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The availability of pathogen-specific treatment options for respiratory tract infections

(RTIs) increased the need for rapid diagnostic tests. Besides, retrospective studies,

improved lab-based detection methods and the intensified search for new viruses

since the beginning of the twenty-first century led to the discovery of several novel

respiratory viruses. Among them are human bocavirus (HBoV), human coronaviruses

(HCoV-HKU1, -NL63), human metapneumovirus (HMPV), rhinovirus type C (RV-C), and

human polyomaviruses (KIPyV, WUPyV). Additionally, new viruses like SARS coronavirus

(SARS-CoV), MERS coronavirus (MERS-CoV), novel strains of influenza virus A and B,

and (most recently) SARS coronavirus 2 (SARS-CoV-2) have emerged. Although clinical

presentation may be similar among different viruses, associated symptoms may range

from a mild cold to a severe respiratory illness, and thus require a fast and reliable

diagnosis. The increasing number of commercially available rapid point-of-care tests

(POCTs) for respiratory viruses illustrates both the need for this kind of tests but also the

problem, i.e., that the majority of such assays has significant limitations. In this review,

we summarize recently published characteristics of POCTs and discuss their implications

for the treatment of RTIs. The second key aspect of this work is a description of new

and innovative diagnostic techniques, ranging from biosensors to novel portable and

current lab-based nucleic acid amplification methods with the potential future use in

point-of-care settings. While prototypes for some methods already exist, other ideas are

still experimental, but all of them give an outlook of what can be expected as the next

generation of POCTs.

Keywords: virus diagnostics, innovative approaches, biosensors, bedside testing, POCT, commercial point-of-
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INTRODUCTION

Respiratory viruses such as influenza A viruses (IAV) or human
respiratory syncytial virus (RSV) are well-known, circulate
worldwide, and are associated with significant morbidity and
mortality (Iuliano et al., 2018; Shi et al., 2019). On the other hand,
there are emerging infectious diseases which were, according
to the definition by the WHO, hitherto unknown or rare
but are now rapidly spreading either in number of cases or
geographically (WHO, 2014a). In the last 20 years, in addition
to the emergence of novel influenza and coronaviruses, advances
in molecular detection methods have led to the discovery of new
respiratory viruses already circulating worldwide (Jartti et al.,
2012).

In 2001 human metapneumovirus (HMPV) was discovered
(van den Hoogen et al., 2001). The outbreaks of severe acute
respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle
East respiratory syndrome coronavirus (MERS-CoV) since April
2012, and SARS-CoV-2 since December 2019 highlight the
danger of emerging (zoonotic) and highly pathogenic respiratory
viruses (Fouchier et al., 2003; Zaki et al., 2012; WHO, 2020c).
Two other coronaviruses, human coronaviruses (HCoV) NL63
and HKU1 were discovered in 2004 and 2005, respectively
(Fouchier et al., 2004; van der Hoek et al., 2004; Woo et al.,
2005). In 2005, Allander et al. described a new member of the
family Parvoviridae, human bocavirus (HBoV) (Allander et al.,
2005). The two new human polyomaviruses KI and WU (KIPyV,
WUPyV) were first discovered in 2007 (Allander et al., 2007;
Gaynor et al., 2007) and although often detected in samples, their
role in causality of respiratory illness is still under discussion
(reviewed in Jartti et al., 2012). In 2007, the human rhinovirus
group C (RV-C) was introduced when newly sequenced strains
differed significantly from the existing groups A and B (Lee et al.,
2007). Finally, avian influenza viruses (AIV) such as IAV H5N1,
H7N7, or H9N2 crossed the species barrier to infect humans
several times in the last years (reviewed in Kim et al., 2016).

Lab-based techniques still dominate the field of virus
diagnostics. Classical methods such as virus cultures, electron
microscopy, and serology have been complemented by nucleic
acid amplification tests (NAATs), sequencing (including next
generation sequencing), and different antigen detectionmethods.
Today, in most clinical settings, NAATs have replaced virus
cultures as the gold standard, due to their high specificity, faster
turnaround times, and absence of limitations posed by the need
for susceptible cell lines (Fox, 2007).

In contrast to lab-based tests, point-of-care tests (POCTs)
are performed at the site of sample collection (e.g., bedside,
physician’s office, or emergency department) and provide results
usually in<2 h (Basile et al., 2018; Vos et al., 2019). Furthermore,
they require only little hands-on time and no specific laboratory
training as most critical steps are automated in a single device.
The latter may range from handheld to benchtop size and is
not designed for high-throughput sample processing. POCTs
and other fast diagnostic tests performed in laboratories but
provide results within 1–2 h may be called near-POCTs. Prompt
identification of the causative pathogen may help the responsible
healthcare professional choosing the appropriate treatment

or take the right decisions in outbreak situations, regarding
hospitalization and quarantine (Brendish et al., 2015).

In this review, we provide a brief overview of currently
available POCTs for the diagnosis of emerging and new
respiratory viruses along with their advantages and limitations
and discuss recently published approaches and techniques with a
potential use in future POCTs.

COMMERCIALLY AVAILABLE TEST
SYSTEMS

For the diagnosis of commonly encountered respiratory
viruses such as IAV, influenza B virus (IBV), and RSV
many commercially available POCTs and near-POCTs
with different sensitivities and specificities for each virus
are available (Supplementary Table 1). However, a recent
meta-analysis has demonstrated that three newer generation
rapid multiplex polymerase chain reaction systems (mPCRs)
(bioMérieuxBioFire R© FilmArray R© RP, Nanosphere Verigene R©

RV+ test, and Hologic Gen-Probe Prodesse assays) are highly
accurate, though usually more expensive, and may provide
important diagnostic information for early identification of IAV,
IBV, and RSV (Huang H. S. et al., 2018; Rabold and Waggoner,
2019).

Diagnosis of emerging and novel viruses, including HBoV,
RV-C, coronaviruses (e.g., HCoV-HKU1, HCoV-NL63, SARS-
CoV-2) as well as specific subtypes of AIV (H5N1, H7N9,
H10N8) and reassortant IAV strains remains challenging
(Schuster and Williams, 2018; WHO, 2020a). The diagnosis of
most of these viruses is based on molecular techniques that can
only be performed at specialized referral centers. Recently, there
has been increased interest in using POCTs in other settings, such
as emergency departments, although implementation might be
hampered by the need for specific training (Bouzid et al., 2020).
NAATs have higher sensitivity than immunochromatographic
assays, but generally, they require a higher degree of technical
skills and training (Drancourt et al., 2016). Polymerase chain
reaction (PCR) remains the gold standard technique for the
diagnosis of AIV subtypes while WHO recommends against the
utilization of rapid tests in avian flu diagnosis (WHO, 2005;
Monne et al., 2008; Schuster and Williams, 2018). RV-C, is
typically detected from nasopharyngeal specimens using reverse
transcriptase PCR (RT-PCR) and specific species and serotypes
can be further identified by semi-nested PCRs or sequencing
(Bochkov et al., 2011; Jartti et al., 2012; Schuster and Williams,
2018).

Diagnosis of HBoV was based on the detection of the specific
IgM antibody along with a 4-fold increase of the IgG titer or low
IgG avidity indicative of seroconversion, but adaptive immune
response requires several hours or even days to develop, thus
the utility of such tests in acute settings is limited (Soderlund-
Venermo et al., 2009). As HBoV DNA persists in airway
secretions for months after an acute infection, quantitative
PCR along with serology are currently the preferred diagnostic
methods (Christensen et al., 2019). Viral DNAemia, mRNA
detection via RT-PCR, and antigen immunodetection assays have
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shown some promising results but further studies to define their
sensitivity, specificity, and applicability in clinical practice are
needed (Soderlund-Venermo et al., 2009; Christensen et al., 2010,
2013, 2019; Proenca-Modena et al., 2011; Xu et al., 2017).

The detection of KIPyV andWUPyV, found in secretion from
both symptomatic and asymptomatic patients, is based on PCR
and serology testing (Neske et al., 2010; Touze et al., 2010; Jartti
et al., 2012).

SARS-CoV-2, HCoV-NL63, and -HKU1 as well as HMPV
diagnosis is based primarily on RT-PCR methods (van den
Hoogen et al., 2004; Nichols et al., 2008; Jartti et al., 2012;
WHO, 2020a). No data is available for fluorescent antibody, rapid
cultures and enzyme immunoassay (EIA) diagnostic tests for
coronaviruses NL63 and HKU1, whereas fluorescent antibody
assays may be of some utility for HMPV (Nichols et al., 2008;
Jartti et al., 2012). For HMPV specifically, multiplex ligation-
dependent probe amplification (MLPA) on a nasopharyngeal
swab has high sensitivity and specificity rates (100 and 96%,
respectively) (Reijans et al., 2008; Panda et al., 2014; Hoppe et al.,
2016).

Available tests for the now extinct SARS-CoV include
antibody testing using an EIA and RT-PCR tests in respiratory,
blood, and stool specimens (CDC, 2004). For the detection of
MERS-CoV, that has its epicenter in the Arabian peninsula, the
United States Centers for Disease Control and Prevention (CDC)
and the WHO recommend sampling from the lower respiratory
tract and real-time RT-PCR (rRT-PCR) testing with specific
primers since this appears to be more sensitive than testing of
upper respiratory tract specimens (WHO, 2014b,c; CDC, 2015).

NAATs have been proven to be highly accurate and easily
scalable tests during large outbreaks of novel or emerging viruses,
like the SARS-CoV-2 pandemic. Rapid genome sequencing
analysis accommodates the fast development of reliable in-house
and commercially available NAATs reagents shortly after an
outbreak onset (CDC, 2020; WHO, 2020b).

INNOVATIVE APPROACHES FOR FUTURE
POCTs

Biosensors
Biosensors can be a reliable and cost-effective way to detect
specific pathogens in point-of-care settings. Different types of
sensors for rapid identification of respiratory viruses have been
developed recently. By using a gold-coated array of carbon
electrodes, the authors were able to detect MERS-CoV spike
protein in the picogram range within 20min (Layqah and Eissa,
2019). This electrochemical assay is based on the competitive
binding of a MERS-CoV antibody either to the virus in the
sample or to the immobilized antigen on the electrode, which
can be measured by a reduced peak current through the chip. In
theory, this technique can be easily expanded to simultaneously
detect multiple viruses, however, its diagnostic performance
needs to be validated with the use of patient samples.

Different types of biosensors for AIV detection use nanobio
hybrid materials (reviewed in Lee et al., 2018). In one of those
approaches, a DNA probe coupled to a field-effect transistor
enabled detection of target DNA down to 1 fM (Lin et al.,

2009). Another sensitive technique is based on surface plasmon
resonance (SPR), in which biomolecules bound to a metal
surface lead to the reduction of the reflection of an incident
light beam (Tang et al., 2010; Chang et al., 2018). With a new
antibody against a recombinant AIV H7N9, the authors were
able to reach a detection limit of a few hundred copies per
mL nasal fluid within 10min of processing time. Although still
experimental, the characteristics of this approach render it a
promising candidate for a future rapid POCT.

New Techniques and Prototypes
In a capillary convective PCR (CCPCR), the reagents circulate
across a temperature gradient in a simple capillary tube, which
allows run times shorter than 30min (Chou et al., 2011).
Together with a self-made dipstick detection method, this
principle was already used to test for non-respiratory viruses like
hepatitis C virus (Zhang et al., 2013, 2014). Zhou et al. integrated
this method into a 1.5 kg device for the automation of the
detection of different IAV strains (Zhuo et al., 2018). Although
fast and sensitive, manual RNA extraction limits the use as POCT
so far. Hardick et al. presented another portable NAAT device not
only for the detection of IAV, but also for IBV, RSV, and MERS-
CoV. It is based on a RT-PCR in microfluidic cards but likewise
lacks automated nucleic acid extraction (Hardick et al., 2018).

Alternatively to nucleic acid-based techniques, giant
magnetoresistive (GMR) biosensors function comparable to
an enzyme-linked immunosorbent assay but use magnetic
labels instead of enzymes or fluorophores coupled to detection
antibodies (Hall et al., 2010). With such a sensor, Wu et al.
constructed a handheld device which, in connection with
a computer or smartphone, was able to detect IAV H3N2 in
purified and disrupted virus solutions (Wu et al., 2017). Although
H3N2 strains are circulating already since 1968 in the human
population (Smith et al., 2004), this method is likely adaptable to
emerging AIVs with the use of appropriate capture antibodies.

By designing a prototype for a lateral flow assay for
approximately 5 US$, Huang et al. proved that the simultaneous
detection of IAV and IBV in swab samples is possible at very
low costs (Huang et al., 2017). However, the sensitivity of this
prototype needs significant improvements before it can be used
under clinical conditions. Instead of constructing a completely
new apparatus, Cui et al. used commercially available glucose
test strips together with specifically designed glucose-bearing
substrates to test for the cleavage activity of IAV neuraminidase
in spiked samples (Cui et al., 2017).

Although the majority of the presented approaches and
prototypes focuses on the detection of influenza viruses, most of
them can theoretically be applied to emerging or new viruses with
only minor changes.

Lab-Based NAATs With Potential Use as
Point-of-Care Applications
In comparison to PCRs, isothermal NAATs do not require
complex devices when working with extracted nucleic acids.
Reverse transcription strand invasion-based amplification (RT-
SIBA) and reverse transcription loop-mediated isothermal
amplification (RT-LAMP) are two examples which have been
used to detect e.g., HMPV (Song et al., 2014), IAV (Eboigbodin
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et al., 2016), and MERS-CoV (Huang P. et al., 2018). Wang et al.
went on to integrate seven RT-LAMP assays into a microfluidic
chip for the multiplex detection of different respiratory viruses
in a device weighing <3 kg (Wang et al., 2018). Another chip-
based system, named iROAD, uses reverse transcription-based
recombinase polymerase amplification (RT-RPA) and was able
to rapidly identify IAV, different HCoVs, and other respiratory
viruses in extracted nucleic acids (Koo et al., 2017).

DISCUSSION

Clinical Performance of POCTs
The development of new laboratory and point-of-care diagnostic
tests for influenza, RSV, and emerging respiratory viruses has
taken up pace in recent years. Healthcare professionals, hospital
managers, and laboratory directors will need to update and
re-evaluate best practices regularly.

The advancement of diagnostic capabilities may change the
way we identify, document, and communicate respiratory viral
infections in the future. Along with these developments, the
expectations of patients and healthcare professionals may change
as well, i.e., patients will want to know the responsible pathogen
and their clinical prognosis. With the development of specific
antiviral therapies and vaccines, new diagnostic algorithms
will be needed to ensure the highest quality of care while
containing costs.

From a viewpoint of quality of care and clinical management,
timely infection control, and the ability to act upon results,
the future will likely belong to portable, CLIA-waived rapid
diagnostic tests that take 10–20 min.

A key criterion for the evaluation of diagnostic tests will
be their clinical utility, i.e., their ability to identify the current
culprit for the patient’s symptoms, and to distinguish relevant
pathogen(s) from bystander pathogens. More research is needed
to correlate clinical outcomes and laboratory data.

A second concern will be the correct timing of diagnostic
testing with regards to a patient’s course of illness. The sensitivity
and positive predictive value of a diagnostic test depend on
specimen quality and virus load (which is usually higher
in children and early in the course of illness), duration of
viral shedding, and patient’s immune status. Future diagnostic
algorithms will need to consider these factors in addition to the
epidemiology of viruses in the respective season or region.

Advantages and Limitations of POCTs
The initial criticism of POCTs was directed toward a lack of
sensitivity and a high degree of variability in test results. Early
studies during the 2009/10 flu pandemic reported sensitivities
for influenza POCTs ranging from 20 to 70% for the same test
kit (Rath et al., 2012). In published evaluation studies, it was
not entirely clear whether POCTs were performed at the bedside
or whether samples were sent to the laboratory, which would
constitute a near-POCT. These methodological inconsistencies
also impaired the value of meta-analyses comparing the point-of-
care performance of different commercial tests (Chartrand et al.,
2015). The reported performance differences also hint to the
fact that the training and experience of the staff performing the
test have an impact. Procedural concerns were most pronounced

with early-stage lateral flow (“strip”) tests, where the result was
read manually. Second-generation antigen POCTs and modern
molecular POCTs achieve significantly higher reproducibility
and sensitivity through automation of key steps in the process.
In 2018, the FDA implemented new performance regulations
setting new sensitivity thresholds required for POCTs tomaintain
approval (FDA, 2017). As a result, only several influenza POCTs
were taken off the market. The role of regulators in setting quality
standards for POCTs cannot be underestimated (Zhang et al.,
2016; Azar and Landry, 2018).

In addition to the reliability of the POCT result itself, the
hands-on time and the time-to-result are still critical for user-
acceptance at the bedside. It is expected that future POCTs will
be more robust and easier to use.

As the majority of acute respiratory infections (ARI) is of viral
origin, these infections are common reasons for inappropriate
antibiotic use (Harris et al., 2016; Tief et al., 2016). Studies have
raised the expectation that expanded use of virus diagnostics
at the point-of-care may help to limit the use of antibiotics
(Bonner et al., 2003). The European Health Action Plan on AMR
(European Parliament, 2018) and theO’Neill Report on “Tackling
Drug-resistant infections globally” (O’Neill, 2016) both point to
rapid diagnostics as a key instrument in tackling AMR. Including
POCTs in antimicrobial stewardship programs might increase
their acceptance by physicians.

The ability to direct “the right treatment to the right patient
at the right time” facilitates precision medicine. In the future,
advanced virus diagnostics may be combined with biomarker
POCTs for the prediction of individual-level host responses to
further target treatment to those who are most likely to benefit
from it.

A major obstacle to expanding the use of POCTs is cost.
In fact, POCTs would be most impactful in settings where
the majority of early treatment decisions are made. The
current pricing schemes, however, seem too high for broad-
scale testing in the community and emergency departments.
In addition to pricing, reimbursement strategies need to
be reconsidered. Even in hospital emergency rooms, per-
capita standard reimbursements disincentivize the use of virus
diagnostics in patients with ARI. Up-to-date economic models
are needed to clarify the cost-effectiveness of different types
of POCTs.

The steepest increase in antimicrobial resistance is being
observed in low-middle income countries (LMIC) (WHO-
PAHO, 2018). For LMIC, portable POCTs with multi-modality
for known and emerging pathogens, or simple lab-based
instrumentation with no/minimal need for cold chain or
refrigeration of reagents, may be the most likely to succeed.

Priorities for the Development of New
POCTs
None of the currently commercially available POCTs covers
all viruses discussed here (Tables 1, 2, Supplementary Table 1).
To date, the same holds true for new technologies as well.
However, it is conceivable that these techniques may be adapted
to other respiratory viruses after having shown their usefulness
in practice. Especially biosensors have the potential for a wider
spectrum of applications. They also do not encounter the major

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 April 2020 | Volume 10 | Article 181

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


N
e
lso

n
e
t
a
l.

P
O
C
Ts

fo
r
E
m
e
rg
in
g
R
e
sp

ira
to
ry

V
iru

se
s

TABLE 1 | Selected commercial nucleic acid-based point-of-care tests (ordered by time to result).

POCT commercial name Method/Time to

result (min)

Detection of new and emerging respiratory viruses: Sensitivity (%)/Specificity(%)

HBoV SARS-CoV SARS-CoV-2 MERS-CoV HCoV-HKU1 HCoV-NL63 KIPyV, WUPyV HMPV RV-C Emerging IAV

Cepheid Xpert® Xpress Flu/RSVb,c1 rRT-PCR/20-30 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09, H3N2, AIV (H5N2,

H5N8)

97.8/100

MesabiotechTM AcculaTM Influenza

A&B and RSVa2

RT-PCR/30 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09, H3N2

97/94

Sekisui Diagnostics SilarisTM

Influenza A&B Test3
PCR/30 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09, H3N2

97/94

Cepheid Xpert® Flu/RSV XCb,c rRT-PCR/40-63 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09, H3N2, AIV (H5N2,

H5N8)

•

(Cepheid Xpert® Xpress

SARS-CoV-2, 2020)e
rRT-PCR/ 45 N/A N/A • N/A N/A N/A N/A N/A N/A N/A

BioMérieuxBioFire® FilmArray®

Respiratory Panel 2 plus4
Endpoint melt

curve analysis/45

N/A N/A N/A • 95.8/99.8 95.8/100 N/A 94.6/99.2 N/A H1N1pdm09, H3N2

88.9-100/99.6-100

Quidel® Solana® Respiratory Viral

Panel Influenza A&B and RSV &

HMPVa5

RT-HDA/45 N/A N/A N/A N/A N/A N/A N/A • N/A Strains not specified

•

DiaSorin SimplexaTM Flu A/B & RSV

Direct Kit6
RT-PCR/60 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09, H3N2, >20 AIVs, 2

swine influenza strains

97/97.9

Cepheid Xpert® Flub rRT-PCR/75 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09

97.1-100/99.6

Luminex Verigene® RP Flex Test7 RT-PCR/<120 N/A N/A N/A N/A N/A N/A N/A • N/A H1, H3

•

GenMark Dx® ePlex® Respiratory

Paneld
PCR/<120 N/A N/A N/A N/A • • N/A N/A N/A H1N1pdm09, H3N2

•

(GenMark Dx ePlex® SARS-CoV-2

Test, 2020) Teste
rRT-PCR/<120 N/A N/A • N/A N/A N/A N/A N/A N/A N/A

(QIAGEN, 2019) Panel v2 rRT-PCR/120 100/99.5 N/A N/A N/A 100/100 91.7/100 N/A 100/100 N/A H1N1pdm09, H3N2

91.7-100/100

1Cepheid Xpert Flu. Product Page. Available online at: https://www.cepheid.com/en/cepheid-solutions/clinical-ivd-tests/critical-infectious-diseases/xpert-flu (accessed September 13, 2019).
2MesabiotechTM AcculaTM Flu A/FluB Test Package Insert. Manual. Available online at: https://static1.squarespace.com/static/5ca44a0a7eb88c46af449a53/t/5cddacb3f9689300010d93c3/1558031549318/LBL-60010$+$Accula$+

$Flu$+$A$+$Flu$+$B$+$Package$+$Insert$+$EU.pdf (accessed November 10, 2019).
3Sekisui Diagnostics SilarisTM Influenza A&B Test. Manual. 481. Available online at: https://sekisuidiagnostics.com/product-documents/60012-d_v1.5_silaris_ifu.pdf (accessed November 10, 2019).
4Biomerieux BIOFIRE® FILMARRAY® Panels. Product Page. Available online at: https://www.biomerieux-diagnostics.com/filmarrayr-respiratory-panel (accessed September 13, 2019).
5Quidel® Solana Respiratory Viral Panel. Product Page. Available online at: https://www.quidel.com/molecular-diagnostics/respiratory-viral-panel (accessed November 10, 2019).
6DiaSorin Simplexa® Flu A/B and RSV Direct Kit. Product Page. Available online at: https://molecular.diasorin.com/us/kit/simplexa-flu-ab-rsv-direct-kit/ (accessed November 10, 2019).
7Luminex Verigene® Respiratory Pathogens Flex Test. Product Page. Available online at: https://www.luminexcorp.com/respiratory-pathogens-flex-test/ (accessed September 13, 2019).

N/A, Virus not included in this assay; • Virus included, but specificity/sensitivity not available; RT-HAD, Reverse transcriptase helicase-dependent amplification; RT-PCR, Reverse transcriptase polymerase chain reaction; rRT-PCR,

real-time RT-PCR; HBoV, Human bocavirus; (H)CoV, (Human) coronavirus; KI/WUPyV, KI/WU polyomavirus; HMPV, Human metapneumovirus; RV-C, Human rhinovirus type C; IAV, Influenza A virus; IBV, Influenza B virus; H1N1pdm09,

Influenza A H1N1 pandemic 2009; AIV, Avian influenza virus; RSV, Respiratory Syncytial virus.

Please refer to Supplementary Table 1 for detailed reliability parameters.
aTwo different kits for Influenza (A, B) and RSV; bPerformance reviewed in Basile et al. (2018); cDescribed in Loeffelholz et al. (2019); dPerformance tested by Babady et al. (2018); eFor use under the Emergency Use Authorization

(EUA) only.
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TABLE 2 | Selected commercial antigen-based point-of-care tests (ordered by time to result).

POCT commercial name Method/Time

to result (min)

Detection of new and emerging respiratory viruses: Sensitivity (%)/Specificity(%)

HBoV SARS-CoV SARS-CoV-2 MERS-CoV HCoV-HKU1 HCoV-NL63 KIPyV,

WUPyV

HMPV RV-C Emerging IAV

BD VeritorTM System Influenza

A+B and RSVa,b8

LFIC/Digital

immunoassay/

10-11

N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09, H3N2, AIV (H5N1,

H5N2, N7N9)

89.6-90.2/99.07

Abbott SD BIOLINE Influenza Ag

A/B/A(H1N1) pandemicb9
CI/10-15 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09

54.5-91.8/96.8-100

Princeton BioMeditech BioSign®

Rapid Flu A+B Antigen Panel

Test10

ICMI/10-15 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09, H3N2v, AIV

(H5N1, H7N9)

89.2/99.4

Quidel® QuickVue® Influenza

A+B and RSVa,b11

LFIC/10-15 N/A N/A N/A N/A N/A N/A N/A N/A N/A H3N2, variable performance

against other strains

20-98/89-100

Abbott Alere BinaxNOW®

Influenza A+B and RSVa,b12

LFIC/15 N/A N/A N/A N/A N/A N/A N/A N/A N/A H3

44.8-83/93-100

Quidel® Sofia® Influenza A+B

Fluorescent Immunoassay13
FIA/15 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09, H3N2, variable

performance against other

strains

90-99/95-96

Thermo ScientificTM XpectTM

Influenza A+B and RSVa14

LFIC/15 N/A N/A N/A N/A N/A N/A N/A N/A N/A H1N1pdm09, H3N2, AIV (H5N1,

H7N9, H9N2)

92.2/100

ArcDia mariPOC® Respib15 PE/20-120 76.5/100 N/A N/A N/A N/A N/A N/A 78/100 N/A H1N1v, H2N2, H3N2, AIV

(H5N1, H7N9, H9N2, H7N3)

92.3-100/99.8-100

8BDVeritorTM Flu A+B. Product Page. Available online at: https://www.bd.com/en-us/offerings/capabilities/microbiology-solutions/point-of-care-testing/veritor-system (accessed September 13, 2019).
9Abbot SD BIOLINE Influenza Ag A/ B/ A(H1N1) Pandemic. Product Page. Available online at: https://www.alere.com/en/home/product-details/sd-bioline-influenza-ag-aba-pandemic.html (accessed September 13, 2019).
10Princeton BioMeditech BioSign® Flu A+B. Product Page. Available online at: http://pbm.pequod.com/pages/products/biosign_flu_ab (accessed November 10, 2019).
11Quidel® QuickVue® Influenza A+B Test. Manual. Available online at: https://www.quidel.com/sites/default/files/product/documents/EF1350313EN00_1.pdf (accessed September 13, 2019).
12Abbot Alere Binax NOW®. Product Page. Available online at: https://www.alere.com/en/home/products-services/brands/binaxnow.html (accessed September 13, 2019).
13Quidel® Sofia® Influenza A+B FIA. Manual. Available online at: https://www.quidel.com/sites/default/files/product/documents/EF1219109EN00.pdf (accessed September 13, 2019).
14Thermo ScientificTM XpectTM Flu A and B, and RSV. Brochure. Available online at: https://assets.thermofisher.com/TFS-Assets/MBD/brochures/Xpect-Flu-RSV-Brochure-991-135-ENG.pdf (accessed November 10, 2019).
15ArcDia mariPOC® respi. Brochure. Available online at: https://www.arcdia.com/wp-content/uploads/2019/05/2019-03-mariPOC-Respi-brochure-EN.pdf (accessed September 13, 2019).

N/A, Virus not included in this assay; FIA, Fluorescent immunoassay; LFIC, Lateral flow immunochromatography assay; CI, Chromatographic immunoassay; PE, Photofluorescent excitation; ICMI, Immunochromatographic membrane

immunoassay; HBoV, Human bocavirus; (H)CoV, (Human) coronavirus; KI/WUPyV, KI/WU polyomavirus; HMPV, Human metapneumovirus; RV-C, Human rhinovirus type C; IAV, Influenza A virus; H1N1pdm09, Influenza A H1N1 pandemic

2009; AIV, Avian influenza virus; IBV, Influenza B virus; RSV, Respiratory Syncytial virus.

Please refer to Supplementary Table 1 for detailed reliability parameters.
aTwo different kits for Influenza (A, B) and RSV; bPerformance reviewed in Basile et al. (2018).
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http://pbm.pequod.com/pages/products/biosign_flu_ab
https://www.quidel.com/sites/default/files/product/documents/EF1350313EN00_1.pdf
https://www.alere.com/en/home/products-services/brands/binaxnow.html
https://www.quidel.com/sites/default/files/product/documents/EF1219109EN00.pdf
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limitation of NAATs as POCTs: the extraction of nucleic acids (Ali
et al., 2017). For these tests, even less obvious complications, like
the stability of the plastic materials against required chemicals,
have to be overcome for future highly specific nucleic acid-
based POCTs.

Any ideal POCT should fulfill the ASSURED criteria of the
World Health Organization to be applicable in resource-limited
settings (Mabey et al., 2004). Currently, this is most likely true
for tests based on lateral flow immunochromatography but
coming improvements e.g., in miniaturization and battery
capacity may facilitate the use of other test principles
(Basile et al., 2018).

While economic benefits of POCTs and better outcomes for
the patients are still discussed, it is likely that these tests will
gain further importance with decreasing processing costs and
improved robustness.
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