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The identification of 16S rDNA biomarkers from respiratory samples to describe the

continuum of clinical disease states within persons having cystic fibrosis (CF) has

remained elusive. We sought to combine 16S, metagenomics, and metabolomics

data to describe multiple transitions between clinical disease states in 14 samples

collected over a 12-month period in a single person with CF. We hypothesized that

each clinical disease state would have a unique combination of bacterial genera and

volatile metabolites as a potential signature that could be utilized as a biomarker of

clinical disease state. Taxonomy identified by 16S sequencing corroborated clinical

culture results, with the majority of the 109 PCR amplicons belonging to the bacteria

grown in clinical cultures (Escherichia coli and Staphylococcus aureus). While alpha

diversity measures fluctuated across disease states, no significant trends were present.

Principle coordinates analysis showed that treatment samples trended toward a different

community composition than baseline and exacerbation samples. This was driven by the

phylum Bacteroidetes (less abundant in treatment, log2 fold difference−3.29, p= 0.015)

and the genus Stenotrophomonas (more abundant in treatment, log2 fold difference 6.26,

p = 0.003). Across all sputum samples, 466 distinct volatile metabolites were identified

with total intensity varying across clinical disease state. Baseline and exacerbation

samples were rather uniform in chemical composition and similar to one another, while

treatment samples were highly variable and differed from the other two disease states.

When utilizing a combination of the microbiome and metabolome data, we observed

associations between samples dominated Staphylococcus and Escherichia and higher

relative abundances of alcohols, while samples dominated by Achromobacter correlated

with a metabolomics shift toward more oxidized volatiles. However, the microbiome and

metabolome data were not tightly correlated; examining both the metagenomics and
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metabolomics allows for more context to examine changes across clinical disease states.

In our study, combining the sputum microbiome and metabolome data revealed stability

in the sputum composition through the first exacerbation and treatment episode, and

into the second exacerbation. However, the second treatment ushered in a prolonged

period of instability, which after three additional exacerbations and treatments culminated

in a new lung microbiome and metabolome.

Keywords: cystic fibrosis, microbiome, metabolome, pulmonary medicine, pediatrics

INTRODUCTION

Cystic fibrosis (CF) is a genetic disease affectingmore than 30,000
people in the United States, associated with both intermittent
and chronic suppurative lung infections (Wagener et al., 2013;
MacKenzie et al., 2014). For the past 15 years, 16S rDNA
amplicon sequencing has been a commonly used research
methodology to describe the microbiota within the CF airway
(Rogers et al., 2004; Harris et al., 2007; Guss et al., 2011).
While most studies are cross-sectional, a small number of
longitudinal studies have been performed to determine if unique
microbial signatures correspond with clinical state before and
after the onset of a pulmonary exacerbation, a clinical disease
state associated with increased respiratory symptoms, increased
airway inflammation, and decreased pulmonary function (Zhao
et al., 2012; Carmody et al., 2013; Zemanick et al., 2013). These
longitudinal studies have revealed that each CF subject harbors
a distinct microbial community, making broad interpretations
across persons with CF that could be used in clinical practice
elusive (Caverly and LiPuma, 2018). More recent studies
have employed unbiased whole genome shotgun sequencing
techniques, which can provide more granular information,
including species, and strain specificity (Moran Losada et al.,
2014; Bacci et al., 2017; Feigelman et al., 2017; Hahn et al., 2018a).

Current clinical practice relies on culturing pathogens from
sputum samples, however, culture-independent approaches such
as the 16S rDNA amplicon sequencing described above have
revealed that CF airways are dominated by bacteria from
two main populations: slow-growing opportunistic pathogens
(e.g., Pseudomonas aeruginosa, Stenotrophomonas maltophilia,
Burkholderia cepacia and others), and anaerobes common to
the oral cavity that migrate to the airways in the context
of poor mucociliary clearance (e.g., Streptococcus spp., Rothia
mucilaginosa and others). Metabolomics offers another culture
independent approach to profile clinical samples. A few studies
investigating different classes of metabolites from CF breath
and sputum have emerged, although it is difficult to determine
whether the molecules have human or microbial origin.
One study using parallel breath metabolomics and shotgun
sequencing found that a microbial fermentation product, 2,3-
butanedione, was associated with Streptococcus spp. and Rothia
mucilaginosa, and became less abundant after treatment for
pulmonary exacerbation (Whiteson et al., 2014). These data, in
combination with studies that are identifying volatile metabolite
signatures associated with common CF pathogens in culture
(Bean et al., 2016; Bos et al., 2016; Phan et al., 2017; Nasir

et al., 2018) and the host’s immune response to infection
(Bean et al., 2015), suggest that there may be changes in
the volatile metabolome of an exacerbation that correspond
to microbiome changes. The volatile metabolome may be able
to complement genomics as an additional culture-independent
method for identifying exacerbation onset and recovery, and/or
understanding the root causes of these events.

These factors influenced our initial motivation to identify
associations between bacterial genera and volatile metabolites
within CF sputum that tracked with variations in clinical state
(baseline, exacerbation, and treatment). The objective of this
study was to identify the level of intra-person variability between
clinical states by deeply examining a single person with CF as
a case study that could inform study design in a larger cohort
of study participants. We hypothesized that specific associations
between bacterial genera and volatile metabolites would be
reflective of changes between clinical states.

MATERIALS AND METHODS

Setting and Study Population
This is a study of a single young child with cystic fibrosis
(homozygous F508del) with respiratory samples and clinical data
collected across five acute pulmonary exacerbations over a 12
month period. The samples used in this study were from a larger
prospective, longitudinal study conducted at Children’s National
Health System (CNHS) (Hahn et al., 2019). The study was
approved 02/20/15 by the Institutional Review Board (Pro5655)
at CNHS. Parental consent was obtained for the study participant
prior to respiratory sample collection and extraction of data from
electronic medical records.

Subject Encounters
Respiratory samples and clinical data were collected at three
research encounter types. The first encounter occurred when the
study participant was being seen for a regular clinic visit and had
not received intravenous (IV) antibiotics for at least 30 days prior
(Baseline, B) (Zhao et al., 2012). The next encounter occurred
when the study participant presented for a sick visit with at
least 4 of 12 Fuchs criteria present and hospital admission for
administration of IV antibiotics was required (Exacerbation, E)
(Fuchs et al., 1994). The third encounter type occurred while
the study participant was on antibiotic therapy (Treatment, T).
A new baseline sample was obtained at the study participant’s
next follow up visit, at least 30 days after completion of antibiotic
therapy. However, if the study participant’s next exacerbation
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occurred prior to the 30 day window, the time point was treated
as an exacerbation. During each encounter, a sputum respiratory
sample was obtained and corresponding clinical data were
collected. Lung function testing was collected clinically following
ATS spirometry guidelines and were reported using NHANES
III reference values (National Center for Health Statistics, 2001;
Miller et al., 2005).

Respiratory Sample Collection, Storage,
and Processing
Sputum samples were obtained from the study participant
using sterile collection cups and were stored at 4◦C for up to
24 h prior to processing. Sputum samples were homogenized
in the following manner: washed 1:1 v/v with sterile normal
saline, mixed 1:1 v/v with dithiothreitol (DTT; Sputasol, Fisher
Healthcare, Houston TX), vortexed, and heated in a 37◦C
heated water bath for 10min. Samples were then pelleted
through centrifugation (12,000 g × 10min). Supernatants were
removed and stored at −80◦C until they were analyzed for
volatile metabolites. Cell pellets were frozen at −80◦C until they
underwent DNA extraction.

DNA Extraction
Sample pellets were thawed and a 500 µL combination of
lysozyme (20 mg/mL, Sigma-Aldrich, St. Louis MO) and
lysostaphin (200µg/mL, Sigma-Aldrich, St. Louis MO) was
applied to chemically lyse the bacterial cell walls. DNA extraction
was then performed using the DSP Virus/Pathogen Midi Kit
and the Complex800_V6_DSP protocol on the QIAsymphony SP
(Qiagen, Valencia CA).

Next Generation Sequencing and
Bioinformatics
Sequencing of all samples was performed by the University
of Michigan Host Microbiome Initiative (Ann Arbor MI)
according to published protocols (Kozich et al., 2013; Seekatz
et al., 2015). Briefly, extracted DNA was amplified for
the V4 region of the 16S rRNA gene (16S rDNA) using
PCR primers (forward primer GTGCCAGCMGCCGCGGTAA;
reverse primer TAATCTWTGGGVHCATCAGG) (Kozich et al.,
2013). The PCR cycle was as follows: 95◦C × 2min (1x); 95◦C
× 20 s, 55◦C × 15 s, 72◦C × 5min (30x); 72◦C × 10min
(1X); 4◦C (until sequencing). Libraries were normalized using
SequalPrep Normalization Plate Kit (Life Technologies, Carlsbad
CA), and concentrationmeasured using Kapa Biosystems Library
Quantification Kit (Kapa Biosystems, Wilmington MA). A
MiSeq sequencing platform was used to perform the dual-
index sequencing strategy, resulting in paired-end reads of ∼250
basepairs (bp). Raw FASTQ files were processed in mothur
(version 1.39.5), utilizing default settings outlined on the MiSeq
SOP (https://www.mothur.org/wiki/MiSeq_SOP, accessed 8 FEB
2018) to generate operational taxonomic unit (OTU) tables
(Schloss et al., 2009; Kozich et al., 2013). Specifically, this
included the following steps: (1) combining paired reads (quality
scores per base had to be > 25 minimum for paired gap
sequence and 6 points better than pairedmismatch; otherwise the

consensus base was set to an N); (2) removing sequences > 275
bp; (3) combining duplicate sequences; (4) aligning sequences
to the SILVA_v123 bacterial reference alignment (obtained from
http://www.mothur.org); (5) removing sequences outside the
expected alignment region of V4 (position 1968 to 11550);
(6) pre-clustering sequences differing by 2 bp; (7) removing
chimeras; (8) removing non-bacterial sequences, including
those that align to Chloroplasts, Eukaryotes, or Archaea; and
lastly (9) clustering into OTUs at the 0.03 threshold (97%
sequence similarity).

The 16S rDNA sequence files were also analyzed using
DADA2 to establish amplicon sequencing variants (ASVs)
(Callahan et al., 2016). Prior to importing our sequences
into R, FlexBar 3.4 was used to trim adapters and low
quality sequences (Roehr et al., 2017). Imported sequences
underwent further quality trimming using functions within
DADA2 (fastqPairedFilter). Trimmed amplicon sequences were
denoised (function dada) and chimeras were removed (function
isBimeraDenovo). Taxonomic classification was performed by
aligning denoised sequences to an RDP dataset (https://benjjneb.
github.io/dada2/training.html), with the taxonomy assigned
based on the least minBoot bootstrap confidence.

For 3 sputum samples, shotgun whole genome sequencing
(WGS) was also performed at the New York Genome Center
(New York NY) using the X10 (Illumina, San Diego CA).
WGS libraries were prepared using the Illumina TruSeq Nano
DNA Library Preparation Kit in accordance with manufacturer’s
instructions. Briefly, 100 ng of DNA was sheared using the
Covaris LE220 sonicator (adaptive focused acoustics). DNA
fragments underwent end-repair, bead-based size selection,
adenylation, and Illumina sequencing adapter ligation. Ligated
DNA libraries were enriched with PCR amplification (using
8 cycles). Final libraries were evaluated using fluorescent-
based assays including PicoGreen (Life Technologies) or Qubit
Fluorometer (invitrogen) and Fragment Analyzer (Advanced
Analytics) or BioAnalyzer (Agilent 2100). Libraries were
sequenced on an Illumina HiSeq X sequencer (v2.5 chemistry)
using 2 × 150 bp cycles. FASTQ files were screened for quality
using FastQC (bioinformatics.babraham.ac.uk/projects/fastqc/)
and trimmed using FlexBar 3.4 (Roehr et al., 2017). OTU
tables were created using Pathoscope 2.0, which includes a
step for filtering human DNA contamination (Hong et al.,
2014). The reference database was created using sequences
identified in the National Center for Biotechnology Information
(NCBI) Bacteria and Virus reference and representative genome
database. This database contains at least one genome for
each species in the Entrez genome collection that has
assembly data. In addition, we also added complete genome
assemblies for all Pseudomonas aeruginosa, Burkholderia cepacia,
and Burkholderia cenocepacia, allowing for strain-specific
identification of these species.

KneadData (http://huttenhower.sph.harvard.edu/kneaddata)
was used to remove human DNA contamination prior to
performing functional analyses. The presence of antibiotic
resistance genes was detected using MEGAres and AMRPlusPlus
using a Galaxy pipeline (Lakin et al., 2017).
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Volatile Metabolite Analysis
For volatile metabolomics analysis, the sputum sample
supernatants were thawed overnight at 4◦C, vortexed for
∼2 s to homogenize, and 250 µl of the samples were transferred
into 2mL GC vials with PTFE silicone caps. The vials and
caps had been heat treated for 24 h at 100◦C to reduce the
contribution of exogenous volatile organic compounds to the
samples. Technical duplicates were prepared for all samples,
and the samples were maintained at 4◦C until analysis, which
was completed within 48 h of removing the samples from the
−80◦C freezer.

For metabolomics analysis, the order of analysis for the
samples and technical duplicates was randomized. Prior to
sample analysis, the mass spectrometer was calibrated using
perfluorotributylamine. Sputum samples were incubated at
50◦C for 2min with agitation, then the volatile metabolites
were sampled with heating and agitation for 10min via
headspace solid phase microextraction (HS-SPME) using a 1 cm
triphase fiber (divinylbenzene/carboxen/polydimethylsiloxane,
50/30µm; Supelco/Millipore Sigma). The volatile molecules
were desorbed for 180 s at 250◦C, and injected splitlessly
onto a comprehensive two-dimensional gas chromatograph
with a time-of-flight mass spectrometer (GC×GC-TOFMS;
Pegasus 4D, Leco Corp.), equipped with an autosampler
(MPS Robotic, Gerstel, Inc.). The volatile metabolites were
separated on a two-dimensional column set of an Rxi-624Sil
(60m × 250µm × 1.4µm; length × internal diameter ×

film thickness; Restek) first column and a Stabilwax (1m
× 250µm × 0.55µm; Restek) second column, joined by
a press-fit connection. The primary oven was initialized at
35◦C with a 0.5min hold, then heated at 5◦C/min to a
final temperature of 230◦C (5min hold). The secondary oven
and modulator temperatures were maintained with +5◦C
and +20◦C offsets, respectively, relative to the primary oven.
The quad-jet modulator was operated with a 3 s modulation
period (0.75 s hot and cold pulses). The helium carrier gas
flow rate was 2 ml/min. The transfer line and ionization
source temperatures were 250◦C. Compounds were ionized by
electron impact at −70 eV and mass spectra were acquired
with unit mass resolution at 100Hz over a range of 29–
400m/z.

Retention indices (RI) for the sputum metabolites were
calculated using external alkane standards (C6-C15), which were
analyzed by HS-SPME GC×GC-TOFMS. The standards were
heated to 50◦C for 2min with agitation, then sampled for 2min
using a 1 cm triphase SPME fiber. The alkanes were desorbed
from the fiber for 180 s at 250◦C and injected with a 50:1 split.
All other chromatography and mass spectrometry parameters
were the same as for the sputum samples. RIs for sputum
volatile compounds eluting prior to hexane or after pentadecane
were extrapolated.

Metabolomics data collection, processing, and alignment were
performed using ChromaTOF with Statistical Compare, version
4.71 (Leco Corp.). The baseline was drawn through the middle
of the noise and the signal-to-noise (S/N) cutoff for initial peak
finding was 50 for a minimum of two apexing masses. Subpeaks
were combined when the second dimension retention time

decrease was ≤ 100ms and the mass spectral match score was
≥ 500. Peaks were aligned across chromatograms when the first
dimension retention time shift was≤ 3 s (onemodulation period)
and the mass spectral match score was ≥ 600. A second round
of peak discovery was performed on the aligned chromatograms,
adding peaks with S/N≥ 10 if the peak was present in at least one
chromatogram with a S/N ≥ 50.

Suspected contaminants, chromatographic artifacts (e.g.,
atmospheric gasses, siloxanes, phthalates), and peaks eluting
prior to acetone at 358 s, which were poorly modulated, were
removed from peak tables prior to statistical post-processing.
The arithmetic means of technical duplicates were calculated and
used for subsequent analyses.

Compounds were assigned to the following chemical classes
based upon their second-dimension retention times and matches
to the mass spectrum and retention index data in the NIST
14 library: hydrocarbons, alcohols, ethers, aldehydes, ketones,
carboxylic acids/esters, aromatics, or sulfur-containing. If more
than one functional group was present on a molecule, then the
compound was assigned to the chemical class of the highest
oxidation state.

Statistical Analysis
Continuous variables were compared using t-test while
categorical variables were compared using Chi-square or
Fisher’s exact test. Richness and alpha diversity was measured
by the number of observed OTUs, the Shannon Index and the
inverse Simpson’s Index using Explicet v.2.10.5 (Robertson
et al., 2013; Wagner et al., 2018). OTU and taxonomy tables
were imported into Rstudio for subsequent analyses using the
packages randomForest v.4.6-14, DESeq2 v.1.24.0, and phyloseq
v.1.28.0 to classify samples based on a forest of trees, determine
differential abundance, and create principle coordinates analysis
(PCoA) plots, respectively (Liaw and Wiener, 2002; McMurdie
and Holmes, 2013; Love et al., 2014). Permutational multivariate
analysis of variance (PERMANOVA) was also calculated to
measure the significance of differences in overall bacterial
distribution using the adonis function of the Rstudio package
vegan v.2.5–5 (Oksanen et al., 2017).

The metabolomics data were normalized using probabilistic
quotient normalization (Dieterle et al., 2006), and both the
metabolomics and genomics data were log10 transformed. The
reads for OTUs assigned to Escherichia and Staphylococcus
were summed to create a single variable, referred to as
“normal pathogens.” Manhattan distances between samples were
calculated using standardized variables (OTUs and/or chemical
classes) using the Rstudio package factoextra v.1.0.5.

RESULTS

Clinical Course
A young school-age child experienced five exacerbations over
12 months. The child was considered to have an advanced
disease stage (with a forced expiratory volume in 1 s, FEV1, <

40%) and severe disease aggressiveness (with an FEV1 < 80%
at age < 10 years) (Konstan et al., 2009). Past history included
multiple acute pulmonary exacerbations where respiratory
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cultures had grown many antibiotic resistant organisms,
including the following: methicillin resistant Staphylococcus
aureus (MRSA), Pseudomonas aeruginosa, Stenotrophomonas
maltophilia, Achromobacter xylosoxidans, and an extended
beta-lactamase (ESBL) producing Escherichia coli, among
others. At study enrollment, the child was receiving thrice
weekly azithromycin, inhaled tobramycin (TOBI) every other
month, and was alternating oral linezolid and trimethoprim-
sulfamethoxazole (trim-sulfa) at two week intervals with a
two week break in between. Sputum was collected from the
subject at 14 time points over the 12 month study, encompassing
baseline (B), exacerbation (E), and treatment (T) periods.
Antibiotics during the study were selected by the clinical team,
but were typically geared toward treatment of the ESBL E.
coli using a carbapenem, specifically meropenem or imipenem
(E1–E5) and amikacin (E1, E3–E5), and MRSA with linezolid
(E1, E2, and E5). The clinical characteristics surrounding
each sample collection during the study period are shown in
Table 1.

Taxonomic Profile and Microbial Diversity
We performed Next Generation 16S rDNA sequencing on
the 14 sputum samples. Across all samples there were 109
individual OTUs identified, with individual samples averaging
24 OTUs (standard deviation (SD) 8.3, range 12–48). Three
genera dominated the samples, Escherichia, Staphylococcus,
and Achromobacter/Alcaligenes (Figure 1), corresponding to the
threemost commonly and abundantly cultured pathogens during
the study period (Table 1). Alpha diversities were calculated to
evaluate the balance of the number of bacteria identified and
their relative abundance to each other (Figure 2). The average
Shannon diversity index was 0.967 (SD 0.479, range 0.083–
2.017) and the average inverse Simpson’s index was 2.102 (SD
0.899, range 1.022–4.345). Linear regression was performed to
determine if the three dominant genera across samples explained
the change in alpha diversity measures over time. No significant
differences were found in the number of OTUs, Shannon
diversity (R2 = 0.132, p = 0.687), or Inverse Simpson diversity
(R2 = 0.135, p= 0.678).

TABLE 1 | Study participant clinical characteristics.

Sample ID, Day

sample obtained

Clinical culture

results

Suppressive

antibiotics (inhaled

or oral)

IV Antibiotics given

for pulmonary

exacerbation

Days of IV antibiotic

therapy

FEV1 (percent

predicted)

B-1

Day 0

MSSA, E. coli Azithromycin, TOBI ON NA NA 31

E-1

Day 28

E. coli Azithromycin, TOBI

OFF

Meropenem, amikacin,

linezolid

20 26

T-1

Day 37

NA NA 41

B-2

Day 77

Normal respiratory flora Azithromycin, linezolid,

TOBI OFF

NA NA 36

E-2

Day 84

MRSA, E. coli Azithromycin, linezolid,

TOBI OFF

Piperacillin-

tazobactam,

imipenem-cilastatin,

linezolid

13 36

T-2

Day 93

NA NA 43

E-3

Day 132

MRSA, E. coli Azithromycin,

trim-sulfa, TOBI ON

Meropenem, amikacin 29 Not obtained

T-3

Day 148

NA NA 35

B-4

Day 189

MRSA, E. coli Azithromycin,

trim-sulfa, TOBI OFF

NA NA 27

E-4

Day 210

Normal respiratory flora Azithromycin,

trim-sulfa, TOBI OFF

Meropenem, amikacin 29 28

T-4

Day 225

NA NA 30

E-5

Day 273

MSSA, E. coli, A.

xylosoxidans

Azithromycin, TOBI

OFF

Meropenem, amikacin,

linezolid

26 Not obtained

T-5

Day 284

NA NA 47

B-6

Day 343

A. xylosoxidans Azithromycin,

trim-sulfa, TOBI OFF

NA NA 35

FEV1, forced expiratory volume in one second, MSSA, methicillin-sensitive Staphylococcus aureus; MRSA, methicillin-resistant S. aureus; NA, not available; TOBI ON/OFF, inhaled

tobramycin on or off; trim-sulfa, trimethoprim-sulfamethoxazole.
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FIGURE 1 | Relative taxonomic abundance. Relative abundance as determined by operational taxonomic units (OTUs). The top 20 OTUs are included. B, Baseline; E,

Exacerbation; T, Treatment.

To better understand differences in overall community
composition between the samples, we evaluated Bray-Curtis
distances. The PCoA plots for Axis 1 vs. Axis 2, as well as
the variation between samples on Axis 1 alone, are shown in
Figure 3. There was no significant difference based on encounter
type (baseline, exacerbation, or treatment) when evaluating
by phyla or OTU using PERMANOVA (p = 0.760 and p =

0.433, respectively). However, the treatment samples clustered
together when evaluating by OTU (Figure 3B), and warranted
further investigation.

Additional analysis of the bacterial phyla and genera present
by encounter type was performed using Random Forest. Prior
to analysis, the phyla and OTU were assessed to determine
prevalence across samples, and those with a prevalence of < 50%
were not included in subsequent analysis. This left 4 of 6 phyla
and 15 of 109OTUs as variables. In the analysis of phyla, 500 trees
were added with 2 variables tried at each split. A proximity plot
from one of the analyses showed significant overlap of encounter
types when evaluating by phyla present (Figure 4A), and the
out of bag (OOB) estimate of the error rate was 64.3%. The
variable importance for phyla present within encounter type was

evaluated. Bacteroidetes had a mean decrease accuracy of 8.46
and a mean decrease Gini of 3.34 and Actinobacteria had a mean
decrease accuracy of 3.29 and a mean decrease Gini of 1.97,
with an OOB estimate of the error rate of 57.1% (Figure 4B).
For the analysis by OTU, 500 trees were added with 3 variables
tried at each split. The proximity plot for this analysis showed
the treatment samples were more distinct (Figure 4C); however,
the OOB estimate of error rate remained high at 64.3%. The
variable importance was also evaluated for the OTUs present per
encounter type. Stenotrophomonas was associated with a mean
decrease accuracy of 6.33 and a mean decrease Gini of 1.09, with
an OOB estimate of the error rate of 64.3% (Figure 4D).

We next evaluated for a differential abundance of certain
phyla or OTUs based on encounter type using DESeq2. Similar
to what we found in the Random Forest analyses, Bacteroidetes
were less abundant in treatment samples compared to baseline
and exacerbations samples (log2-fold difference −3.29, adjusted
p = 0.015). Also corroborating our Random Forest analyses,
Stenotrophomonas was more abundant in treatment samples
compared to baseline or exacerbation samples (log2-fold
difference 6.26, adjusted p= 0.003).
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We also evaluated our 16S rDNA sequencing data by
determining amplicon sequencing variants (ASVs). We
found a similar relative abundance of the most dominant
genera using both methods (Supplementary Figure 1 and
Supplementary Table 1). Therefore, we felt confident in using
our OTU generated results for subsequent comparisons to our
volatile metabolomic data.

FIGURE 2 | Longitudinal representation of alpha diversity measures. Number

of observed OTUs, Shannon Index, and the Inverse Simpson’s Index are

included. The right axis represents the values of the number of observed

OTUs. The left axis represents the values of the Shannon and Inverse

Simpson’s index. B, Baseline; E, Exacerbation; T, Treatment.

Three samples (B1, E3, and E5) also underwent shotgun
whole genome sequencing, allowing for additional analyses.
These results are included in the Supplementary Data. Briefly,
we found a significantly different abundance of the primary
bacterial pathogens (Escherichia coli, Staphylococcus aureus, and
Achromobacter xylosoxidans) in the shotgun sequencing data
compared to the 16S sequencing data (Supplementary Figure 2

and Supplementary Table 1). We also found 30 different types
of bacteriophages within these samples, with the majority of the
bacteriophages identified being associated with Staphylococcus
(n = 15, 50%) and Enterobacteria/Escherichia (n = 12, 40%),
which were the predominant bacteria within the microbiome
community (Supplementary Figure 3). Lastly, we found a
higher percentage of sequencing reads mapped to an antibiotic
resistance gene in the exacerbation samples compared to
the baseline sample (Supplementary Figure 4). The majority
of antibiotic resistance genes identified were due to multi-
drug resistance mechanisms (e.g., porins and efflux pumps),
while the next most common were aminoglycosides, beta-
lactams, and fluoroquinolones. These findings corroborated
the antibiotic resistance recognized in the corresponding
clinical cultures and suggest shotgun metagenomics provides
deeper insights into the microbiome diversity as well as
antibiotic resistance.

Volatile Metabolite Analysis
We analyzed the headspace volatiles of the sputum samples
using comprehensive two-dimensional gas chromatography–
time-of-flight mass spectrometry (GC×GC-TOFMS). After data
alignment and artifact removal, we detected 460 non-redundant
volatile metabolites from the fourteen sputum samples, all of

FIGURE 3 | Bray-Curtis distance PCoA with log transformed counts. (A) Phylum Axis 1 vs. Axis 2. (B) OTU Axis 1 vs. Axis 2. (C) Phylum Axis 1 by Sample ID. (D)

OTU Axis 1 by Sample ID.
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FIGURE 4 | Random forest analysis. (A) Phylum proximity plot by encounter type. (B) Variable importance plot for Phylum. (C) OTU proximity plot by encounter type.

(D) Variable importance plot for OTU. B, Baseline (red); E, Exacerbation (green); T, Treatment (blue).

which were detected in at least two specimens, with a median
frequency-of-observation (FOO) of 12 specimens. While we
expect that the dithiothreitol treatment of the sputum altered
the metabolome of the samples, e.g., affecting the relative
abundances of sulfurous compounds, all sputum samples were
similarly processed, and thus we assumed that comparative
analyses between baseline, exacerbation, and treatment samples
were not impacted. Since our hypothesis for this study was
that the volatile metabolomes would change with clinical disease
state, we reduced our list of variables to those in the top 50th
percentile for variance across samples (calculated as the relative
standard deviation, with missing values replaced with zeros),
yielding 229 volatile metabolites for subsequent analyses with
a median FOO of 8 specimens. We tested for associations
of specific volatile metabolites to disease state using pair-wise
comparisons of ET vs. B, EB vs. T, and E vs. TB. We did
not identify any analytes that were significantly different using
Wilcoxon signed rank with Benjamini-Hochberg correction (α

= 0.05). We also performed supervised Random Forest using
the same categories, with 100 models each initialized with
499 trees. We built models using all observations, as well as
using balanced class sizes created by down-sampling. Based on
error estimates averaged over all trees, the resulting models
were overfit, with out of bag class errors exceeding 60% in
all models. The feature set of individual metabolites is sparse
(i.e., many missing values), which we posited was contributing
to the overfitting. Therefore, for subsequent analyses, we
used chemical classes for correlation analyses, reducing the
number of features by two orders of magnitude with no
missing values.

We observed that the total intensity of the volatile
metabolite signature (as determined via total peak area)
varied from sample to sample (Figure 5), with treatment
samples having the highest mean and median metabolite signal
intensity (Supplementary Figure 5). The higher signal intensity
in treatment samples was correlated with the detection of more
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FIGURE 5 | Composition of sputum volatile metabolomes by chemical class, represented in absolute signal intensity. HC, hydrocarbons; ALC, alcohols; ETH, ethers;

ALD, aldehydes; KET, ketones; CA/EST, carboxylic acids and esters; ARO, aromatics; S, sulfur-containing; B, baseline; E, exacerbation; T, treatment.

compounds in those samples, but the correlation between total
peak area and the number of detected compounds was weak
(R2 = 0.48; Supplementary Figure 5). While there was no
statistically significant difference in the mean signal intensity
by disease state, baseline samples had the least amount of
variation across all time points (Supplementary Figure 5). The
intensity of the volatile metabolite signals differed across time
from B1 to E2 (Figure 5), however the chemical composition
of the volatiles varied little, and was dominated by alcohols
(Figures 5, 6). At T2 we observed a dramatic shift in the
volatile metabolites, with the relative abundance of aldehyde
molecules increasing by 100-fold, followed by a return to the
same initial chemical composition for specimens collected from
E3 to E4. Treatment 4 again had major metabolic shifts, this
time due to an increase in two carboxylic acids, octanoic acid
and decanoic acid. These two compounds were detected at
eight other time points, but at concentrations that were 100-
fold to 10,000-fold lower. T4 also had a 10-fold increase in
the concentration of aldehydes compared to the preceding four
samples. The last two time points, T5 and B6, had entirely unique
chemical compositions with a high proportion of ketones in the
former and aromatic compounds in the latter. We did not find
that disease state correlated to a sputum metabolome chemical
composition. Rather, we found that baseline and exacerbation
samples were rather uniform in chemical composition and
similar to one another, with a relatively high abundance of
alcohols, while treatment samples differed from the other two
disease states and were highly variable treatment to treatment
(Figure 6).

Associations of Microbes and Metabolites
To explore correlations between the sputum microbiomes
and metabolomes, we first evaluated the two data sets for
concurrent changes across the samples (Figures 6). While there
were significant fluctuations in the relative abundances in
Staphylococcus and Escherichia reads from B1 to E5, for most
time points these two genera constituted the majority of the
taxa detected in the sputum. The exceptions to this rule were
observed at T2 and E3, with the transient increases in Neisseria
and Prevotella, respectively, and T4, with a relative increase in
Streptococcus and unclassified Enterobacteriaceae with a near
loss of Escherichia. These sputum microbiome fluctuations co-
occurred with observable fluctuations in the volatile metabolome
composition. Additionally, at T5 and B6 the microbiome
composition shifted to dominance by Alcaligenaceae, with
Escherichia and Staphylococcus becoming minor constituents.
Again, this significant shift in microbiome was reflected in the
metabolome, where the previous dominance by alcohols was lost.

To quantify the similarities and differences between sputum
samples, we calculated Manhattan distances based on chemical
classes of the metabolomes (Figure 7A) and the microbiome
compositions (Figure 7B). Using the relative abundances of
chemical classes from the metabolome data, we observe that
the sample collected during T4 differs the most strikingly from
all preceding samples (Figure 7A). The chemical composition
of E5 returned to a state that was similar to early baseline
and exacerbation samples, followed by another significant
chemical shift in T5. To analyze the microbiome data,
we reduced the influence of the stochastic shifts in the
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FIGURE 6 | Sputum metabolome and microbiome composition. (A) Sputum metabolome composition by chemical class, ordered by time of collection. (B) Sputum

microbiome composition by OTU. Escherichia and Staphylococcus reads, representing the “normal pathogens” have been summed to highlight deviations in other

taxa of the sputum microbiome. B, baseline; E, exacerbation; T, treatment; HC, hydrocarbons; ALC, alcohols; ETH, ethers; ALD, aldehydes; KET, ketones; CA/EST,

carboxylic acids and esters; ARO, aromatics and heteroaromatics; S, sulfurous.

proportions of Staphylococcus vs. Escherichia reads—i.e., the
study participant’s “normal pathogens”—by summing those reads
prior to calculating the distances. The result is that differences in
the relative proportions of the other 21 most abundant OTUs are
emphasized.We observed that themicrobiome of sputum sample
E3 showed the first major shift in composition, and was unlike
any other samples collected. This correlated to our observation
that the microbiome of E3 had the highest alpha diversity.
The high microbiome diversity was temporary, however, with

samples B4 and E4 resembling early samples due to the returning
dominance of the normal pathogens.

While there were unifying features in the dissimilarity
matrices constructed using microbiome and metabolome data
(e.g., the uniqueness of T4), they were not fully synchronized.
However, we posited that combining the data sets would present
a more holistic picture of this study participant’s lung disease,
and therefore we calculated the dissimilarities between samples
using a concatenated microbiome and metabolome data set
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FIGURE 7 | Sample to sample variation represented as dissimilarity matrices

using Manhattan distances calculated with unstandardized variables. (A)

Chemical class relative abundances were used as variables. (B) OTU relative

abundances were used as variables. The Staphylococcus and Escherichia

reads, representing the study participant’s “normal pathogens” were summed

to reduce the influence of their stochastic changes, and enhance the influence

of the other OTUs on the dissimilarity matrices.

(Figure 8). We again observe that sputum samples B1 through
E2 were highly similar, which was followed by a sustained
period of variance. With the exception of B4 and E4, when
comparing any pair of proximate samples from T2 to B6, their
dissimilarities were higher than the median, largely driven by the
uniqueness of samples collected during treatment periods. While
B1, B2, and B4 baseline samples all had similar microbiome-
metabolome compositions (i.e., higher than median similarities),
we observe that the last specimen, B6, is indeed distinctly
different from every other sample previously collected, baseline
or otherwise.

Next, we explored the potential associations of specific
microbes to individual metabolites by performing Spearman
and Pearson Rank analyses between 16S OTU abundances and
metabolite signal intensities. We found no statistically-significant
correlations, whether we binned all metabolites that are known

FIGURE 8 | Sample to sample variation represented as a dissimilarity matrix

using Manhattan distances calculated with chemical class abundance and

proportions of the top 23 most abundant OTUs as standardized variables.

to be associated with E. coli or S. aureus, the two best-
studied bacterial volatile metabolomes represented in this
sample set (Allardyce et al., 2006; Filipiak et al., 2012; Tait
et al., 2014; Baptista et al., 2019; Jenkins and Bean, 2019),
or treated metabolites independently, e.g., correlated E. coli
relative abundance to indole absolute or relative abundance.
Lastly, we returned to the chemical classification data, and
examined the relationship between bacteria and metabolome
composition with a distance-based linear model (Figure 9). The
position of each point in Figure 9 is dictated by the Bray-
Curtis similarity of the airway microbiome composition in each
sample, and the superimposed vectors showing which chemical
classes are best correlated with the microbial communities.
From this view, we observe that the highly similar microbiome
compositions of samples B1—E2, B4, E4, and E5, characterized
by dominance with the study participant’s normal pathogens (i.e.,
Staphylococcus or Escherichia), are highly associated with a higher
relative abundance of alcohols. Interestingly, T3 and T4 were also
dominated by Staphylococcus, but did not cluster with the other
Staph-dominated samples. Themicrobiome composition in these
specimens does contain more Streptococcus spp., and is strongly
associated with an increase in sulfur-containing compounds
and carboxylic acids/esters in T3 and T4, respectively. We
observed that sample T2, characterized by its high abundance
of Neisseria, is correlated with increased detection of aldehydes.
The distinctly clustering outlier samples T5 and B6, dominated
by Achromobacter, correlated with a shift toward more oxidized
compounds (aromatics, ketones) and away from hydrocarbons
and alcohols.

DISCUSSION

Prior studies of both the microbiomes and metabolomes in the
CF lung have suggested high inter-person variability, which can
be greater than the variability identified between clinical states,
thereby limiting broad extrapolation of research findings to the
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FIGURE 9 | Operational taxonomic unit and chemical class overlay.

Distance-based linear model recapitulates the relationship between the airway

microbiomes in each sample. Superimposed are vectors showing which

chemical classes are best correlated with the microbial communities. Length

and direction of vectors correspond to the strength of the association between

the metabolite and the microbial communities. B, baseline; E, exacerbation; T,

treatment. HC, hydrocarbons; ALC, alcohols; ETH, ethers; ALD, aldehydes;

KET, ketones; EST, carboxylic acids and esters; ARO, aromatics and

heteroaromatics; S, sulfurous.

general CF population (Carmody et al., 2013; Quinn et al.,
2016). A cross-sectional study comparing paired baseline and
exacerbation samples found some persons with CF exhibiting
little change and other persons with dramatic changes in bacterial
community structure (Carmody et al., 2013). A study of the
LC-MS derived metabolome capturing larger and more polar
molecules (e.g., immune lipids) in the sputum of 11 individuals
with CF found that the individual source had a larger influence
than clinical state, with only 12% of over 4,000 identified
metabolites being unique to pulmonary exacerbation samples
(Quinn et al., 2016). These findings support a personalized
approach to identifying microbiome and metabolomic changes
consistent with changes across clinical states.

With this study, we sought to investigate changes in
both the airway microbiome and volatile metabolome of a
single person with CF over a 12 month period of recurrent
pulmonary exacerbations. We found that although the study
participant retained a set of core bacteria that dominated the
bacterial community during most baseline and exacerbation
samples (specifically Escherichia coli and Staphylococcus aureus),
a transition to a new dominant bacterium (Achromobacter
xylosoxidans) occurred after the study participant’s fifth antibiotic
course. This new bacterium continued to grow in subsequent
respiratory cultures for at least 6 months following the study.
Interestingly, this change in dominant bacterium did not seem
to correlate with a change in treatment antibiotics used, as
similar IV and oral antibiotics were used throughout the 12
month time period. Alpha diversity measures were also not
associated with the transition in dominant organism. When
examining community bacterial structure using both PCoA and

Random Forest, we found that treatment samples tended to
cluster together, albeit not significantly. One bacterial phylum
(Bacteroidetes) and one bacterial genus (Stenotrophomonas) were
significantly more abundant in treatment samples compared to
baseline and exacerbation samples using two different analysis
measures (Random Forest and DESeq2). While our Random
Forest analysis had a high OOB estimation of error, it is
worth noting that with repeated assessments of the same
data set, Bacteroidetes and Stenotrophomonas remained the
most important variables and treatment samples were always
differentiated from baseline and exacerbation samples in the
proximity plots.

Similar to our results, prior longitudinal studies of the CF
airway have not always found a significant change in the relative
abundance of bacteria to be associated with exacerbation onset
(Whelan et al., 2017; Sherrard et al., 2019). While we found
rather consistent differences in both bacterial relative abundance
and volatile metabolites when comparing treatment samples to
baseline and exacerbation samples, this has not always been
observed in other studies. One study found no consistent
differences in Shannon diversity across stable, intermediate, or
treatment samples over time, even though diversity was always
fluctuating (Whelan et al., 2017). Some studies have found
increases in fermentative anaerobes are associated with the onset
of exacerbation (Tunney et al., 2011; Carmody et al., 2013,
2018). Another study obtaining enhanced cultures longitudinally
found more constant communities in stable persons with CF,
while those with frequent exacerbations had higher variability in
their community structures (Sherrard et al., 2019). As our study
participant experienced multiple exacerbations during the study,
this may explain, in part, the changing relative abundance and
alpha diversity we saw.

A deeper analysis of one baseline and two exacerbation
samples confirmed that E. coli and S. aureus were the dominant
bacteria within the airway, but the relative abundance was
different when analyzed via 16S and shotgun sequencing. This
difference is likely multifactorial, including PCR amplification
bias associated with 16S rDNA sequencing, potential
misclassification bias from human DNA contamination, and
differences in reference databases used for sequence alignment
(Hahn et al., 2018b). However, with shotgun sequencing we
were also able to explore additional characteristics potentially
important to clinical response, including the presence of
bacteriophages and antibiotic resistance genes.

Prior metagenomic studies of the CF airway have found that
the majority of DNA viruses identified were bacteriophages
(Moran Losada et al., 2016). In our study, we had similar
findings; more than 70% of the viral reads were attributed to
bacteriophages, and most were associated with Enterobacteria,
Escherichia, and Staphylococcus. These phages can have
important clinical impacts. First, filamentous phages associated
with E. coli have been shown to promote biofilm formation (Secor
et al., 2015). Second, S. aureus bacteriophages in the CF airway
were associated with genomic alterations of the bacterium, likely
passing on virulence traits and perhaps enhancing its ability to
survive despite antibiotic pressures (Goerke et al., 2004). Lastly,
bacteriophages in general have been shown to transfer antibiotic
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resistance, such as efflux pumps, beta-lactam resistance, and
fluoroquinolone resistance, particularly within the CF lung
(Fancello et al., 2011; Brown-Jaque et al., 2018).

In our evaluation of antibiotic resistance detected by shotgun
sequencing, we found that the results were generally consistent
with the clinical cultures, and more sequences aligned to
antibiotic resistance genes in the two exacerbation samples. One
caveat is that the potential for MRSA was detected by sequencing
in 2 of 3 samples where the corresponding cultures grew MSSA;
this signifies the limitations of making antibiotic decisions on
clinical culture results alone. Furthermore, prior studies have
shown that multidrug antibiotic resistance is associated with
decreased alpha diversity, the presence of Achromobacter species,
and lower pulmonary function (Bacci et al., 2017; Hahn et al.,
2018c). Several studies utilizing shotgun sequencing to analyze
the CF airway have also found a congruence of antibiotic
resistance detected in clinical cultures, and an association of
antibiotic resistance with E. coli and A. xylosoxidans (Lim et al.,
2014; Bacci et al., 2017; Feigelman et al., 2017). Importantly,
genes encoding resistance to antibiotics not recently used can be
present, suggesting that the development of antibiotic resistance
in the CF lung is partly related to direct antibiotic pressures,
partly through the presence ofmultidrug efflux pumps, and partly
through the presence of mobile elements encoding resistance that
are carried in bacteriophages as mentioned earlier (Fancello et al.,
2011; Lim et al., 2014; Brown-Jaque et al., 2018).

The primary goals of the study were to identify microbiome
and metabolome characteristics indicative of clinical state
(baseline, exacerbation, and treatment) and to evaluate intra-
person variability between clinical disease states. We observed
that the baseline and exacerbation specimens did not significantly
differ in either their microbiome or metabolome, but that
treatment specimens T2-T5 and the final baseline sample (B6)
were dissimilar from the rest. However, because the sputum
characteristics of these samples are all unique, we are unable
to identify specific microbiome or metabolome signatures
of treatment, nor determine definitive associations between
the microbiome and metabolome compositions we observed.
Additionally, the common trait of these specimens’ microbiomes
is a reduction in the study participant’s normal pathogens and
concomitant increase in other taxa, but published data on the
volatile metabolomes of bacteria other than P. aeruginosa, S.
aureus, E. coli, and Mycobacteria spp. are relatively scarce. The
dominance of the T4metabolome by octanoic and decanoic acids
co-occurred with the highest relative abundance of Streptococcus
and Rothia in any sample. Generally, though, mid-chain fatty
acids are characterized as antibacterial against a broad range
of Gram positive and Gram negative pathogens (Desbois and
Smith, 2010), and free and derivatized forms of octanoic
and decanoic acids have been shown to inhibit Staphylococcus
spp., Streptococcus spp., Neisseria gonorrhoeae, and E. coli
growth (Kabara et al., 1972; Bergsson et al., 1999; Skrivanová
et al., 2008). It is also feasible that these two compounds are
associated with treatment rather than infection, as decanoic
acid is commonly used as a solubilizing agent in medications,
and mid-chain fatty acid esters are common prodrugs used to
improve lipophilicity.

In the baseline and exacerbation samples, we observed large
variations in the relative abundances of S. aureus and E. coli
16S amplicon sequencing reads, however, we did not find
correlated fluctuations in volatile metabolites that are produced
by these bacteria. In vitro experiments have demonstrated that
both E. coli and S. aureus produce volatile alcohols (Allardyce
et al., 2006). Therefore, one possible explanation is that the
production of alcohols by S. aureus and E. coli are similar in the
environment of the CF lung, and aggregating the metabolome
into chemical classes removes the species-specific correlations
we would otherwise observe. However, we did attempt to find
correlations between S. aureus or E. coli reads and the abundances
of their known metabolites, and failed to do so. Interestingly,
we did observe reductions in the relative abundance of alcohols
when the relative abundance of the normal pathogens decreased,
consistent with the reduced alcohol production observed when
these organisms are dosed with antibiotics above minimum
inhibitory concentrations in vitro (Allardyce et al., 2006). It is
also possible that the VOCs observed were indicative of clinical
state rather than correlating directly with the abundance of
an individual species, perhaps due to variations in functional
genetics and/or expression of bacterial genes. This would still
provide a useful tool that could be translated into clinical practice,
but requires further study.

By integrating both the metabolome and microbiome data, we
observed an overall smoothing of the sputum characteristics that
help to reveal time/treatment-dependent patterns.While changes
in the sputum did not clearly correlate with clinical disease
state (i.e., predict exacerbation onset), they did correlate with
clinical culture data and revealed when the character of the lung
environment was and was not changing. The microbiome and
metabolome data also suggested that there was a fundamental
shift in the study participant’s lung disease during and after the
5th treatment, which correlated to culture results; beginning with
B6, and for at least 6 months afterward, the subject consistently
cultured A. xylosoxidans, and E. coli was not detected again.

Limitations to the study include the translational capacity
of a longitudinal study design from a single person with
CF. However, the inter-individual variability in the CF airway
microbiome is often high, frequently influenced by the dominant
organism which may be different between study participants,
and can lead to limitations in interpreting results due to that
variability (Boutin et al., 2015). Thus, understanding intra-person
variability across clinical states can inform future study design
in larger cohorts (Caverly et al., 2019; Hahn and Zemanick,
2019). Furthermore, n-of-1 studies can still provide important
data to the literature, and may provide a way forward for
using the CF microbiome and metabolome in individualized
medicine (Lillie et al., 2011). Moving forward into larger
cohorts, it may be necessary to look at changes between
each study participant as a series of n-of-1 studies instead of
averaging species relative abundance, diversity measures, etc.,
to truly begin to bring these findings into meaningful clinical
practice. By itself, this study shows that antibiotic treatment
has the largest impact on taxonomic relative abundance
and the metabolome, and there may be little dissimilarity
between baseline and exacerbation in a CF person experiencing
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frequent pulmonary exacerbations. Another limitation was the
lack of inclusion of WGS data for treatment samples, as
these time points showed the most variability in our cohort.
Unfortunately, we were limited in the amount of bacterial DNA
available and were only able to perform WGS on baseline and
exacerbation samples.

In summary, we found that using a combination of
metabolome andmicrobiome data, we could corroborate changes
in community structure andmetabolism in the lung environment
over the span of a year in a subject with unstable lung
disease, and these data correlated with short-term and long-
term clinical culture data. For this particular dataset, the greatest
amount of change was associated with antibiotic treatment.
Future directions include performing a similar analysis of
the association between the bacterial microbiome and volatile
metabolites in a larger cohort. The results from this study will
allow us to incorporate the level of intra-person variability
observed so that we may be able to detect a potential
signature that could be utilized in identifying transitions between
clinical states.
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