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HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral

therapy (ART). The development of an HIV-1 cure remains challenging due to the latent

reservoir (LR): long-lived CD4T cells that harbor transcriptionally silent HIV-1 provirus.

The LR is stable despite years of suppressive ART and is the source of rebound viremia

following therapy interruption. Cure strategies such as “shock and kill” aim to eliminate

or reduce the LR by reversing latency, exposing the infected cells to clearance via the

immune response or the viral cytopathic effect. Alternative strategies include therapeutic

vaccination, which aims to prime the immune response to facilitate control of the virus

in the absence of ART. Despite promising advances, these strategies have been unable

to significantly reduce the LR or increase the time to viral rebound but have provided

invaluable insight in the field of HIV-1 eradication. The development and assessment of

an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity

to detect changes that may occur following treatment. The viral outgrowth assay (VOA)

is considered the gold standard method for LR quantification due to its ability to

distinguish intact and defective provirus. However, the VOA is time consuming and

resource intensive, therefore several alternative assays have been developed to bridge

the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains

elusive, recent advances in our understanding of the LR and methods for its eradication

have offered renewed hope regarding achieving ART free viral remission.
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INTRODUCTION

Infection with human immunodeficiency virus type-1 (HIV-1) requires life-long adherence to
antiretroviral therapy (ART) due to the presence of latently infected cells that are central to viral
persistence and rebound viremia following ART interruption (Chun et al., 1997, 1998, 1999; Finzi
et al., 1997; Perelson et al., 1997; Wong et al., 1997; Davey et al., 1999; Rosenbloom et al., 2017).
HIV-1 primarily infects activated CD4T cells, where genomic RNA is reverse transcribed into DNA
and stably integrated into the host genome. Integrated proviral DNA therein serves as the template
for HIV-1 gene expression and genomic RNA production, driven by T cell activation induced
transcription factors such as NF-κB (Liu et al., 1992; Kinoshita et al., 1998). The latent reservoir
(LR) is established when a small subset of activated CD4T cells, harboring proviral DNA, revert
to a resting memory phenotype with reduced gene expression, rendering the cell non-permissive
for HIV-1 production but providing a sanctuary to evade the immune response and ART
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(Hermankova et al., 2003; Siliciano and Greene, 2011). The LR
is stable over long periods in therapy suppressed individuals;
the result of infection in naturally long-lived memory CD4T
cells that are continually replenished by clonal expansion and
homeostatic proliferation (Finzi et al., 1999; Siliciano et al.,
2003; Bailey et al., 2006; Chomont et al., 2009; Maldarelli et al.,
2014; Wagner et al., 2014; Cohn et al., 2015; Lorenzi et al.,
2016; Simonetti et al., 2016; Hosmane et al., 2017). Latently
infected cells therefore represent the principle barrier to an HIV-
1 cure and should be specifically targeted by novel treatment and
eradication strategies.

To date, an effective cure for HIV-1 infection has been
achieved twice via CCR5132/132 hematopoietic stem cell
transplantation and in both cases latently infected cells were
eliminated and replaced with HIV-1 resistant donor cells (Hutter
et al., 2009; Gupta et al., 2019). Whilst this method is not
feasible for widespread use, its repeated success proves the
principle that HIV-1 cure strategies must either eliminate
(sterilizing cure) or silence (functional cure) the LR. Proposed
cure strategies such as “shock and kill” aim to eliminate
the LR by utilizing latency reversing agents (LRAs) during
ART mediated virus suppression to drive expression of HIV-
1 from latently infected cells, exposing those cells to viral
cytopathic effects or immune clearance whilst limiting de
novo infections (Deeks, 2012). An alternative and conceptually
opposingmethod, “block and lock,” aims to reinforce viral latency
and therefore maintain the provirus in an inactivate state in
the absence of ART (Mousseau et al., 2015; Méndez et al.,
2018). Additionally, therapeutic vaccination based approaches
aim to silence the LR by inducing strong HIV-1 specific T
cell responses to aid immune control of the infection following
ART cessation (Mylvaganam et al., 2015; Pantaleo and Levy,
2016).

Measuring the success of HIV-1 cure and vaccine strategies
requires highly sensitive and accurate assays and there is
currently no consensus as to the most appropriate method to
utilize. Several technical challenges limit the ability to measure
accurately the size of the LR, including the paucity of cells
infected with replication competent provirus and the vast
heterogeneity of the HIV-1 genome. Culture based assays such as
the viral outgrowth assay (VOA) are routinely used to measure
the LR but are labor and resource intensive and invariably
underestimate the size of the replication competent reservoir (Ho
et al., 2013; Bruner et al., 2015). Conversely, PCR based assays
offer a more practical approach to proviral quantification but
overestimate the size of the LR by indiscriminately measuring
defective viral genomes that predominate the in vivo landscape
(Ho et al., 2013).

Despite the success of ART in reducing HIV-1 associated
mortality, the global burden of the disease necessitates the urgent
development of a cure or vaccine and both understanding and
accurately measuring the LR is crucial in the path toward HIV-
1 eradication. In this review, we will focus on the mechanisms
that facilitate the establishment and maintenance of the HIV-1
LR, some of the prominent methods proposed to achieve a cure
and the developments and challenges on the way to measuring
their success.

THE LATENT RESERVOIR

Establishing Latency
The HIV-1 LR can be defined as the fraction of cells harboring
transcriptionally silent proviral DNA that are capable of
producing infectious virions following activation (Eisele and
Siliciano, 2012). Resting memory CD4T cells are the primary
host of the LR but HIV-1 infection in these cells is inefficient
due their low co-receptor expression and inherent restrictions to
reverse transcription (Pierson et al., 2000; Baldauf et al., 2012).
Nevertheless, there is evidence that HIV-1 can infect resting
CD4T cells directly or via cell-to-cell transmission, though
infection in these cells is associated with slower replication
kinetics (Swiggard et al., 2004, 2005; Agosto et al., 2007, 2018;
Plesa et al., 2007; Vatakis et al., 2007; Lassen et al., 2012).
Alternatively, latency is established when a subset of infected,
activated CD4T cells revert to a resting memory phenotype,
effectively silencing viral gene expression whilst sustaining the
proviral DNA long-term (Chun et al., 1995). The provirus is
maintained in a quiescent state in these cells via host factors such
as epigenetic suppression, depletion of transcription factors such
as NF-κB and transcriptional interference due to integration into
expressed genes, reviewed in more detail (Cary et al., 2016).

Amongst the pool of viral genomes integrated into host cells,
only a small fraction are replication competent and therefore
capable of producing infectious HIV-1 virions following T cell
activation (Sanchez et al., 1997; Ho et al., 2013; Bruner et al., 2016;
Imamichia et al., 2016). Instead, the majority of the reservoir
exists as defective provirus, unable to support HIV-1 infection
due to deletions, insertions and hypermutation introduced into
the genome during reverse transcription (Ho et al., 2013; Bruner
et al., 2016). Despite this, viral rebound from the LR following
ART cessation is rapid, leading to detectable viremia within
weeks of therapy interruption (Chun et al., 1999; Davey et al.,
1999). Additionally, initiating ART early in infection is not
sufficient to stop the formation of the LR, suggesting the LR is
established and disseminated early (Chun et al., 1998; Whitney
et al., 2014; Colby et al., 2018), even in vertically infected
children that started ART soon after birth (Persaud et al., 2013;
Ananworanich and Robb, 2014; Giacomet et al., 2014; Tagarro
et al., 2018).

Maintaining the Reservoir
The half-life of the LR is estimated to be 3.6 years in patients
with sustained viral suppression, meaning that eradication of
the LR is not possible within a lifetime and adherence to ART
must therefore be lifelong (Siliciano et al., 2003; Crooks et al.,
2015). The natural longevity of memory T cells contributes to the
persistence of the LR, however, its long-term stability indicates
that this pool of cells is continually replenished notwithstanding
effective ART. Two mechanisms have been proposed as drivers
of LR maintenance: ongoing virus replication in anatomical
compartments with sub-optimal drug concentrations and/or
clonal expansion of latently infected cells (Sengupta and
Siliciano, 2018). Ongoing replication of HIV-1 would lead
to the accumulation of genetically diverse HIV-1 provirus,
integrated into various positions of the host genome, therefore,
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researchers have monitored viral evolution and integration sites
in ART suppressed patients to determine the mechanism of
LR propagation. Separate studies have demonstrated a high
proportion of genetically indistinct viral genomes, as well
as identical integration sites recovered from different cells,
indicating that these cells must arise from proliferation as appose
to subsequent HIV-1 replication (Josefsson et al., 2013; Wagner
et al., 2013, 2014; Maldarelli et al., 2014; von Stockenstrom
et al., 2015; Wang Z. et al., 2018). Indeed, memory T cells are
maintained by homeostatic proliferation in response to IL-7, and
several studies have shown that this process drives LR persistence
without inducing HIV-1 gene expression (Agosto et al., 2007;
Chomont et al., 2009; Archin et al., 2012). These studies, however,
do not demonstrate that the expanded viral clones are replication
competent and therefore, their contribution to HIV-1 persistence
is unclear. One study, in fact, revealed that of a population
of 75 expanded clones, none of the proviral sequences were
found to be replication competent (Cohn et al., 2015). To
address this, researchers have utilized full-length sequencing
approaches to demonstrate that within the replication competent
proviral pool, 55–60% of viral genomes had identical sequences
in different cells (Lorenzi et al., 2016; Hosmane et al., 2017).
Further, a recent longitudinal analysis revealed that rebound
viremia matched archival provirus that was present prior to ART
initiation and during long term ART suppression (De Scheerder
et al., 2019). Taken together, these studies indicate that cellular
expansions play a key role in the maintenance of the replication
competent viral reservoir in long-term therapy suppressed
patients, providing a clear mechanism for HIV-1 persistence and
a source of rebound viremia following ART cessation.

On the other hand, the contribution of low-level virus
replication in anatomical compartments with sub-optimal drug
concentrations, such as lymph nodes (LN), to LR maintenance is
a topic of continued debate (Fletcher et al., 2014; Fukazawa et al.,
2015; Lorenzo-Redondo et al., 2016; Nolan et al., 2017; Bozzi
et al., 2019). Generally, most studies demonstrate little evidence
of provirus evolution in ART suppressed patients, refuting the
likelihood that ongoing replication is continually seeding the
reservoir (Bailey et al., 2006; Chomont et al., 2009; Josefsson
et al., 2013; Hiener et al., 2017; Lee et al., 2017; Van Zyl et al.,
2017; Bozzi et al., 2019; De Scheerder et al., 2019). Additionally,
ART intensification studies have been unable to reduce low-level
viremia, suggesting that this phenomena is a result of stochastic
activation of latently infected cells, rather than continued
rounds of replication (Dinoso et al., 2009; McMahon et al.,
2010; Anderson et al., 2011; Gandhi et al., 2012). Nevertheless,
evidence from various studies has supported the hypothesis
that ongoing replication takes place notwithstanding suppressive
ART. Intensification of the integrase inhibitor raltegravir, for
example, led to transient increases in 2-LTR circular DNA which,
as products of failed integration events, suggests inhibition of
new infections (Buzón et al., 2010; Hatano et al., 2013; Puertas
et al., 2018). Further, evidence of virus evolution within the
LN of therapy suppressed patients was also suggested as an
indication of ongoing replication (Lorenzo-Redondo et al., 2016).
However, two groups have reported that this is instead an
artifact of rapidly decaying viral species associated with early

antiretroviral treatment (Kearney et al., 2017; Rosenbloom et al.,
2017).

The Hosts of the Reservoir
Critical to the elimination of HIV-1 is the elucidation of the
specific anatomical and cellular reservoirs of HIV-1. Various
differentiation states of CD4T cells appear to play important
roles in the establishment and maintenance of the LR as well
as viral recrudescence following ART interruption (Buzon et al.,
2014; Kulpa and Chomont, 2015; Banga et al., 2016; De Scheerder
et al., 2019; Falcinelli et al., 2019). As discussed above, the
LR is primarily hosted in memory CD4T cells, specifically,
central (TCM), transitional (TTM), effector memory (TEM), and
memory stem (TSCM) cells, although the exact contribution
of each cell type to the replication competent reservoir is
still to be determined (Chomont et al., 2009; Buzon et al.,
2014; Soriano-Sarabia et al., 2014; Banga et al., 2016, 2018;
Kwon et al., 2020). Recently, CD32+ CD4T cells have been
proposed to be a major host of the LR, whereby selection
of this cell population resulted in significant enrichment of
inducible provirus (Descours et al., 2017; Darcis et al., 2020).
Conflicting reports, however, have failed to replicate this finding
and the contribution of CD32+ CD4T cells to HIV-1 persistence
and rebound remains controversial (Abdel-Mohsen et al., 2018;
Badia et al., 2018; Bertagnolli et al., 2018; Martin et al., 2018;
Osuna et al., 2018; Pérez et al., 2018). Nonetheless, the use of
CD32 as a marker of latent infection is a topic of particular
interest and may provide a mechanism by which the LR can be
specifically targeted.

As well as categorizing cells based on their differentiation
state, these cells can also be subdivided based on their functional
properties. Accordingly, specific CD4 functional sub-sets, such as
regulatory T cells (Treg), Th17 cells and follicular T helper cells
(Tfh) are now being characterized in more detail to determine
which cells are the primary contributor to HIV-1 latency. Treg

cells modulate the immune response through regulation of T cell
proliferation and differentiation whilst Th17 cells are critical to
maintaining mucosal immunity via secretion of IL-17 and the
balance of these two cell subsets is therefore critical in providing
effective immune function (Valverde-Villegas et al., 2015). Both
Treg and Th17 cells have been shown to harbor a high proportion
of the LR in therapy suppressed patients and as such, may be
an important target in HIV-1 cure efforts (Tran et al., 2008;
Alvarez et al., 2013; Sun et al., 2015; Christensen-Quick et al.,
2016; Caruso et al., 2019).

Due to the inherent difficulty of sampling from tissues, most
LR studies are based on the analysis of peripheral blood. In
recent years, more research has focused on studying anatomical
reservoirs such as lymph nodes (LN) and gut associated lymphoid
tissue (GALT), as these sites are enriched in activated CD4T
cells (Chun et al., 2008; Di Mascio et al., 2009; Yukl et al., 2010;
Churchill et al., 2016). Follicular T helper cells (Tfh), resident
within the B cell follicle of LN have recently been identified as
a major host of the replication competent viral reservoir (Buzon
et al., 2014; Banga et al., 2016, 2019). These studies demonstrate
the importance of individual anatomical and cellular hosts of the
LR to HIV-1 persistence and highlight that HIV-1 eradication
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studies will need to not only target these sites, but also efficiently
and specifically measure the LR within these compartments.

In addition to lymphocytes, a number of other cells types
such as macrophages and plasmacytoid dendritic cells (pDCs)
are potential hosts of the LR, and despite being infected at a
lower frequency, may play an important role in viral persistence
(Centlivre et al., 2011). Studies suggest that macrophages
infected with HIV-1 are resistant to cell mediated immune
clearance as well as virus induced cell death and may therefore
represent a significant hurdle to cure (Swingler et al., 2007;
Clayton et al., 2018). Further, replication competent provirus has
recently been recovered from macrophages in long-term ART
suppressed patients, indicating that cure strategies targeting only
lymphocytes may not be sufficient (Ganor et al., 2019). Infection
of macrophages with HIV-1 can facilitate entry of virus into
anatomical sanctuary sites such as the brain and central nervous
system (CNS), therefore providing an additional barrier to HIV-1
eradication (Castellano et al., 2017; Wong et al., 2019).

HIV-1 CURE STRATEGIES

Progress Toward a Cure
The progress toward the development of a functional or
sterilizing cure for HIV-1 has been significantly hindered by
the presence of the LR. Currently, two people have been cured
of HIV-1 infection, the so-called Berlin and London patients,
who since receiving allogenic stem cell transplantations from
CCR5132/132 donors, have consistently tested negative for
viral rebound for over 10 and 2 years, respectively, without
ART (Hutter et al., 2009; Gupta et al., 2019). In these cases,
the infected cell pool was significantly depleted during pre-
transplant conditioning and replaced with donor cells that are
resistant to infection with R5-tropic virus due a large deletion
in the CCR5 co-receptor (Liu et al., 1996). Due to the relative
paucity of CCR5132/132 donors and the unique circumstances
predetermining these cases, this type of cure is not feasible for
widespread use, it does however emphasize the basic principle of
HIV-1 cure; silence or eradicate the HIV-1 LR.

Shock and Kill
One of the most prominent approaches to achieve HIV-1 cure
is “shock and kill”; the use of latency reversing agents (LRAs) to
induce viral gene expression and productive infection in latently
infected cells, exposing those cells to immune clearance or the
viral cytopathic effect with the aim of reducing the size of the
LR and limiting viral rebound (Figure 1; Deeks, 2012). A major
challenge in this approach is the ability to achieve broad and
efficient latency reversal without eliciting toxic side effects or
global immune activation. Early latency reversal studies that
utilized interleukin-2 (IL-2) to induce HIV-1 activation produced
a toxic “cytokine storm” response and did not sufficiently
reduce the size of the LR when the dosage was lowered to
safer levels (Prins et al., 1999; Lafeuillade et al., 2001). Instead,
novel LRAs induce HIV-1 gene expression either by activating
cellular transcription factors, such as NF-κB, or by altering the
chromatin structure of the integrated provirus. In their review,
Abner and Jordan extensively list published LRAs and categorize

them into six groups based on their mechanism of action
as follows: histone post-translational modification modulators,
non-histone chromatin modulators, NF-κB stimulators, TLR
agonists, extracellular stimulators, and a miscellaneous category
of unique cellular mechanisms (Abner and Jordan, 2019).

Some of the prominent LRAs currently in use in ongoing
clinical trials include histone deacetylate inhibitors (HDACi)
and histone methyltransferases inhibitors (HMTi), which induce
HIV-1 expression by reversing epigenetic silencing (Lehrman
et al., 2005; Agosto et al., 2007; Archin et al., 2012, 2014a;
Delagrèverie et al., 2016; Aid et al., 2018; Abner and Jordan,
2019). Alternatively, protein kinase C (PKC) agonists (Williams
et al., 2004; Perez et al., 2010; Marsden et al., 2018) and CCR5
agonists (López-Huertas et al., 2017; Madrid-Elena et al., 2018)
stimulate latent HIV-1 by activating NF-κB. The use of toll
like receptor (TLR) agonists as LRAs has also been explored,
as they stimulate immune signaling pathways, leading to HIV-
1 expression (Thibault et al., 2009; Novis et al., 2013; Alvarez-
Carbonell et al., 2017). As an alternative to conventional LRAs,
the use of a polyvalent HIV-1 vaccine has been proposed as
a potential candidate to initiate latency reversal, based on the
rationale that latently infected CD4T cells express HIV-1 specific
T cell receptors (TCR) and are therefore activated by HIV-1
antigen presentation (Pankrac et al., 2017). These molecules have
so far resulted in modest viral activation in vivo, however, two
recent studies have demonstrated potent and persistent latency
reversal in mouse and SIV models in multiple tissues as well
as peripheral blood: one utilized a LRA that activates the non-
canonical NF-κB pathway (Nixon et al., 2020) and the other
combined CD8T cell depletion with IL-15 stimulation (McBrien
et al., 2020). Evidence suggests that the capacity of different LRAs
to activate HIV-1 gene expression is varied amongst different
CD4T cell subsets due to the diversity of the mechanisms that
drive viral latency across these subsets (Grau-Expósito et al.,
2019; Pardons et al., 2019b). Combinations of LRAs could
therefore conceivably elicit more global reactivation by acting
on different mechanisms that enforce viral latency, and synergy
betweenmultiple combinations of LRAs has so far been identified
in vitro (Darcis et al., 2015; Jiang et al., 2015; Albert et al.,
2017; Zaikos et al., 2018; Abner and Jordan, 2019; McBrien
et al., 2020; van der Sluis et al., 2020). Nevertheless, achieving
global reactivation of HIV-1 from latently infected cells is only
part of the challenge; these cells must also be efficiently killed,
either by the viral cytopathic effect or by cytotoxic T lymphocyte
(CTL) mediated immune clearance. Currently, studies that have
achieved latency reversal in vivo have failed to reduce the LR
or increase the time to viral rebound (Xing et al., 2011; Doyon
et al., 2013; Archin et al., 2014a,b, 2017; Elliott et al., 2015),
indicating a deficiency in the clearance of infected cells. This
impairment of the “kill” response may be due, in part, to loss of
HIV-1 specific CTL responses in long-term suppressed patients
(Chomont et al., 2018) that may need to be restored in order to
achieve sufficient clearance of infected cells (Shan et al., 2012).
Importantly, LRAs that activate HIV-1 mRNA expression may
not be sufficient to induce the production of viral proteins or
infectious virions, and therefore the presentation of viral antigens
to CTLs via major histocompatibility complex class 1 (MHC-1)
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FIGURE 1 | Different strategies for HIV-1 cure. From top to bottom. Shock and kill relies on reversal of latency using a range of different compounds including TLR

agonists and HDACis, followed by CTL mediated cell clearance, whilst ART blocks new infections caused by virus release. Lock in and apoptosis utilizes latency

reversal agents, as well as a Pr55Gag inhibitor to block virus budding from the cell. The build-up of viral RNA and proteins leads to apoptosis of the infected cell. Block

and lock approaches aim to reinforce latency mechanisms by using siRNAs or Tat inhibitors to disrupt cellular epigenetic regulators or viral replication, respectively (red

cells represent HIV-1 latently infected cells).

may be limited (Clutton and Jones, 2018; Grau-Expósito et al.,
2019) Additionally, treatment with LRAs may specifically inhibit
the clearance of infected cells, for example, HDACis have been
shown to impair CTL function and the LRA, disulfiram, may
induce an anti-apoptotic state that promotes cell survival despite
productive viral infection (Jones et al., 2014; Knights, 2017).
Interestingly, the recent finding that CD8T depletion could
significantly enhance latency reversal indicates that CD8T cells
may block HIV-1 reactivation by LRAs (McBrien et al., 2020).

These findings emphasize the need for a more specific and
potent “kill” function, such as LRAs that enhance the clearance
of infected cells or combinations of treatment strategies to aid
CTL function. To this end, TLR agonists offer promise due to
their ability to induce a broad anti-viral response, simultaneously
activating virus production and priming immune clearance of
HIV-1 infected cells (Borducchi et al., 2016; Tsai et al., 2017; Lim
et al., 2018; Macedo et al., 2018). To circumvent the need for CTL

mediated cell clearance altogether, an alternative approach is to
block the release of virions and induce apoptosis of the infected
cell (Tateishi et al., 2017). In this method, a novel compound
is used to inhibit HIV-1 Pr55Gag, blocking virus budding and
leading to a build-up of viral products and subsequent apoptosis
of the infected cell (Figure 1; Tateishi et al., 2017).

Block and Lock
Recently, a novel cure strategy has been proposed that, rather
than inducing latency reversal, aims to reinforce latency to
prevent viral rebound following ART interruption (Figure 1;
Mousseau et al., 2015; Méndez et al., 2018). The so called “block
and lock” approach utilizes small interfering RNAs (siRNAs)
to induce transcriptional gene silencing (TGS) by disrupting
the regulation of chromatin structure, thereby preserving the
epigenetic mechanisms that maintain HIV-1 latency (Suzuki
et al., 2008; Ahlenstiel et al., 2015; Méndez et al., 2018).
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Alternatively, latency may be enforced by the targeted inhibition
of the HIV-1 positive regulator, Tat, to lock the viral replication
cycle at transcription (Mousseau et al., 2015). Whilst these
approaches offer a conceptual alternative cure mechanism to
“shock and kill,” their development is still in preliminary stages
and is yet to be tested in human trials.

Gene Editing
The rise to prominence of gene editing tools such as CRISPR-
Cas9 and zinc-finger nucleases (ZFN) has led to increased hope
of a HIV-1 cure by targeting various host or viral genes to
induce host resistance, enforce viral latency or silence integrated
provirus. Gene editing approaches have the advantage of highly
specific gene targeting, so unlike LRAs, can produce the desired
outcome without global physiological impact. Nevertheless, off-
target effects have been observed in a number of studies and
may affect the safety of these methods (Kimberland et al., 2018).
So far, the potential of ZFN targeted editing of host CCR5,
to induce partial genetic resistance to HIV-1, has been tested
in a clinical trial (Tebas et al., 2014). Most research, however,
has focused on the use of CRISPR-Cas9 for its relatively simple
approach and a number of studies have demonstrated its use in
CCR5 or CXCR4 gene editing to induce host cell resistance to
HIV-1 (Wang et al., 2014, 2017; Xu et al., 2017). This approach
may also be used to specifically knockout or attenuate the HIV-
1 provirus, for example, by targeting the LTR to disrupt viral
gene expression or excise the integrated genome (Ebina et al.,
2013; Hu et al., 2014; Kaminski et al., 2016; Lebbink et al.,
2017; Yin et al., 2017; Bella et al., 2018; Wang Q. et al., 2018).
Alternatively, various positions of the latent provirus could be
targeted by CRISPR-Cas9 to induce multiple non-homologous
end joining (NHEJ) associated indels that deactivate the virus
through frame shift mutation (Liao et al., 2015; Ueda et al.,
2016; Wang et al., 2016; Ophinni et al., 2018). Additionally,
recent work has shown that, in combination with a novel drug
delivery system, CRISPR-Cas9 directed editing of proviral DNA
could effectively eliminate HIV-1 infection in mouse models
(Dash et al., 2019). This technology could feasibly be used to
target myriad steps in the viral replication cycle, however, its
major limitation is its delivery, requiring viral vectors or lipid
compounds, as reviewed (Xiao et al., 2019). To achieve clinically
significant effects, the majority, if not all of the LR will need to
be affected, which is a major challenge considering the array of
anatomical compartments which host a significant proportion of
latently infected cells.

Therapeutic Vaccination
Rebound viremia from latently infected cells is detectable within
weeks of ART interruption, though the exact cellular and
anatomical source of this rebound varies between patients (De
Scheerder et al., 2019). Therefore, rather than targeting this
elusive source, therapeutic vaccination aims to eliminate or
significantly diminish rebound viremia by priming the host
immune response to HIV-1, thereby achieving a “functional
cure.” In therapeutic vaccine trials, the vaccine regimen is
administered during sustained ART mediated viral suppression,
followed by a period of ART interruption, during which vaccine

efficacy can be assessed by measuring time to viral rebound, size
of the LR and the profile of the host immune response.

Therapeutic vaccines may aim to elicit narrow CTL responses
to specific HIV-1 proteins, such as Gag, though the success of
these approaches may be impeded by the re-emergence of CTL
escape mutants that were established during primary infection
(Schooley et al., 2010; Pollard et al., 2014; Deng et al., 2015).
Alternatively, vaccines designed to generate a broader anti-HIV-
1 immune response may be more effective. To this end, several
studies have used a dendritic cell (DC) based vaccine, in which
autologous DCs are pulsed with inactivated HIV-1, or transfected
to produce viral proteins, with the aim of generating DCs that can
efficiently stimulate T cell responses (García et al., 2011; Gandhi
et al., 2016; Gay et al., 2017b). Further, a vaccine that expresses
multiple HIV-1 proteins may be used to induce a multivalent
immune response, and previous studies combining such vaccines
with IL-2 to boost T cell survival have demonstrated moderate
success, with increased time to viral rebound associated with
HIV-1 specific T cell responses in vaccinated participants (Lévy
et al., 2005, 2006). Of note, a recent report has demonstrated
continual decreases in the proviral reservoir as well as recovery of
immune function following Tat based immunization, signifying
that therapeutic vaccination can improve the immune response
to HIV-1 (Sgadari et al., 2019).

Despite the promise of vaccine-based approaches, no study
has yet induced sustained viral remission in vaccinated patients
and in their recent analysis, Davenport et al. suggest that,
even with highly efficacious vaccines that block 80% of viral
reactivations, rebound viremia would likely emerge within 5
weeks following ART interruption (Davenport et al., 2019). This
suggests that therapeutic vaccination alone may not be sufficient
to cure HIV-1 infection and that instead, combinations of cure
strategies may be more effective. For example, considering that
“shock and kill” strategies have so far failed to achievemeaningful
reduction in the LR, combining these strategies with therapeutic
vaccination may increase the efficacy of each treatment. Indeed,
this principle was tested in a clinical trial where Gag based
vaccination was followed by HDCAi latency reversal and though
this study was able to significantly reduce the LR, rebound
viremia was measured within 2 weeks (Leth et al., 2016; Tapia
et al., 2017).

Novel Cure Strategies
Several novel approaches to induce sustained viral remission
in treated patients have been proposed. One such method
utilizes the relatively new discovery that exhausted CD4T cells
expressing immune checkpoint (IC) makers such as PD1 and
CTLA-4, are a major reservoir of replication competent provirus
(Banga et al., 2016; Fromentin et al., 2016; Castellano et al.,
2017; McGary et al., 2017). IC markers are inhibitory receptors
expressed by T cells in response to chronic viral infection
to attenuate their effector function and limit tissue damage
associated with long term immune activation (Boyer and Palmer,
2018). Cells expressing these markers, that are enriched in latent
provirus, could therefore be specifically targeted for drug delivery
or clearance using PD1, CTLA-4, or PD-L1 antibodies (Pantaleo
and Levy, 2016; Gay et al., 2017a; Boyer and Palmer, 2018). To
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this end, several studies have demonstrated that IC blockade
can inhibit the establishment of latency in vitro and aid latency
reversal in vivo, revealing its potential as an HIV-1 therapeutic
(McManamy et al., 2014; Gay et al., 2017a; Evans et al., 2018;
Fromentin et al., 2019; van der Sluis et al., 2020).

Alternatively, following the success of chimeric antigen
receptor T cells (CAR-T) in cancer therapy, their potential to
treat HIV-1 is the subject of ongoing research. CAR-T cells
are autologous T cells genetically engineered to express disease
specific antibodies linked to an intracellular T cell receptor
domain; therefore, when re-administered to the patient can direct
the CTL response to cells expressing the disease epitope (Wagner,
2018). As such, this technology could be used to direct CTL
mediated clearance of HIV-1 infected cells, aiding control of
the virus in the absence of therapy. Currently, several studies
using anti-HIV-1 CAR-T cells have demonstrated virus-clearing
function in vitro (Sahu et al., 2013; Liu et al., 2015; Ali et al.,
2016; Hale et al., 2017; Sung et al., 2018). More recently, a multi-
specific CAR-T cell demonstrated potent clearance of HIV-1
infected cells in a humanized mouse model (Anthony-Gonda
et al., 2019). The use of CAR-T cells is therefore an exciting
new prospect in HIV-1 therapeutics andmay work synergistically
with LRAs to add more killing power into the “shock and
kill” approach.

As discussed earlier, myeloid cells such as macrophages
are known to support virus replication and may represent
an additional barrier to HIV-1 cure. The use of “shock and
kill” may not be effective against these cellular reservoir as
they are refractory to CTL mediated immune clearance and
the viral cytopathic effect (Swingler et al., 2007; Clayton
et al., 2018). To address this, researchers have demonstrated
differential expression of an anti-apoptotic, long non-coding
RNA (lncRNA) that promotes survival of HIV-1 infected
macrophages (Boliar et al., 2019). This study also showed
that inhibition of this lncRNA with small interfering RNAs
(siRNAs) could induce apoptosis in HIV-1 infectedmacrophages,
indicating the potential of targeting lncRNAs as a novel
therapeutic approach to aid the clearance of the LR in all cell
types (Boliar et al., 2019).

ASSAYS TO MEASURE THE SUCCESS OF
HIV-1 CURE

Viral Outgrowth Assay
Assessing the efficacy of HIV-1 cure and vaccine trials requires
assays that reproducibly measure different virological markers
to estimate the size of the LR with limited error. This is
inherently challenging because of the relatively low abundance
of latently infected cells and the heterogeneity of the HIV-
1 genome, though several assays have been developed to this
end (Table 1). Additionally, very few proviruses can generate
infectious virions following activation and it is difficult to
quantify specifically the replication competent reservoir. The
standard assay used to measure intact provirus is the functional
viral outgrowth assay (VOA) (Figure 2; Finzi et al., 1997,
1999; Siliciano and Siliciano, 2005). In this assay, limiting

dilutions of CD4T cells are stimulated to reverse latency and
drive HIV-1 expression from integrated provirus. Activation of
CD4T cells is most commonly achieved via the addition of
phytohemagglutinin (PHA) and CD8T cell depleted PBMCs or
by incubation with anti-CD28/CD3 antibodies (Wong et al.,
1997; Finzi et al., 1999; Siliciano and Siliciano, 2005; Laird
et al., 2013; Bruner et al., 2015). Following activation, viral
outgrowth is supported by incubation with CD4T cells from
HIV-1 negative donors for 2–3 weeks and measured via
the detection of p24 capsid antigen ELISA. Cell positive for
exponential viral replication are quantified and the frequency of
cells latently infected with intact provirus is determined based on
Poisson distribution and expressed as infectious units per million
(IUPM) cells (Siliciano and Siliciano, 2005; Rosenbloom et al.,
2015).

The original VOA provides high specificity for intact provirus
but is limited by the large sample volume required, high
resource cost and is susceptible to donor variation due to
virus propagation in primary CD4T cells (Bruner et al., 2015;
Massanella and Richman, 2016). Several improvements of the
VOA have attempted to overcome these limitations, including
the use of continuous cell lines to improve reproducibility (Laird
et al., 2013; Fun et al., 2017; Badia et al., 2018; Massanella et al.,
2018) the use of RT PCR to detect HIV-1 RNA reducing time
to read out (Laird et al., 2013) or utilizing improved p24 ELISA
to increase sensitivity (Passaes et al., 2017). Recently, a novel
improvement of the VOA has been described in which CD4T
cells are differentiated into effector cells to promote expression
of HIV-1, enhancing cell activation and thereby increasing the
sensitivity of the assay (Wonderlich et al., 2019). Additionally,
an in vivo VOA, whereby humanized mouse models are used to
support viral outgrowth, has been shown to increase sensitivity
and detect virus replication in samples that were previously
negative when quantified using traditional VOA (Metcalf Pate
et al., 2015; Charlins et al., 2017).

The ability to distinguish intact and defective provirus has
made the VOA assay the gold standard method to measure the
LR, thought this assay underestimates the size of the intact LR
by ∼25 to 60-fold (Ho et al., 2013; Bruner et al., 2016). Genetic
characterization of cells negative for viral outgrowth has revealed
the presence of intact provirus, within active transcription units
that is capable of generating replication competent virions
following successive rounds of PHA stimulation (Ho et al., 2013;
Hosmane et al., 2017). The mechanism underpinning the initial
failure of these cells to generate viral outgrowth is likely the
result of the stochastic nature of virus activation (Weinberger
and Weinberger, 2013), nevertheless, their presence indicates an
additional hurdle in both eradicating the LR and assessing the
efficacy of eradication strategies. Of note, an extensive analysis
of VOA performance using the same samples across different
labs has indicated significant variability of results both within
batches and between labs that is more pronounced in lower
IUPM samples (Rosenbloom et al., 2019). This finding may
have significant implications for HIV-1 cure research, where
small differences in the replication competent reservoir must be
accurately and reproducibly measured to assess the efficacy of
therapeutic interventions.
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TABLE 1 | Different methods used to measure the latent reservoir.

Assay Advantages Disadvantages Examples

Viral outgrowth

assay (VOA)

Stimulated patient CD4T cells in

limiting dilution grown with donor

cells and outgrowth measured

-Only measures replication

competent provirus

-Time consuming -Requires

large volumes of patient material

-Underestimate size of

the reservoir

Finzi et al., 1997

Siliciano and Siliciano, 2005

Laird et al., 2013

Bruner et al., 2015

Fun et al., 2017

Badia et al., 2018

Massanella et al., 2018

Wonderlich et al., 2019

Total HIV-1

DNA qPCR

Measures proviral DNA from cell

extracts using primers/probes in

conserved regions, primarily

within the LTR

-Fast time from sample collection

to result

-Relatively inexpensive

-Small sample volume

-Can be used to detect different

DNA forms (2-LTR, integrated)

-Cannot distinguish between

intact and defective provirus so

overestimates the reservoir

-Quantification relative to a

standard so prone to bias -Highly

specific and prone to error from

primer/template mismatches

Kostrikis et al., 2002

Beloukas et al., 2009

van der Sluis et al., 2013

Munir et al., 2013

Casabianca et al., 2014

Rouzioux et al., 2014

Vandergeeten et al., 2014

Thomas et al., 2019

Integrated

HIV-1 DNA

Specifically measures only

integrated provirus using a primer

specific to HIV-1 and to Alu

sequences randomly dispersed in

the human genome

-Measures the LR by excluding

unintegrated DNA forms

-Fast and relatively inexpensive

-Distances between Alu and

HIV-1 means ∼10% of

integrated provirus is measured

-Heterogeneous nature of

integration sites means standard

design is complex

Brussel et al., 2005

Yu et al., 2008

Liszewski et al., 2009

Brady et al., 2013

Agosto et al., 2007

De Spiegelaere et al., 2014

Vandergeeten et al., 2014

Lada et al., 2018

Digital PCR Measures frequency of proviral

DNA (integrated, total or circular)

by partitioning sample into limiting

dilutions and assigning partitions

either positive or negative

-Eliminates the need for a

standard and so reduced bias

(especially useful for integrated

and 2-LTR circular DNA

quantifications)

-More expensive and less widely

available than standard

qPCR methods

-Suffers from false-positives

inherent to the method

-Setting thresholds to determine

distinguish truly positive and

negative partitions is difficult

De Spiegelaere et al., 2014

Henrich et al., 2012

Strain et al., 2013

Malatinkova et al., 2015

Henrich et al., 2017

Lada et al., 2018

Cell associated

RNA

Measures all or different forms of

cell associated RNA with the

rationale that it is more likely to

measure replication competent

provirus than defective

-More sensitivity for replication

competent provirus

-Cannot distinguish transcripts

that arise from replication

competent cells and defective

cells

Archin et al., 2012

Pasternak et al., 2012

Shan et al., 2013

Cillo et al., 2014

Yucha et al., 2017

Massanella et al., 2018

Yukl et al., 2018

TILDA Measures multiply spliced tat/rev

transcripts following stimulation of

CD4T cells plated in limiting

dilution

-Higher sensitivity for replication

competent provirus

-Faster, cheaper and less

resources needed than VOA

Measured transcripts may arise

from defective proviral genomes

Procopio et al., 2015

Frank et al., 2019

Bertoldi et al., 2020

ISH and flow

cytometry

Measures mRNA and viral

proteins measured following T cell

activation

-Higher sensitivity for replication

competent provirus

-Simultaneously phenotype the

cells that host the reservoir

-Does not confirm that RNA or

proteins produced arise from

replication competent provirus

Graf et al., 2013

Baxter et al., 2016, 2017

Martrus et al., 2016

Grau-Expósito et al., 2017

Deleage et al., 2018

Pardons et al., 2019a

IPDA Multiplex digital PCR based assay

to measure intact provirus based

on the presence of two regions

that are frequently mutated in the

viral genome

-Enables distinction between

intact and defective provirus

-Faster readout than viral

outgrowth assay

-Does not screen the whole

genome and may therefore miss

other deleterious mutations

Bruner et al., 2019

Q4PCR Multiplex qPCR assay to assign

replication competency based on

presence of 4 genomic regions,

confirmed by next generation

sequencing if 2/4 are present

-Able to accurately distinguish

intact and defective provirus

-Filters out most defective

provirus before using expensive

sequencing

-Relatively expensive method Gaebler et al., 2019

The advantages and disadvantages of each approach as well as prominent examples.
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FIGURE 2 | Comparison of assays that measure replication competent provirus specifically or all provirus. Cells for analysis come from either peripheral blood or from

anatomical compartments. From left to right: following DNA extraction, multiple HIV-1 DNA forms can be assayed by PCR based on the primer position. For

integrated HIV-1 DNA assays, a primer targeting repeated Alu sequences within the human genome are paired with a HIV-1 specific primer. Total HIV-1 DNA can be

measured by primers specific for regions within the viral genome, this is most commonly performed with primers targeting conserved regions within the LTR.

Non-integrated HIV-1 DNA forms such as 2-LTR and 1-LTR circular DNA can be measured by primers specific that will amplify junctions that are only present in these

DNA forms. The intact proviral DNA assay (IPDA) uses primers within the packaging signal (9) and env to determine replication competence. This assay also uses

primers targeting regions within the human genome to measure cell numbers and correct for DNA shearing. Replication competence is determined when both

sequences are present from ddPCR. The quadruplex PCR (Q4PCR) uses primers within 9, env, gag, and pol to quantify provirus in limiting dilutions, and NGS is uses

to confirm replication competence in reactions with 2/4 of the sequences present. Cell based assays use purified cell samples to measure virus or RNA production

following stimulation. The viral outgrowth assay (VOA) uses limiting dilutions of CD4T cells that are stimulated with PMA and irradiated PBMCs to induce viral gene

expression; viral outgrowth is supported by incubation with HIV-1 negative donor cells and measured by p24 ELISA, viral RNA or reverse transcriptase activity. Cell

associated (CA) RNA or tat/rev induced limiting dilution assays measure viral RNAs following HIV-1 activation, reducing time to read out when compared to the VOA.

Assays in blue shaded area are not specific for cells infected with replication competent provirus because viral DNA is measured indiscriminately. Assays in shaded

orange area are more specific for replication competent provirus, or in the case of the VOA, only measure replication competent provirus.

qPCR Based HIV-1 Quantification
Quantification of cell associated DNA by PCR provides a fast
and relatively inexpensive marker to measure the size of the
viral reservoir. HIV-1 DNA quantification methods rely on
amplification of short genomic regions and so cannot distinguish
intact and defective provirus and therefore vastly overestimate
the size of the LR (Figure 2; Eriksson et al., 2013). Despite
this limitation, HIV-1 DNA quantification has been shown to
predict viral rebound (Williams et al., 2014) and offers the
potential to identify different DNA forms, such as integrated
HIV-1 DNA, non-integrated HIV-1 DNA (2-LTR and 1-LTR
circular forms) or both (total HIV-1 DNA) (Mexas et al., 2012;
Rouzioux and Avettand-Fenoël, 2018). Several factors affect the
specificity, accuracy and reproducibly of HIV-1 DNA assays
and as there is no standard method, meaningful comparison
between different studies is limited. Currently, most HIV-1 DNA
quantification assays utilize real-time quantitative PCR (qPCR)

to measure the abundance of HIV-1 DNA relative to a calibration
standard derived from cell lines harboring HIV-1 provirus. Cell
lines such as 8E5 and ACH2 are widely used as the source of
calibration DNA, though recent work has demonstrated that
HIV-1 integration into these cell lines is unstable, likely due
to ongoing replication, and their use may confound accurate
quantification and reproducibility between labs (Sunshine et al.,
2016; Wilburn et al., 2016; Busby et al., 2017; Symons et al., 2017;
Rutsaert et al., 2018b; Thomas et al., 2019). Recent analysis of
HIV-1 quantification methods has demonstrated the stability of
HIV-1 integration into J-Lat 10.6, a Jurkat cell latently infected
with full length, env deficient provirus, and suggested the use of
this cell line as the gold standard for HIV-1 DNA quantification
by qPCR (Sunshine et al., 2016; Thomas et al., 2019).

Another key determinant of the accuracy and specificity
of HIV-1 DNA quantification assays is the genomic location
at which the primers and probes anneal. The vast genetic
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variation of HIV-1 both within patients and across the epidemic
necessitates appropriate selection of oligonucleotides that can
efficiently amplify patient samples from a variety of sub-types
and circulating recombinant forms (CRFs). Prominent assays
have targeted various, highly conserved regions in the HIV-1
genome including gag (Kabamba-Mukadi et al., 2005; Kondo
et al., 2009; Li et al., 2010) and pol (Désiré et al., 2001; Vitone
et al., 2005). Nevertheless, the LTR region has been increasingly
favored for HIV-1 DNA quantification because it is both highly
conserved and facilitates the distinction between all of the
various HIV-1 DNA forms (Kostrikis et al., 2002; Beloukas
et al., 2009; Munir et al., 2013; van der Sluis et al., 2013;
Casabianca et al., 2014; Rouzioux et al., 2014; Vandergeeten et al.,
2014). Recently, an extensive in silico analysis of published HIV-
1 DNA assays revealed substantial variation between different
methods, especially when comparing quantification of different
HIV-1 subtypes, and indicated the best performing assays for
quantification of diverse patient cohorts (Rutsaert et al., 2018b).

As discussed above, LTR based DNA assays can distinguish
different HIV-1 DNA forms. During HIV-1 replication, linear
unintegrated cDNA accumulates in the cell as well as abortive
DNA forms such as 1-LTR and 2-LTR circular DNA, which
are products of recombination events and interaction with host
DNA repair mechanisms (Sloan and Wainberg, 2011; Munir
et al., 2013). Because 2-LTR circular forms arise from failed
integration, they are considered markers of recent infection
and their quantification may therefore provide insight into the
replication competent reservoir (Buzón et al., 2010; Hatano et al.,
2013; Kiselinova et al., 2016). Conflicting evidence, however,
suggests that these DNA forms may be persistent for long periods
in latently infected cells and the clinical relevance of 2-LTR
quantification remains controversial (Pierson et al., 2002).

To exclude unintegrated DNA forms from quantification, it is
possible to amplify specifically integrated provirus by targeting
an endogenous Alu sequence that are found randomly across
the human genome (Figure 2). Generally, Alu PCR assays utilize
a nested approach in which the junction between an HIV-
1 sequence and a human Alu sequence is amplified, followed
by qPCR with primers specific to HIV-1 (Brussel et al., 2005;
Agosto et al., 2007; Liszewski et al., 2009; Brady et al., 2013; De
Spiegelaere et al., 2014; Vandergeeten et al., 2014; Ruggiero et al.,
2017). Alu PCR remains the most common approach to measure
integrated HIV-1 DNA, though alternative methods have been
developed as reviewed here (Liszewski et al., 2009; Ruggiero
et al., 2017). Whilst the Alu PCR assay has been shown to
correlate well with the VOA (Eriksson et al., 2013), it is hindered
by limitations in accuracy and sensitivity that are inherent to
the method. The random dispersion of human Alu sequences,
as well as the heterogeneity of HIV-1 integration sites, means
that the sequence length between the Alu and HIV-1 specific
primers is unknown and variable; presenting several technical
challenges that may confound accurate quantification of proviral
DNA (Brady et al., 2013). Cell lines used as quantification
standards, for example, are generally derived from clonal, latently
infected cells and therefore do not represent the random nature
of integration within a patient sample (Ruggiero et al., 2017).
To overcome this issue, researchers have developed a calibration

standard containing multiple integration sites to resemble more
closely the sample population (Agosto et al., 2007). Alternatively,
the reliance on a standard may be circumvented by the use of
repetitive sampling and absolute quantification based on Poisson
distribution (De Spiegelaere et al., 2014). Additionally, only
10% of integrated HIV-1 is detected by this assay because 90%
of integrated provirus is too far from an Alu sequence to be
exponentially amplified and a correction factor must therefore
be applied to the quantification (Agosto et al., 2007; Yu et al.,
2008; Liszewski et al., 2009; De Spiegelaere et al., 2014). Accuracy
is further limited by linear amplification of unintegrated HIV-
1 DNA, though the effect of this can be partially negated by
simultaneous pre-amplification with only the HIV-1 specific
primer to enable distinction between integrated and unintegrated
DNA (O’Doherty et al., 2002; Yu et al., 2008) or by pulsed-field
gel electrophoresis (PFGE) prior to amplification to remove low
molecular weight DNA (Lada et al., 2018). Despite its limitations
and owing to the various improvements made, quantification
integrated HIV-1 via Alu PCR is a powerful and high-throughput
method to quantify the LR. An improved Alu PCR assay, where
the HIV-1 LTR primer is closer to the integration junction
and therefore detects more integration events, is currently in
development (Personal Communication).

Digital Droplet PCR Based HIV-1
Quantification
As discussed above, the selection of an appropriate calibration
standard is required for quantification of HIV-1 DNA, however,
quantification relative to a standard is inherently biased.
Amplification efficiencies between the standard and the sample
must be equal to limit bias when quantifying relative to a
standard curve (Rutsaert et al., 2018a). Amplification efficiency is
affected by the DNA input per reaction, the presence of inhibitory
contaminants and, crucially for HIV-1 quantification, recent
work has shown that small mismatches between the primer
and target sequence significantly impair sample quantification
(Rutsaert et al., 2018b; Thomas et al., 2019). Digital droplet
PCR (ddPCR) platforms mitigate these issues by facilitating
absolute quantification of a sample and as such, are becoming
increasingly popular in HIV-1 research and clinical trials. In
ddPCR, samples are randomly divided into multiple partitions
and separately amplified, after which each partition is deemed
positive or negative based on fluorescence above or below a
threshold and absolute quantification is determined based on
Poisson distribution (Hindson et al., 2011). In principle, the use
of ddPCR to eliminate the need for a standard reduces these
biases because each partition only needs to accumulate enough
fluorescence to be deemed positive, so factors that reduce PCR
efficiency should not impair the accuracy of quantification. The
major limitation of ddPCR, however, is the difficulty to accurately
determine the threshold above which a partition can be deemed
positive (Rutsaert et al., 2018a). Partitions in which intermediate
fluorescence is observed may be incorrectly assigned as positive
or negative if the threshold selection is not sufficiently robust
and a number of approaches to determine the threshold have
been developed to overcome this issue, reviewed in detail here
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(Rutsaert et al., 2018a). Additionally, even with robust threshold
selection, ddPCR is known to suffer from a high frequency of
false-positive results (Henrich et al., 2012; Strain et al., 2013;
Kiselinova et al., 2014; Bosman et al., 2015; Trypsteen et al., 2015).
False-positives are likely the result of combined droplets resulting
in increased fluorescence or from DNA contamination that is
difficult to distinguish from truly positive samples (Henrich et al.,
2012; Strain et al., 2013; Kiselinova et al., 2014; Bosman et al.,
2015; Trypsteen et al., 2015). Despite these limitations, the use of
ddPCR has proven an invaluable tool for measuring HIV-1 DNA
and has been used successfully in various studies (De Spiegelaere
et al., 2014; Malatinkova et al., 2015; Henrich et al., 2017).

Bridging the Gap Between Culture and
PCR Based Assays
Given that the majority of HIV-1 DNA is replication deficient,
PCR based assays vastly overestimate the size of the latent
reservoir (Eriksson et al., 2013; Ho et al., 2013). Conversely, the
VOA is known to underestimate the size of the LR due to the
presence of intact non-induced proviruses and so both methods
may confound the assessment of treatment and cure strategies
(Eriksson et al., 2013; Ho et al., 2013). Several assays have been
developed with the aim to bridge the gap between these two types
of analyses by providing a fast and relatively inexpensive method
to specifically quantify only replication competent provirus. In
a method conceptually similar to the VOA, cell associated (CA)
HIV-1 RNA quantification following CD4T cell activation has
been used to measure the size of the inducible LR (Figure 2;
Archin et al., 2012; Pasternak et al., 2012; Shan et al., 2013; Cillo
et al., 2014; Yucha et al., 2017; Massanella et al., 2018; Yukl et al.,
2018). The measurement of CA RNA provides the opportunity
to quantify different transcripts and therefore, different stages
of the replication cycle that may be used as a surrogate for
measuring the size of the intact LR (Cillo et al., 2014; Massanella
et al., 2018; Pasternak and Berkhout, 2018; Yukl et al., 2018).
However, cells harboring defective provirus are still capable of
producing HIV-1mRNA following T cell activation despite being
unable to generate infectious virions, and so these methods
are prone to false positive results (Hermankova et al., 2003;
Pasternak et al., 2009; Schmid et al., 2010; Cillo et al., 2014).
By measuring cell-free HIV-1 RNA from culture supernatant,
indicative of virus release from cells, as well as CA RNA, it is
possible to more closely predict replication competence (Cillo
et al., 2014; Massanella et al., 2018). In addition, a novel assay
has addressed this issue by specifically measuring tat/revmultiply
spliced mRNAs with the rationale that these transcripts are
rarely produced in cells with defective HIV-1 provirus (Figure 2;
Procopio et al., 2015; Frank et al., 2019; Bertoldi et al., 2020).
The tat/rev induced limiting dilution assay (TILDA) relies on
measurement of tat/rev transcripts from cells plated in limiting
dilution, following activation with phorbol 12-myristate 13-
acetate (PMA) and ionomycin (Procopio et al., 2015). Results
obtained from TILDA quantification correlated well with HIV-1
DNA quantification andmeasures the LR close to levels predicted
by Ho et al. (2013) and Procopio et al. (2015). This method,
however, did not significantly correlate with results obtained

from VOA and is still susceptible to overestimating the size of
the LR due to the possibility that these transcripts arise from cells
with defective HIV-1 genomes (Procopio et al., 2015).

Other groups have sought to quantify the replication
competent reservoir using in situ hybridization (ISH) and flow
cytometry to measure CA RNA or capsid p24 protein (Graf
et al., 2013; Baxter et al., 2016, 2017; Martrus et al., 2016; Grau-
Expósito et al., 2017; Deleage et al., 2018; Pardons et al., 2019a).
By combining flow cytometry based quantification of CA RNA
and p24 capsid protein, it is possible to measure provirus that is
capable of transcription as well as protein production, providing
a close surrogate for the measurement of the intact LR (Baxter
et al., 2016, 2017, 2018; Martrus et al., 2016; Grau-Expósito et al.,
2017; Puray-Chavez et al., 2017). An additional benefit of flow
cytometry based approaches is the opportunity to simultaneously
infer phenotypic characteristics of the cell populations that host
the replication competent reservoir, as reviewed (Baxter et al.,
2018).

More recently, a novel assay known as the intact proviral
DNA assay (IPDA) has demonstrated the use of a multiplexed
ddPCR approach to measure the size of the intact LR based
on the presence of regions that are frequently mutated in
defective genomes (Figure 2; Bruner et al., 2019). In this assay,
intact and defective proviruses are separately quantified by
amplifying regions within the HIV-1 packaging signal (9)
and env and the presence or absence of these regions is
sufficient to distinguish 90% of defective genomes (Bruner et al.,
2019). By determining replication competence based on DNA
composition, this assay is not dependent on T cell stimulation
and is therefore not impaired by the presence of non-inducible,
intact proviruses that contribute to LR underestimation in the
VOA (Bruner et al., 2015, 2016). Despite this, the IPDA is
still only able to distinguish 90% of defective proviruses, with
mutations that occur in non-amplified regions counting toward
the quantification. Additionally, like all PCR based HIV-1 assays,
primer mismatches in target regions may result in false negative
quantifications. Similarly, Gaebler et al., recently described an
approach (Q4PCR) that uses multiplexed qPCR measurement
of four proviral regions; gag, pol, env, and 9 , followed by
next generation sequencing (NGS) of samples that are positive
for two out of four regions to confirm replication competence
(Figure 2; Gaebler et al., 2019). In comparison with IPDA, the
Q4PCR method offers increased accuracy to predict replication
competence due to a higher percentage of the viral genome being
interrogated and likely positive samples being validated via NGS
(Gaebler et al., 2019). Nevertheless, this increased sensitivity does
come with the increased cost and lower throughput associated
with NGS.

Previously, full-length sequencing of proviral DNA has
provided invaluable insight into the composition of the LR (Ho
et al., 2013) but the methods used are time consuming and
technically challenging. The advent of various NGS technologies,
however, has also paved the way for novel methods to
measure the HIV-1 LR with relative ease and high throughput
(Lambrechts et al., 2020). The use of Illumina based sequencing
techniques has so far been used in LR studies to measure full-
length, individual proviral sequences, helping to elucidate the
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driving force of LR persistence and latency maintenance (Hiener
et al., 2017; Lee et al., 2017; Einkauf et al., 2019). Further,
the emergence of NGS technologies that can sequence long-
reads, such as PacBio’s SMRT Sequencing and Oxford Nanopore’s
MinION, may be employed to measure full-length proviral
genomes or variant transcript forms from patient samples and
are likely to lead to advances in our understanding of the LR.

CONCLUSIONS

The use of antiretroviral therapy has succeeded in reducing
HIV-1 mortality but cannot eliminate the virus due to the
persistent and stable LR. The global disease burden, equating
to ∼36 million infected individuals of which ∼22 million have
access to ART, warrants the continued search for a therapeutic
approach that can either eliminate the virus or induce sustained
viral remission in the absence of therapy (Sung et al., 2018).
Recent advances in our understanding of the LR, its cellular
and anatomical hosts and the mechanisms that facilitate its
long-term persistence have contributed to renewed hope of a
curative intervention for HIV-1 infection. Generally, an HIV-1
cure should eliminate the possibility of viral rebound following
treatment interruption, and this relies on drastic reduction in
the LR and efficient immune mediated clearance of HIV-1
infected cells.

Currently, several approaches for HIV-1 cure have been
proposed and trialed to varying degrees of success. One of
the most prominent cure strategies, “shock and kill,” has
demonstrated virus reactivation in vivo, but has been unable
to lead to a meaningful increase in the time to viral rebound;

suggesting improvement is required to aid the “killing” of
infected cells. Alternative approaches, such as therapeutic
vaccination, aim to prime the immune response to HIV-1
infection with the rationale that upon treatment interruption,
immune mediated control of the virus will be improved. Several
new technologies and approaches, such as immune checkpoint
inhibitors, gene editing and CAR-T cells may offer an alternative
method for cure, though currently their assessment in clinical
trials is limited. An added complication in the search for an
HIV-1 cure is the difficulty in accurately measuring the success
of such trials. The inherent variability of the HIV-1 genome,
the low frequency of latently infected cells as well as the
abundance of defective provirus contribute to the complexity of
LR quantification.

Rather than an improvement in the current strategies leading
to a cure, it is likely that synergistic combinations of different
approaches, such as the use of LRAs following therapeutic
vaccination, will lead to more drastic reductions in the LR and
may aid the ultimate goal of long term ART free viral remission.
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