996, 1998;
Lupetti et al., 2003; Fernandes and Carter, 2017). Some other
examples of these studies are summarized in Table 6.

Commercial Products and Formulations
P113 is a 12-mer peptide developed by the company PacGen
Life Science (Vancouver, Canada) as a mouth rinse formulation
for the topical treatment of oral candidiasis. Clinical trials from
PacGen demonstrated that oral candidiasis was effectively treated
by P113, which compared favorably to the efficacy of nystatin, a
standard treatments for oral candidiasis. Vaginal, dermatological
and ophthalmic applications are on the list of P113 therapeutic
potential (Duncan and O’Neil, 2013). Currently, the P113-
containing line of products includes oral rinse solution and
spray, feminine soothing spray and cleansing wash, and
antibacterial hand cream, among others2. NP213/Novexatin
was the lead product of NovaBiotics of Aberdeen, UK. It is an
arginine-rich cyclic cationic peptide based on human α and β

defensins (among others). It was used for treatment of toenails
stubborn fungal infections such as onychomycosis (patents
PCT/GB2006/004890 and PCT/GB2005/003245). Indeed,
independent podiatrist analysis determined the treatment
against mild to moderate onychomycosis as being 80% clinically
effective. This effectiveness rate is significantly higher than
that provided by existing topical treatments for onychomycosis
in different territories, including United States and Europe
(Duncan and O’Neil, 2013; Fox, 2013)3. However, the clinical
study did not acomplish the main goal of a Phase IIb study by

2P113 | Pacgen Life Science. Available online at: http://www.pacgenlife.com/node/
171 (accessed August 15, 2019).
3Elewski, B. E. Dermatologists and Podiatrists Interviewed, 14.
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TABLE 6 | Combination of antifungal compounds against pathogenic fungi.

Compound A Compound B Type of

combination

Fungus treated Type of study Outcome References

AmB bacillomycin D A - A C. albicans in vitro (keratinocytes) Synergy; Anti-biofilm and

wound-healing activities

Tabbene et al., 2016

Ds7 C. tropicalis in vitro Synergy; Anti-biofilm and membrane

lytic activities

Singh et al., 2017

Crotalicidin Candida spp. in vitro (HK-2 cells) Synergy; MIC reduction; less

cytotoxic and hemolytic than Amb

Cavalcante et al., 2017

AmB or VCZ bLfcin C. albicans in vitro Synergy; 4-16 fold MIC reduction,

reduced formation of biofilms

Fernandes and Carter,

2017

FCZ hLf(1-11) C. glabrata, C.

krusei, C.

parapsilosis, C.

tropicalis, C.

albicans

in vitro Synergy; fungicidal effect Lupetti et al., 2003

CaThi F. solani in vitro Synergy; 100% fungicidal effect Taveira et al., 2017

Af or Cf DermaseptinS3(1-16) C. glabrata, C.

albicans

in vitro Synergy; MIC reduction Harris and Coote, 2010

Renalexin C. glabrata, C.

albicans

in vivo (mice) Synergy; MIC reduction; no effect in

in vivo tests

Harris and Coote, 2010

Magainin2 C. glabrata, C.

albicans

in vitro Synergy; MIC reduction Harris and Coote, 2010

6752 C. glabrata, C.

albicans

in vitro Synergy; MIC reduction Harris and Coote, 2010

GS14K4 C. glabrata, C.

albicans

in vitro Synergy; MIC reduction Harris and Coote, 2010

MUC7 12-mer Hsn5 12-mer C. albicans, C.

neoformans

in vitro Synergy; MIC reduction, low

hemolytic activity

Wei and Bobek, 2004

Amb C. albicans, C.

neoformans

in vitro Synergy; MIC reduction Wei and Bobek, 2004

Miconazole C. albicans, C.

neoformans

in vitro Synergy; MIC reduction Wei and Bobek, 2004

Cf Hepcidin 20 C. glabrata in vitro Synergy; MIC reduction Tavanti et al., 2011

VCZ Pneumocystis

jirovecii,

Aspergillus spp.

in vivo (children with

leukemia)

Overall response 90% after

combination treatment; 10% mild liver

side effect

Lee et al., 2017

VCZ Candida spp. ,

Aspergillus spp.,

Fusarium spp.

in vivo (humans) Reduction in early mortality of

patients with invasive aspergillosis

Candoni et al., 2014

LAmB Candida spp.,

Aspergillus spp.,

Fusarium spp.

in vivo (humans) Reduction in early mortality of

patients with invasive aspergillosis

Candoni et al., 2014

FCZ Retigeric acid B

(RAB)

A - P C. albicans in vitro - in vivo (mice) Synergy; inhibition of hyphal

formation and adherence to host cells

Chang et al., 2012

2-adamantanamine

(AC17)

C. albicans in vivo (guinea pigs) Synergy; reduction in fungal tissue

burden (cutaneous candidiasis)

Lafleur et al., 2013

FK506 C. albicans in vivo (rats) Synergy; inhibition of biofilm formation

in catheter model

Uppuluri et al., 2008

Cephalosporin A

(CsA)

C. albicans in vivo (rats) Synergy; inhibition of biofilm formation

in catheter model

Uppuluri et al., 2008

Cf diclofenac C. albicans in vivo (rats) Synergy; inhibition of biofilm formation

in catheter model

Bink et al., 2012

AmB bLf peptide 2 -

GM-CSF

A - A - P C. albicans in vivo (mice) Synergy; upregulation of phagocytes;

extended survival of mice up

Tanida et al., 2001

Af, anidulafungin; Cf, caspofungin; FCZ, fluconazole; VCZ, voriconazole; AmB, amphotericin B; MUC7, human mucin-derived peptide; CaThi, Thionine-like peptide from Capsicum

anuum; DS7; synthetic peptide derived from Aspergillus giganteous antifungal protein. Hsn5, histatin 5; LAmB, liposomal AmB; hLf(1-11), human lactoferrin peptide 1-11; bLf, bovine

lactoferrin; bLfcin, bovine lactoferricin; GM-CSF, granulocyte-macrophage colony-stimulating factor; A, Antifungal; P, Potentiator.
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not showing differences over the placebo treatment under FDA
current guidelines4.

Potential Applications
Despite their promising properties, only a few AFPs have
reached the clinical phase. One example is hLF(1-11), a peptide
that was developed for the systemic treatment of bloodstream
and deep tissue infections produced by fungi and bacteria in
severely immunocompromised transplant recipients. However,
after favorable safety and tolerability clinical trials of hLF(1–
11), no more studies have taken place putting on hold the
commercialization of this peptide (van der Velden et al., 2009;
Martin et al., 2015; Bruni et al., 2016). Another example is CZEN-
002, a synthetic octapeptide derived from alpha-Melanocyte-
Stimulating Hormone (a-MSH). CZEN-002 modulates immune
and inflammatory responses, and has been shown to kill C.
albicans as well (Fjell et al., 2011; Mahlapuu et al., 2016). This
AMP had been in phase II clinical trials for the treatment of
vulvovaginal candidiasis. However, no recent development has
been reported. It was developed by Zengen, Abiogen Pharma and
Lee’s pharmaceuticals (Duncan and O’Neil, 2013)5.

In addition, there are many cases of peptides with promising
properties currently being evaluated pre-clinically (Koo and Seo,
2019). Other pre-clinical examples are described in the review
by Duncan and O’Neill (Duncan and O’Neil, 2013) and in the
database DRAMP 2.0 (Kang et al., 2019).

Delivery and Formulations
As discussed, different formulations and delivery strategies for
AFPs might be explored depending on the peptide properties,
the potential toxicity (suitable for topical and/or systemic use)
and the marketing strategies of the companies (e.g., mouth rinse,
toothpaste, spray, dermal cream, etc.). Different carriers can
enhance the pharmacodynamics and stability, and reduce toxicity
of the active peptide, such as liposome encapsulation or the use
of peptoids, the D-conformation-based peptide and β-peptides
(Sajjan et al., 2001; Porter et al., 2002; da Silva Malheiros et al.,
2010; Chongsiriwatana et al., 2011). Diverse pre-clinical delivery
tools and formulations are being studied. In one case, Park et al.
developed a pH-responsive and redox-sensitive polymer-based
AmB-delivery carrier system (Park et al., 2017), by conjugation
with histatin 5 acting both as a synergistic antifungal molecule
and a targeting ligand against C. albicans.Other authors describe
that some properties of the peptides could make them suitable
for self-delivery systems. Examples include the synthetic killer
peptide (KP) and the ultrashort peptide NapFFKK-OH, which,
at certain pHs and concentration conditions, undergo a self-
assembly process. The results are hydrogel-like aggregates that
could slowly release the peptides in physiological conditions, as
well as reducing the proteolytic susceptibility and increasing the
storage stability of the active compound (Magliani et al., 2011;
Albadr et al., 2018). Future clinical studies of these hydrogels
and other delivery technologies will determine their safety and

4https://www.businesswire.com/news/home/20180928005622/en/Taro-
Terminates-Agreement-NovaBiotics
5CZEN-002 Available online at: https://www.pharmacodia.com/yaodu/html/v1/
chemicals/f84aa65357bec670cbba3ae77711c233.html (accessed August 15, 2019).

efficiency. Additional drug delivery strategies include carbon
nanotubes and magnetic nanoparticles (López-Abarrategui et al.,
2013; Chaudhari et al., 2016).

CONCLUSIONS

Mycoses are a serious and rising threat to humans. Survival
rates remain unacceptably low and no new antifungals have been
introduced in more than 13 years since echinochandins and
pneumocandins. AFPs have obvious potential as more efficient
and safer therapeutic agents than conventional antifungal drugs.
Research on AFPs has been highly active and over one thousand
peptides have been described. Nevertheless, few molecules have
reached late clinical stage studies or have entered the market.
Major challenges for AFPs commercialization relate to their
specificity and safety. Moreover, stability of the formulations,
delivery strategies and the overall therapeutic efficiency together
with production costs at industrial scale and regulatory barriers
remain to be resolved. The mode of action of AFPs is not fully
understood which also raises safety concerns.

Regarding exploitation, AFP production yields from natural
sources are very low and requires complex and costly procedures
for extraction and purification. Their peptidic nature enables
production through recombinant platforms, but scaling-up
procedures are not always successful and require extensive
optimization. Currently, chemical synthesis is economically
viable only for short peptides and high value applications, but
novel synthesis and purification technologies such as EMF are on
the way to meet these requirements for such short peptides and
high value applications.

Notably, indications from the FDA and European regulatory
entities indicate that regulatory laws are changing, encouraging
companies to invest in antimicrobial discovery and development.
Among other measures, new guidance documents have been
released, including plainspoken clinical criteria for evaluating
antimicrobials and broadening the spectrum of volunteers for
clinical trials. Other steps will help in trials designed for the
evaluation of drug-resistant pathogens (Fox, 2013).

Considering that the global market for antifungals is set
to be worth $12.2 billion6, AFPs are commercially attractive
candidates in terms of manufacturing costs, options, increasing
regulatory acceptance of peptide therapeutics, etc. (Duncan and
O’Neil, 2013). Thus, an integral action plan on this field needs
to be driven by academy, biotechnological and pharmaceutical
companies and regulatory entities in order to enhance and thrust
the development of novel antifungal therapies. Nonetheless, the
path has been paved for these promising molecules.
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