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Malassezia is the most prevalent fungus identified in the human skin microbiota; originally

described at the end of the nineteenth century, this genus is composed of at least 14

species. The role of Malassezia on the skin remains controversial because this genus

has been associated with both healthy skin and pathologies (dermatitis, eczema, etc.).

However, with the recent development of next-generation sequencing methods, allowing

the description of the fungal diversity of various microbiota, Malassezia has also been

identified as a resident fungus of diverse niches such as the gut or breast milk. A

potential role for Malassezia in gut inflammation and cancer has also been suggested

by recent studies. The aim of this review is to describe the findings on Malassezia in

these unusual niches, to investigate what is known of the adaptation of Malassezia to

the gut environment and to speculate on the role of this yeast in the host physiology

specifically related to the gastrointestinal tract.
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INTRODUCTION

Malassezia is the major component of the fungal skinmicrobiota of various mammals, representing
more than 90% of the fungal population in most skin niches (Dawson, 2019). As such, Malassezia
yeasts have been associated with human skin disorders (Gupta et al., 2004) such as dermatitis
(Gaitanis et al., 2008; Darabi et al., 2009; Barac et al., 2015), pityriasis versicolor (Magiatis et al.,
2013), or dandruff (Gemmer et al., 2002). The mechanisms by which Malassezia cells trigger
such diseases are not yet clearly identified, but the current hypothesis is that the diseases can
be induced either by direct invasion of the tissue by fungal filaments or indirectly through
immunological and metabolic mechanisms induced by the yeast. While one can consider that
Malassezia is perfectly adapted to the skin environment, increasing data suggest that this genus
can also be found in other body compartments (Theelen et al., 2018). The development of next-
generation sequencing (NGS) methods have overcome the problems associated with culture-
based methods, allowing the identification of Malassezia in surprisingly diverse localizations,
such as the digestive tract, or in very unexpected locations with the identification of Malassezia-
like organisms in deep-sea vents, for instance (Amend, 2014). The gut microbiota is not only
composed of microorganisms such as bacteria, archaea, viruses, and protozoans but also colonized
by numerous fungal cells (Sekirov et al., 2010). The role of fungal gut microbiota in host
homeostasis, as well as in several physio-pathologic settings, is now clearly identified (Sekirov et al.,
2010; Limon et al., 2017; Richard and Sokol, 2019). However, many questions remain regarding
the specific fungal species involved in this role. In this review, we will focus on recent studies
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that described the identification of Malassezia in various non-
skin environments, and we will particularly concentrate on the
potential role ofMalassezia in gut health and diseases (Chen et al.,
2011; Hamad et al., 2012; Gouba et al., 2013; Suhr et al., 2016;
Hallen-Adams and Suhr, 2017).

IDENTIFICATION OF MALASSEZIA IN
NICHES UNRELATED TO THE SKIN

Although it has been long regarded as a strictly skin-located
fungus,Malassezia is now regularly identified in various samples
using NGS methods. The culture of Malassezia is known to be
difficult, and this is probably a reason for the very low level
ofMalassezia identified using culture-dependent methods under
conditions where this genus is not highly abundant.With culture-
independent methods, the unexpected diversity of fungi has
been unraveled, and Malassezia strains have been identified in
unforeseen environments. Thus, Malassezia strains have been
found in diverse localizations such as murine (Limon et al.,
2019) and human (Suhr et al., 2016; Hallen-Adams and Suhr,
2017) gut, human breast milk (Boix-Amorós et al., 2017), and
internal organs, including the central nervous system (Alonso
et al., 2017, 2018a,b). Moreover, Malassezia DNA has also been
found in more diverse ecosystems, such as marine environments
(Amend, 2014), but this field is beyond the scope of this review,
although it opens a very interesting research axis. Indeed, culture-
independent studies highlighted that Malassezia DNA nearly
identical to human-associated Malassezia DNA can be found in
various habitats (Amend, 2014), such as in deep-sea sediments,
in corals, in lobster guts or on the exoskeleton of nematodes,
but more sequences and taxonomic studies are needed to allow
a complete understanding of the Malassezia genus and its
distribution on earth.

Before describing the data gathered so far on Malassezia
identification in niches unrelated to the skin it is important to
raise the question of the samples contamination. Fungi represent
30% of the skin microbiota and Malassezia strains are by far
the majority on the skin, consequently representing a probable
cause of samples contamination either during the sampling
or of the samples afterward in the lab. These questions have
been raised by some authors in their study and they provided
several solutions:

- Contamination after sampling: This is the easiest problem to
solve and a problem common to all NGS experiments. Mostly
the experimentators will use internal controls, and sequenced
them, like the “reagent-only” controls, but one can also see
particular attention directed to the tip used, the room for
extraction, the disposable supplies, etc. (Alonso et al., 2018a).
Thus, the global microbial contamination would be fairly
reduced and contaminating sequences can be removed from
the sequences upstream the analyze pipeline.

- contamination during sampling: That matter on the other
hand is much more difficult to work around. The main
solutions that have been used in the experiments are: (i)
the way of preparing the area before sampling like cleaning
thoroughly the area (breast, rectum, etc.) prior to sample

collection (Boix-Amorós et al., 2019), or (ii) getting samples
directly from explant in an areas that were never in close
contact with the skin like getting the mucosa-associated
microbiota or from the organ itself (Liguori et al., 2016; Aykut
et al., 2019). This matter, however, has not been strictly tackled
especially regarding Malassezia in non-skin niches which is
not totally surprising since this is a young area of research, but
this is certainly an area of improvement.

Thus, we need to keep in mind that, a part of Malassezia
identified might comes from the skin during samples collection
however, we can also consider the fact that from the numerous
reports, from very different sampling method, the identification
of Malassezia by numerous laboratories is very unlikely to be
only sample contamination. However, we will see further in this
review that colonization via the skin is a very likely explanation
of howMalassezia first enter the different niches.

Malassezia in Human Breastmilk
An analysis of the composition of the fungal microbiota
present in the human breastmilk revealed two main pieces
of information: (i) fungi are much more abundant in milk
than bacteria compared to what is observed in many other
niches. Indeed, fungi represent 30% of the total skin microbial
population, while fungi represent ∼0.1% in the gut for
instance. (ii) Among the fungal strains, more than 40% of the
total genera identified by pyrosequencing are represented by
Malassezia strains (Boix-Amorós et al., 2017, 2019). Interestingly,
this colonization was identified worldwide with samples from
different continents (Spain, China, South Africa, and Finland).
Malassezia strains, particularly M. globosa and M. restricta, were
detected in all the samples analyzed (Boix-Amorós et al., 2017).
The authors ruled out the possibility that their samples were
contaminated by the skin microbiota but speculated that the
primary source ofMalassezia in breast milk might be the possible
transfer of fungi from the skin surrounding the breast or from
the baby’s mouth or skin to the breast milk. To date, no studies
have followed the milk microbiota from the early production
of the milk to later on in order to elaborate a possible route
of colonization.

Malassezia in the Central Nervous System
In the last 3 years, a single team has raised the possibility
of the involvement of fungi in different neurologic diseases,
such as Alzheimer’s disease, multiple sclerosis, or amyotrophic
lateral sclerosis (Alonso et al., 2017, 2018a,b). Very surprisingly,
using NGS methods, Alonso and coworkers identified fungi
and bacteria in the brain tissue of healthy subjects and of
patients and showed that in some cases, specific fungal strains
seemed more abundant in the affected brains than in the
brains from healthy donors. No data in these publications are
provided on the actual quantities of these microorganisms in
the brain, and this information would be important to have
in the future. Interestingly, among the fungal strains identified,
a large percentage of samples showed the presence of DNA
from Malassezia strains, suggesting possible colonization by
Malassezia in the central nervous system of patients (Alonso
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et al., 2018b). Very importantly these data have to be confirmed
by independent teams, along with the addition of quantitative
data in order to evaluate a potential causal link between
this Malassezia colonization and the diseases that has not yet
been proven.

Malassezia in Other Human Body Sites
The presence of Malassezia in different human niches in healthy
patients is controversial, particularly its colonization of the
mouth (Ghannoum et al., 2010; Dupuy et al., 2014). On the other
hand, in infection contexts, Malassezia strains have been more
regularly identified in blood, urine, vagina, and lung (Theelen
et al., 2018). For instance, M. furfur (Kaneko et al., 2012; Iatta
et al., 2018) was identified in blood and in central venous
catheters in 4% of neonate patients.

Malassezia as a Member of the Gut
Microbiota From Healthy Subjects
In 2017, Dawson, Boekhout and coworkers asked in their review
whetherMalassezia strains were indeed part of the gutmicrobiota
(Theelen et al., 2018). Three years later, an increasing number of
publications reported the identification of Malassezia in healthy
fecal samples (Chen et al., 2011; Hamad et al., 2012; Gouba et al.,
2013; Suhr et al., 2016; Hallen-Adams and Suhr, 2017). At steady
state, the Malassezia genus has been reported to be the second
most abundant genus among all human stools analyzed by
internal transcribed spacer (ITS)-gene sequencing in proportions
from 2 to 4% (Gouba et al., 2013; Suhr et al., 2016; Raimondi
et al., 2019), while M. restricta (Suhr et al., 2016; Nash et al.,
2017; Auchtung et al., 2018) (more than 80% and can reach 3.8%
of the total abundance Raimondi et al., 2019) and M. globosa
(Nash et al., 2017) (36%) represent the most abundant species.
Moreover, M. pachydermatis (Chen et al., 2011; Hamad et al.,
2012; Gouba et al., 2013),M. restricta (Hamad et al., 2012; Gouba
et al., 2013), and M. globosa (Hamad et al., 2012; Gouba et al.,
2013) were identified by molecular detection (specific primers
18S Chen et al., 2011; Hamad et al., 2012 or JPD1/JDP2 Gouba
et al., 2013) and by culture media isolation (Dixon agar medium
Gouba et al., 2013). The presence ofMalassezia living cells and a
large amount of Malassezia DNA found in the gut content have
also been associated with the intestinal mucosa (Liguori et al.,
2016), which strongly suggested that this genus has the capacity
to at least survive in the intestinal environment. The growth or
at least survival of Malassezia suggested that some Malassezia
strains found favored culture conditions within the intestine.

DIVERSITY AND GROWTH CONDITIONS
OF MALASSEZIA

As mentioned above, Malassezia strains are mostly found on the
skin of humans (Findley et al., 2013) and mammals (Cabañes
et al., 2007; Velegraki et al., 2015) suggesting specific growth
conditions in vivo: temperature of ∼33◦C, aerobic conditions,
and low nutrient availability. However, with the identification
of Malassezia strains in niches very different from the skin (see
Table 1), such as the gut, questions have arisen regarding how

TABLE 1 | Compartments where Malassezia were identified from and the

percentage of the fungal microbiota.

Compartments Malassezia (% of fungal

microbiota)

Brain 0.5 (Alonso et al., 2018b)

Gut 2–4 (Gouba et al., 2013; Suhr et al.,

2016; Raimondi et al., 2019)

Lung No data available in healthy subject

Milk 20–50 (Boix-Amorós et al., 2019)

Mouth 13–96 (Dupuy et al., 2014)

Skin 50–80 (Dawson, 2019)

Urine No data available

Vagina No data available

this fungus can adapt to such various environmental conditions
of growth.

Malassezia Growth on the Skin
TheMalassezia genus contains at least 14 species (Gaitanis et al.,
2012; Dawson, 2019), among which M. globosa, M. restricta, M.
sympodialis, and M. furfur are the most commonly identified
species (Ashbee, 2007; Tajima et al., 2008) andM. pachydermatis
is the only lipid-independent fungus (Ashbee, 2007). Indeed, one
of the main physiological traits of this genus is the inability of
almost all Malassezia strains to synthesize fatty acids (Shifrine
and Marr, 1963) de novo. Consequently, in vivo, Malassezia
strains require an external source of lipids for growth. This
dependency is not a problem on the skin; indeed, skin epithelium
layers can produce lipid-rich sebum mostly from sebaceous
glands, which will provide a suitable source of long-chain fatty
acids for optimal Malassezia growth (Gaitanis et al., 2012).
Consequently, Malassezia has developed a large set of enzymes
that digest these compounds with lipases and phospholipases
(Velegraki et al., 2015).

This physiological constraint can explain the distribution of
Malassezia on the body surface: sebum-rich areas such as the
head, arms, legs, and torso are rich inMalassezia strains, while the
other areas of the body show lower abundance. More specifically,
M. restricta is predominant on the forehead and inside and
outside of the ears, and M. globosa is predominant on the back,
occiput, and groin (Theelen et al., 2018). Accordingly, on the
foot, which is a very different environment by many parameters
(low level of sebum, humidity, skin type, etc.), the colonization
of fungi is much more diverse. As a consequence, Malassezia
is not the predominant genus in the foot (Byrd et al., 2018),
and the foot fungal community seems much more variable over
time; this result possibly explains the higher frequency of fungal
infections observed in environments with no true homeostasis,
leaving colonization chances for opportunistic microorganisms
(Findley et al., 2013).

From the Human Skin to the Gut
These observations do not explain the possible colonization of
the intestinal tract byMalassezia strains. The first question is the
source of colonization. As observed above,Malassezia represents
a large proportion of the breastmilk mycobiota. Indeed, human
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milk is composed of 39 g/L fat (Jensen, 1999), and the majority
of lipids are triglycerides and fatty acids. We can assume that
Malassezia strains can use these lipid sources for their own
growth, even if no clear correlation was found between the
Malassezia genus and fat (Boix-Amorós et al., 2017). We can
consider that the breast milk can be one of the entry points
during primo-colonization, but breastfeeding in the world is far
below 50%, so this cannot be the only explanation (Victora et al.,
2016). Logically since Malassezia is in high concentration on the
skin, we can hypothesize that simple transfer from our own skin
microbiota can be part of the colonization process.

Thus, the actual survival or even development of Malassezia
cells within the gut remains a source of interrogations.Within the
gut, three main parameters differ from the skin: (i) the absence of
sebum, the source of lipids, (ii) the higher temperature, and (iii)
the low level of oxygen.

Lipids
One can consider that the absence of sebum should not be amajor
problem since many other sources of lipids are available along
the gut. For instance, bile acids synthesized by hepatocytes and
stored in the gallbladder as bile salts are regularly poured into the
intestine to allow the emulsion of fat, making lipids available for
host cells and microorganisms.Malassezia fungi can thus use this
source of lipids. Thus,Malassezia strains should be able to obtain
enough sources of lipids within the gut for their growth using
molecules coming from the diet or from other microorganisms
in the intestinal microbiota.

Temperature
While the temperature forMalassezia growth is often considered
to be restricted to the skin temperature (33◦C), Malassezia
isolated from hair follicles and sebaceous glands can grow in an
environment slightly different from the surface of the cutaneous
layer, with a slightly higher temperature and lower oxygen
concentration. In accordance with this observation, numerous
data have shown that most Malassezia strains can grow at 37◦C
or above, with a maximum temperature identified at ∼40–41◦C
(Gaitanis et al., 2012).

Oxygen
For microorganisms, a low oxygen concentration can be a
potent inhibitor of growth, but again, this might not represent
a strong challenge for Malassezia strains. The level of oxygen
is not constant along the intestine but follows a decreasing
gradient from the mouth to the rectum (Espey, 2013); thus,
Malassezia might find parts of the gut with suitable conditions
for development. As stated above, the observation of growth in
follicles and sebaceous glands supports a certain flexibility in
terms of the levels of oxygen needed forMalassezia.

Reports on the growth capacity of Malassezia strains in
anaerobic conditions are sparse and do not give a general or
specific overview for each species. The most often cited work is a
publication in 1981 in Sabouraudia from two Sweden researchers,
Faergemann and Bernander, describing the microaerophilic and
anaerobic growth of Pityrosporum species (Faergemann and
Bernander, 1981). Pityrosporum andMalassezia were two names
given to the same fungi before Malassezia was chosen in 1996

(Dolenc-Voljč, 2017). In this study (Faergemann and Bernander,
1981), the authors tested only M. furfur, M. sympodialis, and
M. pachydermatis in different media and with different levels
of oxygen. They concluded that the strains were able to grow
in microaerophilic and anaerobic conditions but that anaerobic
growth was much weaker with slow growth and very small
colonies. However, a recent study reported thatM. pachydermatis
is unable to grow under anaerobic conditions, which contradicted
the data from the Swedish team suggesting thatM. pachydermatis
might have the capacity to grow under these conditions but that
the growth is clearly dependent on many environmental factors
that we do not master and understand yet (Tylicki et al., 2008)
and can also simply depends on strains variability. It is well-
known that it is difficult to grow Malassezia strains in vitro
under laboratory conditions. In addition, as Malassezia form
aggregates and grow better when they are not isolated on a plate,
the evaluation of the CFU as well as using counting cells under
the microscope is almost impossible. Altogether, this probably
explains the lack of specific and quantitative information about
growth under anaerobic conditions.

Youngchim et al., while studying the hyphae formation of
M. furfur, used microaerophilic conditions (anaerobic jar) for
the induction of morphogenesis, but no data are available on
the growth rate under these conditions (Youngchim et al.,
2013). However, it seems that low levels of oxygen induce
Malassezia morphogenesis, which is an interesting feature that
can participate in the colonization of this strain in the human
epithelium. Indeed, germ tubes and hyphae are known to be
penetrating structures that can help Malassezia cross epithelial
barriers (Tati et al., 2016). Consequently, Malassezia hyphae
might help fungal cells reach areas rich in nutrients over the
highly keratinized top layers of the skin (Brand, 2012).

Altogether, these data suggest that althoughMalasseziamainly
localizes with the skin microbiota, this fungal microorganism
has the capacity to at least survive within the gut. However,
the resistance to acidic pH, for example, has not been clearly
documented, so thorough characterization of each Malassezia
species is still needed.

FUNGAL GUT MICROBIOTA

In the past few years, the gut microbiota has become a key
player in human health studies. When the gut microbiota is
described, it tends to be reduced to its bacterial population
only. Indeed, bacteria represent ∼99.1% of the population
established in the colon (Qin et al., 2010). However, technological
advances, such as NGS, have allowed deeper investigation of
the microbial population and have revealed that the microbiota
is also populated by archaea, viruses, protozoans and 0.01–
0.1% fungi (Qin et al., 2010; Huffnagle and Noverr, 2013;
Nash et al., 2017). In addition, changes in the composition
of fungal gut microbiota, the mycobiota, have been associated
with several gut-related diseases, such as inflammatory bowel
disease (IBD) (Chehoud et al., 2015; Liguori et al., 2016; Sokol
et al., 2017), irritable bowel syndrome (Botschuijver et al., 2017),
colorectal cancer (Gao et al., 2017), and alcoholic liver disease
(Yang et al., 2017).
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Fungal Gut Colonization
The current theory is thatmost fungi transit through the digestive
tract without being able to implant. As with bacteria, fungi can
primo-colonize the intestine at birth (Bliss et al., 2008; Nagata
et al., 2012) and during breastfeeding (Nagata et al., 2012; Boix-
Amorós et al., 2017); then, they can simply be brought by food,
the respiratory tracts or the contacts between the mouth and
the skin (Schulze and Sonnenborn, 2009; Koh, 2013). Indeed,
on the skin, fungi represent 5–10% (Byrd et al., 2018) of the
microbial population, consequently representing a large reservoir
for colonization. Additionally, food is an important source
of fungi, which play an important role in the transformation
processes during food preparation and can be ingested in large
quantities. There is no doubt, however, that there are huge
differences between continents or even countries depending
on their food cultural habits. Nevertheless, it has been shown
that some species can survive in this specific environment and
manage to adhere to human epithelial cells more effectively and
thus persist in the intestine, which is a characteristic of the
Candida genus, such as C. albicans (Raimondi et al., 2019). The
fact that a strain can persist or only transit in the body does not
account for its capacity to influence host health. A good example
is the positive effect of Saccharomyces boulardii CNCM I-745 on
antibiotic associated diarrhea and acute gastroenteritis, since S.
boulardii is known to be unable to settle in the human gut but is
cleared in 2 to 5 days (Buts and De Keyser, 2006).

The mycobiota appears to be relatively stable along the
digestive tract: from 103 (Darabi et al., 2009) in the stomach
to up to 105–6 (Gaitanis et al., 2008; Magiatis et al., 2013)
microorganisms per gram of content in the colon (Slmon and
Gorbach, 1984). The bacterial microbiota abundance increased
dramatically from the stomach to the colon, from 102 (Gupta
et al., 2004) in the stomach to up to 1012 (Richard and
Sokol, 2019) microorganisms per gram of content in the colon
(Slmon and Gorbach, 1984). As such, the fungal to bacterial cell
abundance ratio is variable from the stomach to the colon and
can be much more favorable to fungi in the upper digestive tract.
Further investigations are thus needed in these compartments
where fungi may have a stronger influence on host health.

Composition and Diversity of the
Mycobiota
The composition of the mycobiota, as the rest of the gut
microorganisms, varies according to the environment (Suhr et al.,
2016), diet (Hoffmann et al., 2013; David et al., 2014; Hallen-
Adams and Suhr, 2017; Heisel et al., 2017; Yang et al., 2017),
sex (Markle et al., 2013; Strati et al., 2016; Borges et al., 2018),
and health of the host (Richard et al., 2015; Nash et al., 2017;
Sokol et al., 2017). There are two major approaches to investigate
the gut mycobiota: culture-dependent (Gouba et al., 2013;
Becker et al., 2014; Borges et al., 2018) or culture-independent
methods (Qin et al., 2010; Donovan et al., 2018). Culture-
dependent methods have the strong advantage of resulting in a
microorganism that can be used directly either in interactions
with cells or for metabolite production, for instance. However,
this method allows only the isolation of a very low percentage
of living organisms in samples for simple technical reasons: the
media, pH, oxygenation, or temperature may not be optimized.

On the other hand, culture-independent methods are much
more efficient for the identification of a large percentage of
the microorganisms present with fewer technical constraints.
To analyze the fungal population with a culture-independent
method, the major targets are the internal transcribed sequences
(ITSs) ITS1 and ITS2 (Huffnagle and Noverr, 2013; Tang J. et
al., 2015; Wang et al., 2015; Donovan et al., 2018; Yang et al.,
2018). These regions are highly divergent between fungi and
can even allow identification to the fungal species level; for
further information, refer to Richard and Sokol (2019). However,
some strains have been identified by culture-dependent methods
and not by culture-independent methods (Hamad et al., 2017;
Richard and Sokol, 2019), revealing that both methods show
advantages and limitations (Richard and Sokol, 2019) and that
they remain complementary for the exhaustive identification of
the intestinal mycobiota.

From these diverse techniques, we have concluded so far that
the major phyla of the intestinal mycobiota are Ascomycota
and Basidiomycota (Suhr et al., 2016; Nash et al., 2017; Borges
et al., 2018; Raimondi et al., 2019), with a much lower
abundance of Zygomycetes (Borges et al., 2018). The diversity
of the mycobiota is relatively low, since 10 genera and 20
different species are usually identified within a healthy individual:
Candida, Saccharomyces, Malassezia, Penicillium, Aspergillus,
Debaryomyces, Trichosporon, Galactomyces, Cryptococcus, and
Cladosporium (Strati et al., 2016; Suhr et al., 2016; Nash et al.,
2017; Auchtung et al., 2018; Raimondi et al., 2019; Richard and
Sokol, 2019). With culture media methods from feces, mostly
Candida (Strati et al., 2016; Borges et al., 2018; Raimondi et al.,
2019) and Saccharomyces (Strati et al., 2016; Borges et al., 2018;
Raimondi et al., 2019) as well as Debaryomyces (Raimondi
et al., 2019), Penicillium (Strati et al., 2016; Borges et al., 2018),
Malassezia, and Aspergillus (Strati et al., 2016; Borges et al., 2018;
Raimondi et al., 2019) have been identified.

Role of Fungal Gut Microbiota in Diseases
As previously stated, the increase in the number of studies on
the mycobiota revealed changes in the mycobiota composition
associated with intestinal diseases. The causality is still to be
proven in most of the studies, but it is difficult to consider that
this association is simple coincidence. It is probably a sum of
different modifications that trigger and enhance the disease with
a vicious circle effect.

In the IBD context, mycobiota in the feces and associated
with the mucosa have been studied in various cohort patients,
showing a clear modification of the fungal community during
intestinal inflammation. In vivo studies in mouse models have
also reinforced the hypothesis that fungi are directly or indirectly
involved in IBD symptoms (Tang C. et al., 2015; Wang et al.,
2016). From the various studies published to date, in IBD
patients, fungal load was increased during flare (Liguori et al.,
2016), showing a modification of the equilibrium between
Ascomycota and Basidiomycota with a decrease in Ascomycota
and an increase in Basidiomycota (Sokol et al., 2017). At the
genus and species levels, Candida (Chehoud et al., 2015; Liguori
et al., 2016) (particularly C. glabrata Liguori et al., 2016, C.
tropicalis (Hoarau et al., 2016), C. albicans Standaert-Vitse
et al., 2009, C. utilis Chehoud et al., 2015, and C. parapsilosis
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Chehoud et al., 2015) was the genus showing an increase in the
vast majority of the studies, and Saccharomyces was decreased
(Hoarau et al., 2016; Liguori et al., 2016; Sokol et al., 2017).
Some studies also identified variations in the relative abundance
of Malassezia with an increase in M. globosa (Liguori et al.,
2016) and a decrease in M. sympodialis (Sokol et al., 2017) (see
next section).

In irritable bowel syndrome (IBS), to date, only one team
has specifically made a link between the fungal gut community
and IBS symptoms. Botschuijver et al. compared 3 groups
of 19+/−1 subjects of healthy controls, hypersensitive IBS
and normosensitive IBS patients (Botschuijver et al., 2017)
and showed a decrease in diversity in both IBS groups; the
Saccharomyces and Candida genera represented two-thirds or
more of the mycobiota in these patients, and they represented
∼57% in the healthy controls. Additionally, an increase in
Kazachstania turicensis was one marker of IBS in these specific
cohorts. Further analyses and clinical trials are needed to confirm
this hypothesis.

In alcoholic liver diseases, the mycobiota is very strongly
modified with a drop in diversity in patients, in which Candida
seems to replace all other fungal genera within the intestinal
content. Interestingly, a previous study demonstrated in vivo
in mice that the use of antifungal drugs can improve alcohol-
induced liver injury (Yang et al., 2017). Again, even if this does
not prove causality, the authors made an interesting link between
the increase in alcohol in the gut, triggering at the same time
an increase in gut permeability and fungal burden: the direct
consequence was an increase in circulating ß-glucans in the blood
reaching the liver and triggering liver injuries via IL-1ß and
Kupffer cells.

Finally, recently, there has been increasingly more data
indicating a potential role of the fungal microbiota during
the course of colorectal cancer (CRC) or colitis-associated
cancer (CAC). Two reports were published in 2019 on the
role of Card9 in the regulation of the fungal burden, myeloid-
derived suppressor cell expansion and inflammasome activation,
allowing the restriction of CRC or CAC development (Malik
et al., 2018; Wang et al., 2018). CARD9 indeed participates in
the recognition of microorganisms, especially fungi, through
several receptors, such as Mincle, NOD2, and Dectin, and thus
orchestrates an important part of the host response against fungi
from simple overgrowth to deep infection (Richard et al., 2015).

Additionally, in 2019, chitooligosaccharides were shown to
prevent the development of CAC through their effect on the
balance between bacterial and fungal microbiota (Wu et al.,
2019). In addition to these results, several other publications,
which are presented in the next chapter, described the potential
role ofMalassezia strains in cancer development.

MALASSEZIA INFLUENCES GUT HEALTH

As highlighted earlier in this review, although a well-described
resident of the skin, Malassezia, appears to be a prominent
component of the gut mycobiota, numerous studies have
identifiedMalassezia in fecal samples through culture-dependent

and culture-independent methods (Chen et al., 2011; Hamad
et al., 2012; Gouba et al., 2013; Suhr et al., 2016; Hallen-
Adams and Suhr, 2017).Malassezia has been reported in healthy
volunteers as a major genus, reaching up to 4% of the total
abundance (Gouba et al., 2013; Suhr et al., 2016; Raimondi et al.,
2019). M. restricta (Hamad et al., 2012; Gouba et al., 2013; Suhr
et al., 2016; Nash et al., 2017; Auchtung et al., 2018), M. globosa
(Hamad et al., 2012; Gouba et al., 2013; Nash et al., 2017), M.
pachydermatis (Chen et al., 2011; Hamad et al., 2012; Gouba et al.,
2013), andM. sympodialis (Nash et al., 2017) are the main species
that can be found in the gastrointestinal tract. However, these
previous studies made very few cases of this presence, mostly
considering it transient and with no effect on the host. It is
only very recently that Malassezia strains have been specifically
identified in associationwith gut diseases and possibly other types
of diseases (Figure 1).

The Impact of Malassezia on IBD
TheMalassezia genus has only very recently been associated with
IBD, both in patients and in mouse models. IBD is composed of
two types of disease: Crohn’s disease (CD) and ulcerative colitis
(UC). Both are characterized by inflammation of the wall of the
digestive tract, from the mouth to the rectum for CD and only for
the colon for UC (Seyedian et al., 2019).

Two studies highlighted the potential role of Malassezia in
the development of IBD in the last 3 years: (i) our study while
characterizing the global modifications of the bacterial and fungal
microbiota for UC and CD patients (Sokol et al., 2017); (ii) and
Limon and coworkers in a specific study focused on CD patients
(Limon et al., 2019).

In a work where we compared a cohort of 235 IBD patients
(UC, CD, flare, or remission) to 38 healthy subjects, our team
found that the relative abundance (percentage of reads) of
Malassezia increased globally during IBD flare. Interestingly, we
also showed thatMalassezia had a negative correlation withmany
bacteria, especially in UC patients, something that we did not see
in other types of disease or during CD. Finally, M. sympodialis
was negatively correlated with the Dectin1 SNP associated with
medically refractory UC (rs2078178, “T” allele12). Altogether,
these data from human samples suggest a potential role of
Malassezia in IBD with possible opposite effects between species.

Using human samples from CD patients (no data on UC) and
in vivo experiments with a mouse model of colitis, Underhill’s
team was able to highlight a possible relationship between
gut inflammation and the presence of M. restricta. Through
amplicon-based analysis of the mycobiota of CD patients
compared to healthy subjects, M. restricta was found to be
enriched in the mycobiota-associated mucosa of CD patients
(Limon et al., 2019). In addition, in a model of dextran
sodium sulfate (DSS)-induced colitis, germ-free or wild-type
mice colonized by M. restricta showed a worse disease activity
index with shorter colons, suggesting that the addition of M.
restricta alone exacerbated the severity of colitis. However, in
their model, C. albicans, a well-known pro-inflammatory fungus
did not trigger stronger inflammation than the non-treated mice,
underlying the complexity of these effects, probably due to the
composition of the basal mouse microbiota. The authors also
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FIGURE 1 | Malassezia in the gut: association with several diseases. Malassezia strains have an action within the gut. In IBD, M. sympodialis has been identified both

in flare (Sokol et al., 2017) (decreased) and in remission (Liguori et al., 2016) (increased) of Crohn’s disease patients; M. restricta (Limon et al., 2019) participates to the

production of inflammatory factors and can so exacerbates severe colitis. These observations might be linked to the gene expression regulations through AhR.

Malassezia genus is more abundant in patients with polyp and colorectal cancer (Gao et al., 2017; Coker et al., 2019). In pancreatic cancer (Aykut et al., 2019), in both

patients and mice model, Malassezia was increased. Malassezia fungi can be implicated in other diseases related or not to the gut. Indeed, their DNA were identified

in the central nervous system of Alzheimer’s patients (Alonso et al., 2018b) (M. globosa and M. restricta) and in both multiple sclerosis (Alonso et al., 2018a) and

amyotrophic lateral sclerosis patients (Alonso et al., 2017). In the same line we can hypothesis that Malassezia could be implicated in hepatic disease due to the

liver-gut axis but to date no data confirm this hypothesis.

showed a link between M. restricta and Card9 signaling: the
Card9-S12N polymorphism in CD patients which was strongly
linked to the presence of Malassezia spp. Using CARD9KO
mice and colonization with M. restricta, the authors suggested
that the pro-inflammatory effects (cytokine production, colitis
symptoms) due toM. restricta were dependent on Card9.

A possible mechanism explaining the effect of Malassezia
strains on IBD development can be the link between these
fungi and the aryl hydrocarbon receptor (AhR). Indeed, the
majority of Malassezia strains, especially M. furfur (Gaitanis
et al., 2008) and M. globosa (Magiatis et al., 2013), are capable of
synthesizing indole ligands that can act on AhR (Gaitanis et al.,
2008; Magiatis et al., 2013; Furue et al., 2014; Wheeler et al.,
2017). AhR is a cytoplasmic transcriptional regulator found not
only in epithelial cells such as skin cells but also in many other
cell types throughout the body (Lamas et al., 2018), and AhR
has numerous endogenous ligands with opposite effects on cell

functions, generating a very complex network of regulation that
has not been completely elucidated. AhR is involved in many
functions, including the regulation of the expression of enzymes
involved in xenobiotic metabolism, participation in cutaneous
homeostasis and the modulation of ultraviolet-induced damage
(Furue et al., 2014). Some studies have linked the impact of
Malassezia on skin diseases to its capacity to produce AhR
ligands (Gaitanis et al., 2008; Magiatis et al., 2013). AhR ligands
produced by Malassezia can possibly regulate the production
of inflammatory mediators (Swanson, 2004) and/or change the
function of keratinocytes (Vlachos et al., 2012). However, studies
also highlighted the role of AhR ligands in host immunity
(Lamas et al., 2018) on a more global view and on other types
of cells; for example, AhR ligands are directly made by the
gut microbiota from tryptophan transformation and have been
connected recently to intestinal diseases such as IBD (Lamas
et al., 2016; Agus et al., 2018). Consequently, the hypothesis of
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the involvement of Malassezia in gut pathologies via the AhR
receptor should be investigated further.

The Impact of Malassezia on Cancer
As mentioned above, there is an increasing number of clues
suggesting that fungi can be implicated in the development
of some cancers or at least that the mycobiota of CRC or
CAC patients is modified. However, to date, very few specific
fungi have been identified as central to these phenomena.
Surprisingly, in the last 2 years, Malassezia strains have
been independently identified as potentially key to cancer
development in several publications.

Initial interest was obviously directed to gut-related cancer
(CRC or CAC), and 2 recent works showed that the development
of carcinoma was concurrent with the enrichment of Malassezia
strains (Gao et al., 2017; Coker et al., 2019), suggesting a
potential deleterious effect of this genus. In the first study,
Gao and coworkers analyzed the mycobiota of colon polyps
and CRC. Colorectal cancer is a malignant tumor in the
colon and rectum, beginning with colon polyps that eventually
evolve into carcinoma. There is strong evidence now that the
gut bacteria composition plays a role in cancer development
with a decrease in bacterial diversity and bacterial dysbiosis
in favor of detrimental bacteria such as Fusobacterium spp.
(Wong and Yu, 2019). Analyzing the mycobiota diversity of stool
samples of patients with colon polyps, patients with colorectal
cancer and healthy volunteers did not show any difference.
However, the composition of the gut mycobiota revealed that
the Malassezia genus was more abundant in patients with polyp
and colorectal cancer. From these datasets, we can speculate that
Malassezia strains can play a role in the genesis of colorectal
cancer development, as they are present at the same level in
precancerous lesions and in cancer.

In a recent work, Coker and collaborators performed a
very interesting analysis on 3 large cohorts, 184 patients with
CRC, 197 patients with adenoma and 204 control subjects, and
showed that the mycobiota associated with CRC was specifically
altered and might be responsible for triggering or amplifying
colon adenoma (Coker et al., 2019). Using these data, they
also showed that Malassezia was significantly increased in CRC,
while Saccharomycetes was decreased, allowing the definition of
potential efficient diagnostic markers for CRC prediction.

Finally, a study highlighted the role of mycobiota in
the pathogenesis of pancreatic cancer (Aykut et al., 2019).
The analysis of mycobiota in pancreatic patients showed an
increased abundance of intrapancreatic fungi compared to
healthy individuals, as well as in an associated mouse model.
In pancreatic tumor tissue, the Malassezia genus was increased
in both patients and mice. Furthermore, by administering GFP-
labeled S. cerevisiae to mice, the authors demonstrated that
large numbers of fungi migrate from the intestinal lumen to
the pancreas. The authors highlighted the specific implication of
Malassezia strains in the development of pancreatic lesions by
ablating the mycobiota in mice using amphotericin B treatment
and repopulating the gut with M. globosa; the genus accelerated
the growth of pancreatic ductal adenocarcinoma tumors.

The gut-liver axis and the potential impact of microorganisms
of the intestine on liver pathologies, such as non-alcoholic and
alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma,
could also be investigated, as the liver and intestine have a
physical pathway via the portal vein and the bile duct (Alvarez-
Silva et al., 2019).

CONCLUSION

Malassezia can be associated with human gut-related disease.
These fungi have been found in abundance in fecal samples,
both in healthy and pathology contexts. Future studies designed
to increase our understanding of Malassezia within intestinal
dysbiosis as well as in other organs that can be connected to
the gut may lead to novel therapeutic approaches that target this
specific genus.
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