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Owing to the genetic similarities and conserved pathways between a fruit fly and

mammals, the use of the Drosophila model as a platform to unveil novel mechanisms

of infection and disease progression has been justified and widely instigated. Gaining

proper insight into host–pathogen interactions and identifying chief factors involved in

host defense and pathogen virulence in Drosophila serves as a foundation to establish

novel strategies for infectious disease prevention and control in higher organisms,

including humans.
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INTRODUCTION

Drosophila, a chief tool in contemporary genetic studies, became one of the most powerful
model organisms widely used in scientific explorations. The versatility, low cost, short life
cycle, well-characterized genome, and feasibility of genetic manipulation made the fruit fly
an indispensable model organism for basic research. The modern era of Drosophila research
initially took off when the fly was deployed in developmental biology, particularly in fly embryo
studies to identify novel genes involved in development (Nusslein-Volhard and Wieschaus, 1980).
Further studies conducted in Drosophila have contributed to novel groundbreaking findings
that allowed the identification of fundamental components of different pathways conserved
between the fruit fly and higher mammalian organisms, including humans. Recently, Drosophila
gained great popularity in host–pathogen interaction and infectious disease control studies due
to several reasons, many of which were attributed to evolutionary conserved features in both
Drosophila and vertebrates including innate immune cascades, signal transduction pathways, and
transcriptional regulators. The fruit fly surprisingly serves as a host for a diversity of pathogens
and could be readily infected with these pathogens naturally or in an experimental setting.
The existence of a wide array of molecular and genetic tools that allow gene manipulation
in specific cells/tissues in the fly also favors its use in host–pathogen interaction studies.
Genetic and genome-wide RNAi screens in either intact flies or cell lines have identified a
wide array of host effector molecules and pathways involved in host defense against invading
pathogens. Reciprocally, flies can be used to screen for pathogen-virulence factors. The fly’s
GAL4-UAS transactivation system (Brand and Perrimon, 1993) allows the direct expression of
transgenes encoding host or pathogen proteins in a cell-type-specific manner in vivo. Also,
the fly’s LexA transcriptional system, allows combinatorial gene expression in a distinct or
overlapping fashion in vivo (Pfeiffer et al., 2010; Yagi et al., 2010), opening up for the feasibility
of conducting epistasis analysis and revealing a role of specific genes in regulating cellular
processes and pathways. Such experiments are difficult to be conducted in higher model organisms
including mammals, advocating the use of Drosophila in host–pathogen interaction studies.
Like all invertebrates, Drosophila lacks an adaptive immune response and relies exclusively
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on innate immunity with both its humoral and cellular arms to
fight off invading pathogens. These innate immune responses
mainly include production of antimicrobial peptides (AMPs)
and anti-pathogenic factors through core signaling pathways
(Toll, IMD, and JAK/STAT), anti-viral response through the RNA
interference (RNAi) pathway, and pathogen immobilization
through phagocytosis, encapsulation, and melanization (Agaisse
and Perrimon, 2004; Akira et al., 2006; Govind, 2008). In this
review, we provide an overview of the use of Drosophila in
host–pathogen interaction studies and highlight the role of
the fly’s innate immune system in pathogen control. We also
recapitulate a broad spectrum of host defense and pathogen
virulence factors identified in Drosophila-pathogen studies and
involved in microbial control and disease progression.

HOST DEFENSE FACTORS

Drosophila is considered a significant model organism
in studying host–pathogen interactions (Figure 1). The
establishment of the D. melanogaster whole genome sequence
in 2000 (Adams et al., 2000) paved the way for adapting
existing high-throughput RNAi screening methodologies
in Drosophila cell lines to study gene function and identify
specific gene targets and immune-associated components and
modulators (Ueda, 2001; Kiger et al., 2003). Combining the
findings of high-throughput RNAi screens with classical genetic
methods and in vivo fly studies enabled the identification
of humoral and cell-mediated host defense factors against
a wide array of intracellular and extracellular pathogens
(Cherry, 2008; Bier and Guichard, 2012).

Humoral Host Defense
Humoral innate immune responses inDrosophilamainly include
production of AMPs and anti-pathogenic factors through Toll,
IMD, and JAK/STAT signaling pathways. The primarily role
attributed to the Toll pathway was its involvement in Drosophila
embryonic development (Nusslein-Volhard and Wieschaus,
1980). In 1995, Hultmark et al. introduced Toll (Toll-1) as a
potent immune activator in fruit fly cell lines (Rosetto et al.,
1995). Since then, the Toll pathway was shown to be implicated
in immune defense against an array of pathogens. Unlike the
mammalian Toll pathway, the activation of Drosophila Toll
signaling is not initiated by direct interaction with microbial
determinants, but rather by the cleaved form of spätzle, a
cytokine-like molecule that is thought to be processed by secreted
serine proteases (SPs) and spätzle-processing enzyme (SPE).
SPs and SPE are regulated by several pathogen recognition
receptors (PRRs) including peptidoglycan recognition protein
SA (PGRP-SA), PGRP-SD, Gram-negative binding protein 1
(GNBP1), and GNBP3 (Gottar et al., 2006). To avoid exaggerated
immunity, the activation of the Toll pathway is generally
tightly regulated. Upregulation of Spn1, a member of the serpin
superfamily protease inhibitors located upstream of SPE, for
example, contributes to the Toll pathway inactivation and to a
downregulation in the expression of AMPs, mainly Drosomycin.
Fungal-infected Spn1 null mutants exhibit an up-regulation in
Drosomycin (Fullaondo et al., 2011). ModSP, a modular serine

protease, activates the Toll pathway to culminate in AMP
production. ModSP mutant flies challenged with either gram-
positive bacteria (Enterococcus faecalis or Listeria monocytogenes)
or fungal species (Candida albicans) succumb to death-associated
reduction in AMP gene expression (Buchon et al., 2009a). In
addition to its well-defined role against fungal and gram-positive
bacteria, Oh et al. reported a role of the Toll pathway in
defense against acid-fast mycobacteria.Mycobacterium abscessus,
a non-tuberculous mycobacteria in humans, colonizes the gut
of D. melanogaster and induces predominant expression of
Drosomycin upon Toll pathway activation (Oh et al., 2013).
Strikingly, Gottar et al. identified a pathway that acts jointly
with GNBP3 to activate the Toll pathway upon fungal infection.
PR1, a C. albicans virulence factor, activates Toll signaling
by promoting the proteolytic cleavage and maturation of the
Persephone protease (PSH). This finding indicates that the
detection of fungal infection in Drosophila is dependent on
both the recognition of foreign fungal invariant patterns and
on tracking the consequence of virulence elements on the
infected host (Gottar et al., 2006). Interestingly, and although
both GNBP3 and PSH-dependent pathway are also required for
Toll pathway activation upon Candida glabrata infection, only
GNBP3 mutants are susceptible to Candida glabrata infection,
implicating that the downstream effector mechanisms like AMP
production and melanization activated against different fungal
infections may not be the same (Chamilos et al., 2010; Quintin
et al., 2013). Several studies have also employed D. melanogaster
as a model organism to characterize anti-viral Toll immunity.
The Toll pathway was shown to play a role in efficiently
inhibiting Drosophila X viral (DXV) replication. Interestingly,
the levels of Drosophila AMP genes induced in response to
DXV infection were similar to those reported during Escherichia
coli infection (Zambon et al., 2005). Extracellular virions, which
were first discovered in Drosophila, and currently in metazoans,
are also recognized by Toll-like receptors located on cell
surfaces and inside endo-lysosomal compartments (Medzhitov,
2001).

Recently, the impact of post-translational modifications on
modulating Toll signaling has been also studied in fruit flies.
Such modifications were shown to change the localization and
trafficking of the protein in a cell, enhance or inhibit the
protein activity, and/or alter the protein’s ability to bind to
protein signaling partners. TheDrosophilaUbc9/Lwr enzyme, for
example, affects Toll signaling by stimulating the sumoylation
of the Dorsal transcription factor (Schmidt, 2014). Likewise,
β-arrestin Kurtz (Krz) regulates Toll signaling via protein
sumoylation by interacting with the SUMO protease Ulp1.
Krz or Ulp1 Drosophila larval mutants exhibit inflammation-
like phenotypes characterized by elevation in lamellocyte
production, formation of melanotic tumors, accumulation
of transcriptional effectors (Dorsal and Dif) of the Toll
pathway, and increased expression of anti-microbial peptides
(Drosomycin). Interestingly, loss of function of these two genes
reveal a dose-dependent sensitive and synergistic response,
suggesting that they belong to the same signaling pathway
(Anjum et al., 2013). Moreover, Pellinos, a family of E3 ubiquitin
ligases, were shown to also regulate Toll signaling by catalyzing
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FIGURE 1 | Advantages and practical applications in Drosophila for host–pathogen interaction studies. The left side of the figure delineates the advantages of using

the fruit fly model organism in research, and the right side outlines its use as a platform for understanding the etiology of a disease and the potential means of

controlling it.

the K63-linked polyubiquitination of Pelle, an IL-1 receptor-
associated kinase homolog in Drosophila (Medvedev et al.,
2015). Genome-wide screening studies of the Toll pathway also
identified novel immune-associated components and regulators
including the Deformed Epidermal Auto-regulatory Factor 1
(DEAF1) transcription factor as an essential component for the
expression of the Toll target AMP Drosomycin (Kuttenkeuler
et al., 2010).

Similar to the Toll pathway, the Drosophila IMD pathway,
which is mainly directed against gram-negative pathogens,
plays a fundamental role in humoral immunity through AMP
production and pathogen clearance. IMD mutant flies, for
example, are sensitive to Vibrio cholerae infection (Wang et al.,
2013; Kamareddine et al., 2018a), while those with a gain-of-
function mutation exhibit resistance, plausibly by lowering the
virulence effect of the cholera toxin via increasing the rate
of intestinal stem cell division (Wang et al., 2013). DreddD55

IMD mutant flies infected with Xenorhabdus nematophila
and Photorhabdus luminescens nemato-bacterial composites
also fail to survive infection compared to Dif1 Toll mutants
and wild-type infected flies, albeit the 24 h priming with
non-pathogenic E. coli prior to X. nematophila and P.
luminescens infection. These findings advocate the notion that
X. nematophila and P. luminescens pathogens target components
of the IMD pathway, despite AMPs synthesis triggered by the

nemato-bacterial composite infection (Aymeric et al., 2010).
Apart from its well-defined role against gram-negative bacteria,
recent studies have also highlighted a role of IMD signaling
in defense against fungal and gram-positive bacterial infection
(De Gregorio et al., 2002a; Hedengren-Olcott et al., 2004; Pham
et al., 2007; Dionne and Schneider, 2008; Costa et al., 2009).
Interestingly, non-canonical AMP-independent IMD immunity
have been also shown to be crucial in the Drosophila gut defense
system. Hori et al. reported that IMDmutant flies are sucseptible
to Staphylococcus aureus oral infections and revealed a role
of the IMD pathway in clearance of S. aureus from the fly
gut (Hori et al., 2018). In alliance with this distinctive role in
gut immunity, the IMD pathway was also shown to control
gut homeostatic balance in a microbiota-dependent–infection-
independent context. The gut flora, which induces IMD signaling
activation, significantly affects the midgut transcriptome and
promotes the expression of key genes involved in host physiology.
A study by Kamareddine et al. revealed that IMD signaling
in enteroendocrine cells activated by the intestinal microbiota
acetate metabolite regulates the expression of the tachykinin
peptide hormone, promoting metabolic homeostasis in the
host. Both germ-free flies and IMD mutant flies were shown
to behave similarly by exhibiting developmental retardation,
disrupted lipid metabolism, and a status of inactive insulin
signaling (Kamareddine et al., 2018a). Owing to the fact that
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humoral immunity in Drosophila is chiefly mediated by AMP
production by fat body cells, particular attention has been
also given to our understanding of IMD signaling in the
fat body. A study by Tsichritzis et al. (2007) revealed that
the deubiquitinase Cylindromatosis (CYLD) inhibits NF-κB
signaling and downregulates the IMD response. Although CYLD
mutant flies exhibit an increase in AMP expression, particularly
those with prior infections, yet these mutants succumb to death
significantly faster than controls upon E. coli infection. Although
the target of CYLD in the IMDpathway remains uncharacterized,
this poor survival rate of CYLD-deficient flies could be attributed
to an alteration in the structure and function of fat body cells, as
CYLD regulates homeostatic balance in these cells. Interestingly,
several factors that affect physiology and development in a host
also affect Toll and IMD signaling throughmanipulating fat body
maturation. The induction of Diptericin expression in larvae, for
example, is affected by age and is dependent on the presence
of the ecdysone molting hormone. A mutation affecting the
metabolism of ecdysone could indirectly affect the immune status
of a host (Meister and Richards, 1996; Ligoxygakis et al., 2002a). It
is worth noting here that signaling mechanisms between the gut
and the fat body contribute to the regulation of systemic immune
responses in the host (Lemaitre and Hoffmann, 2007). Upon oral
infection, Ecc15 and P. entomophila can colonize and multiply in
the fly gut, triggering strong systemic immunity, without a need
for those bacterial species to cross the wall of the gut (Vodovar
et al., 2005; Acosta Muniz et al., 2007).

Since the IMD pathway is similar to the mammalian tumor
necrosis factor receptor (TNFR) pathway (Leulier et al., 2000;
Costa et al., 2009), which plays a critical role in infectious
disease control particularly against viral infections (Herbein
and O’Brien, 2000), several studies deployed Drosophila as
a model organism to gain further insight into the role of
IMD signaling in anti-viral immunity. The cricket paralysis
virus (CrPV), an RNA virus that infects a wide range of
insect hosts, displays increased virulence with higher viral
loads in IMD mutant flies (Costa et al., 2009). Interestingly,
IMD signaling-mediated anti-CrPV immunity seems to be
also AMP independent. Similar to CrPV infection, sindbis
viral replication increases in IMD mutant flies (Avadhanula
et al., 2009). Moreover, knocking down the peptidoglycan
recognition protein-LC (PGRP-LC), a membrane associated
IMD pathway receptor, in Drosophila S2 cells also promotes
an increase in the genome copy number of the sigma virus
and causes a significant up-regulation in the expression of
the L gene compared to other viral genes (Liao et al., 2019).
An anti-microbial RNAi signaling screen performed by Foley
et al. publicized different classes of negative and positive gene
regulators of IMD signaling including those that enhance
response to peptidoglycan stimulation (46 EDRi genes), and
others that constitutively activate NF-kB in the absence of LPS
induction (26 CDRi genes) (Blandin et al., 2004). Further screens
identified additional IMD positive regulators including Iap2
and TAB (Garver et al., 2006; Kawai and Akira, 2006). Similar to
the studies that have been conducted on the Toll pathway,
the impact of post-translational modifications on regulating
IMD signaling has been also recently deliberated in fruit

flies. SP36/Scny was shown to negatively regulate IMD
signaling transduction by hydrolyzing UbK63, a key player in
IMD ubiquitination (Thevenon et al., 2009). Similarly, USPs
were also shown to regulate IMD immune signaling. USP2,
for instance, deubiquitinates Imd, promoting its degradation
(Engel et al., 2014).

The JAK/STAT signaling pathway, which controls various
biological processes and tissue hemostasis in both mammals
and invertebrates, also contributes to humoral immunity in a
host. It is mainly activated upon microbial infection and/or
cellular damage induced by stress response/pathogen infection,
and culminates in the production of regulatory molecules, anti-
viral agents, and anti-bacterial agents including AMPs. Cell
damage induced by Serratia marcescens and Erwinia carotovora
infection in Drosophila for example induces JAK/STAT signaling
(Buchon et al., 2009b; Cronin et al., 2009) and activates a gut-
specific defense machinery characterized by the expression of a
subset of AMPs including the Drosomycin-like peptide (dro3).
This activation, which is pathogen specific and triggered by
cell damage caused by bacterial infection rather than by the
bacteria itself (Buchon et al., 2009c), is particularly important
in maintaining gut homeostasis by controlling epithelial cell
proliferation and renewal in response to bacterial infection
(Buchon et al., 2009b; Jiang et al., 2009). In the absence
of infection, the indigenous gut flora triggers the expression
of hopTum−l or upd3, which is generally adequate to induce
intestinal stem cell progeny differentiation and gut regeneration
through JAK/STAT and JNK signaling (Buchon et al., 2009b).
Moreover, global gene expression analysis of Drosophila gut
tissues to oral Erwinia carotovora infection revealed an important
contribution of IMD and JAK/STAT pathways, but not the Toll
pathway, to the regulation of gut immune responses (Buchon
et al., 2009c). Although the intricate contribution of JAK/STAT
signaling to cellular immunity has not been fully understood,
it has been thought to be involved in cellular responses
like hemocyte proliferation and differentiation (Agaisse and
Perrimon, 2004). Recently, Yang et al., reported a role of
JAK/STAT signaling in parasitoid egg wasp encapsulation in
infected Drosophila larvae (Yang et al., 2015). Several studies
addressing the role of JAK/STAT pathway in anti-viral immunity
also revealed that the expression of “traditional” JAK/STAT
pathway target genes including upd2, upd3, and TotM, is
induced by many viral species including vesicular stomatitis
virus, Flock House virus, and Drosophila X virus (Kemp et al.,
2013; Myllymaki and Ramet, 2014). Likewise, the Drosophila
C virus infection triggers the expression of several genes like
virus-induced RNA-1 (vir-1). Many of these induced genes
enclose STAT binding sites in their promoter regions, and
their activation is therefore dependent on JAK/STAT signaling.
The JAK tyrosine kinase Hopscotch (Hop) was also shown to
be involved in controlling Drosophila C virus loads and to
participate in inducing the expression of some virus-regulated
genes. Deficiencies in JAK/STAT signaling increases Drosophila
C virus load and exhibits high mortality rates in infected
flies (Dostert et al., 2005). Although double-stranded RNA
(dsRNA) itself does not induce viral response in Drosophila,
recent studies have shown that recognizing virus-derived dsRNA

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 June 2020 | Volume 10 | Article 214

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Younes et al. Drosophila in Host-Pathogen Interaction Studies

through the amino terminal DExD/H-box helicase domain of
Dicer-2 promotes the expression of the vago-secreted protein
(Paradkar et al., 2012) that plays an antiviral role against
Drosophila C virus infection (Paradkar et al., 2012). Interestingly,
vago seems to induce the JAK/STAT pathway through a
Dome-independent mechanism, signifying the existence of an
alternative receptor that is yet to be determined. This finding
provides a conceivable role of vago in connecting both RNAi
and JAK/STAT signaling pathways, suggesting that vago, which
is thought to be insect specific, could serve as a cytokine
and functionally relate to the mammalian interferon system
(Paradkar et al., 2012). By comparing RNA interference (detailed
in the section below) with JAK/STAT anti-viral immunity,
however, RNAi interference epitomizes an effectual antiviral
machinery that operates against an array of RNA and DNA
viruses, unlike the antiviral contribution of JAK/STAT signaling,
which seems to be more species specific (Kemp et al., 2013)
(Figure 2).

Cell-Mediated Host Defense
Phagocytosis, which is involved in ingesting apoptotic debris
and destroying foreign pathogens by hemocytes (plasmatocytes,
crystal cells, and lamellocytes), represents a fundamental mean
of maintaining tissue homeostasis (Lemaitre and Hoffmann,
2007). Various receptors and key players chiefly involved in the
phagocytic process have been identified in Drosophila. Pearson
et al. revealed that the Drosophila scavenger receptor C1 (SR-
CI), which has a broad polyanionic ligand-binding specificity
similar to the mammalian class A macrophage-specific scavenger
receptor (SR-A), exhibits great affinity and saturable binding of
125I-labeled acetylated low-density lipoprotein when expressed in
mammalian cells (Pearson et al., 1995). Cuttell, et al. highlighted
a previously uncharacterized role of the CED1/6/7 pathway in
phagocytosis, by demonstrating that Draper (a CED-1homolog
that belongs to the CED1/6/7 pathway)-mediated phagocytosis
requires the Drosophila Junctophilin protein, Undertaker (UTA),
and is linked to Ca2+ homeostasis (Cuttell et al., 2008).
Additionally, Kocks et al. identified a role of Eater, an EGF-like
repeat transmembrane receptor of the Nimrod family present
on Drosophila hemocytes, in bacterial phagocytosis (Kocks et al.,
2005). Likewise, Bretscher et al., uncovered the contribution
of Eater in hemocyte localization, attachment, and adhesion,
and in efficient phagocytosis of gram-positive (Staphylococcus
aureus, Staphylococcus epidermidis, Micrococcus luteus), but not
gram-negative (Escherichia coli and Serratia marcescens) bacteria
(Bretscher et al., 2015). The intergin βν phagocytic receptor
was also shown to be involved in defense against septic but
not oral S. aureus infection in Drososphila (Shiratsuchi et al.,
2012). Studies in Drosophila S2 cells in turn identified a role
of PGRP-LC in phagocytosis of gram-negative (E. coli), but
not gram-positive bacteria (Ramet et al., 2002). Apart from
its scavenger function, PGRP-SC1 was also shown to act as
an opsonin, and therefore, contribute to bacterial phagocytosis
(Garver et al., 2006). Several thioester proteins (TEPs) identified
in different insect species including Anopheles gambiae, also
act as a bona fide opsonin to promote gram-positive and
gram-negative bacterial phagocytosis (Levashina et al., 2001).

In Drosophila, functional data publicized a role of several fruit
fly TEPs, including TEP2, TEP3, and TEP6 in binding to
several pathogens including E. coli, S. aureus, and C. albicans,
respectively (Stroschein-Stevenson et al., 2006). Interestingly,
Croquemort (CRQ), a CD36-related receptor that is exclusively
expressed on macrophages in Drosophila embryo, was shown to
be required for effectual phagocytosis of apoptotic corpses, but
is not necessary for bacterial engulfment (Franc et al., 1999).
Several screens identified cellular mediators of phagocytosis.
Among those genes are four transcription factors, one of
which encodes the GATA-factor Serpent, a chief regulator of
hematopoesis in flies. Complimentary expression profile studies
identified 45 genes, including the SR-C1 scavenger receptor
gene that is down-regulated upon Serpent depletion (Meister
and Tuschl, 2004; Haasnoot and Berkhout, 2006). RNAi against
these Serpent-dependent genes further identified Eater and
Nimrod phagocytic receptors (Miyano-Kurosaki and Takaku,
2006). Given that various classes of entry receptors plausibly
facilitate the uptake of different microbes, although overlying
and repetitive specificities do exist occasionally, many screen
studies are usually done following specific microbial infections.
Stroschein-Stevenson et al. identified 184 genes essential for
efficient fungal uptake using Candida-infected phagocytic S2
cells. Among those genes is the macroglobulin-related protein
(Mcr), which specifically opsonize Candida, unlike TEP2 and
TEP3 that are needed for opsonization and efficient uptake
of E. coli and S. aureus, respectively (Stroschein-Stevenson
et al., 2006). Another screen following Mycobacteria fortuitum
infection revealed 54 genes including the novel class B scavenger
receptor peste (Li et al., 2002) that is essential for Mycobacteria
fortuitum and Listeria monocytogenes, but not for E. coli and S.
aureus uptake in S2 cells (Galiana-Arnoux et al., 2006). Genome-
wide RNA interference screening was put forth to introduce
host factors that block intracellular bacterial pathogenesis using
cells. Interestingly, comparative studies of host defense genes
involved in hindering bacterial pathogenesis revealed that
some host factors have general inhibitory roles in intracellular
pathogenesis, while others specifically affect the mechanistic
ability of certain bacterial species to access the host (Agaisse
et al., 2005). Rab7, CG8743, and the ESCRT machinery, for
instance, represent unique vulnerability factors of the host
cell, as manipulating any of these factors alone no longer
constrains the growth of the non-pathogen Mycobacterium
smegmatis in Drosophila (Yang et al., 2015). A similar study on
Mycobacterium marinum also identified the lysosomal enzyme
beta-hexosaminidase as an imperative factor in modulating
mycobacterial growth. Remarkably, this bactericidal activity of
β-hexosaminidase seems to beMycobacterium marinum specific,
as it is not involved in constraining the growth of other bacterial
species like Salmonella typhimurium and Listeria monocytogenes
(Koo et al., 2008).

Encapsulation is a another cellular response that is devoted
to eliminate pathogens by forming hemocytic capsules around
foreign bodies that are outsized to be phagocytozed (Kounatidis
and Ligoxygakis, 2012). In Drosophila, cellular encapsulation
happens in three stages. During the first stage, hemocytes,
plausibly through their surface receptors, primarily recognize the
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FIGURE 2 | Humoral innate immune signaling pathways. (A) Represents a schematic diagram of the Toll pathway. Gram-positive bacteria and fungi recognized by

pathogen recognition receptors (PRRs) trigger the activation of this pathway. Modular serine protease (MSP) and spätzle-processing enzyme (SPE), which are

regulated by several PRRs are thought to process the cleavage of the spätzle ligand into a mature spätzle that binds to the Toll receptor, initiating downstream

signaling pathway that culminates in the translocation of the NFB-like transcription factors Dif and/or Dorsal into the nucleus, promoting the expression to antimicrobial

peptides (AMPs) in response to infection. Serpin (Spn) tightly regulates the primary steps of this pathway to avoid exaggerated immunity. (B) Represents a schematic

diagram of the IMD pathway. Gram-negative bacteria recognized by receptors of the IMD pathways like the peptidoglycan recognition protein-LC (PGRP-LC) trigger

the pathway activation, promoting the formation of the IMD, FADD, and Dredd (caspase 8 homolog) complex. This in turn activates Dredd, which is thought to be

involved in the cleavage of the NFB-like transcription factors Relish (Rel). This formed complex also activates Tak1 (MAP3 kinase) and the IKK complex (IRD5 and key)

to phosphorylate Rel. Once translocated into the nucleus, Rel promotes the expression to AMPs in response to invading pathogens. (C) Represents a schematic

diagram of the JAK/STAT pathway. The UPD ligand binds to the DOME receptor leading to its activation. The phosphorylation of JAK and DOME create docking puts

for STATs recruited to the formed complex. STATs themselves become phosphorylated generating an active dimer that translocates to the nucleus, promoting effector

gene expression.

parasitoid egg as a non-self. This recognition further promotes
changes in the hemocyte cell surface membrane, exposing hidden
molecules and presumably triggering downstream signaling
(Nappi et al., 1991, 2000). During the second stage of
encapsulation, the number of circulating hemocytes increases for
a short term, and lamellocytes differentiate from plasmatocytes
(Rizki and Rizki, 1990). Plasmatocytes account for more than
90% of all mature larval hemocytes and are involved in the
phagocytic elimination of pathogenic microorganisms and dead
cells (Lemaitre and Hoffmann, 2007). Activated lamellocytes,
which are only present in larvae and whose expression is mainly
induced upon infection, traffic to the parasitoid egg, flatten, and
attach to the egg and to each other, creating a multilayered
capsule (Strand and Pech, 1995). Lamellocytes are particularly
involved in encapsulating and neutralizing invading pathogens
that are too large to be up-taken by phagocytosis (Lemaitre

and Hoffmann, 2007). The third stage of encapsulation involves
crystal cells that account for 5% of the larval hemocytes. These
cells function as storage sites for pro-phenoloxidase (PPO) and
are therefore involved in the melanotic defensive response. Lysis
of crystal cells triggers the melanization of the capsule surface
(Strand and Pech, 1995; Fellowes and Godfray, 2000; Lemaitre
and Hoffmann, 2007). Within the capsule, the encapsulated
parasitoid egg gets killed by either direct asphyxiation (Salt, 1970)
or by the release of superoxide anions or hydroxyl radicals from
the capsule content (Nappi et al., 1995, 2000; Nappi and Vass,
1998) (Figure 3).

Melanization is another prominent immune response in
insects characterized by melanin synthesis and deposition
around intruding microorganisms (Christensen et al., 2005).
Melanization is also involved in wound healing, phagocytosis,
blood coagulation, and AMP expression in arthropods (Ashida
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FIGURE 3 | Cell-mediated immunity. (A) Represents a schematic diagram of phagocytosis. After the pathogen deposits on the host cell surface (1), it binds to

phagocytic receptors and gets internalized (2) and enclosed in a membrane-bound vacuole forming a phagosome (3). The phagosome undergoes subsequent

phases of maturation before eventually forming a phagolysosome that contains factors including DNases and proteases involved in pathogen destruction (4). (B)

Represents a schematic diagram of encapsulation. In the first stage of encapsulation, hemocytes recognize parasitoid eggs as foreign invaders, triggering

downstream signaling (1). In the second stage of encapsulation, hemocytes increase in numbers and lamellocytes differentiated from plasmatocytes and attach to

parasitoid eggs and to each other, forming a multilayered capsule (2). In the third stage of encapsulation, crystal cells are involved and synthesize enzymes needed for

melanization. Parasitoid eggs get sheathed, immobilized by the deposited melanin, and destroyed within the capsule either by direct asphyxiation or by the release of

superoxide anions or hydroxyl radicals (3).

and Brey, 1995; Söderhäll and Cerenius, 1998; Cerenius et al.,
2008). The melanotic reaction, which is generally induced by
either a pathogenic infection or tissue injury, culminates in the
proteolytic cleavage of inactive PPO to active phenol oxidase
(PO), the chief enzyme in melanin biogenesis (Cerenius et al.,
2008). To avoid the production of excessive intermediates that
are toxic to the host, the activation of melanization is normally
tightly regulated (De Gregorio et al., 2002b; Ligoxygakis et al.,
2002b; Scherfer et al., 2008; Tang et al., 2008). In Drosophila,
genetic studies identified melanization regulators including
serine proteases and serpin proteins. MP1 and MP2/sp7/PAE1
clip proteases, for example, positively regulate melanization.
Silencing either MP1 or MP2 inhibit PO activation upon
pathogenic infection (De Gregorio et al., 2002b; Ligoxygakis
et al., 2002b; Castillejo-Lopez and Hacker, 2005; Scherfer et al.,
2008; Tang et al., 2008). Several studies also highlighted a
role of PGRPs in inducing melanization. The proPO cascade
in Drosophila larvae is induced by a forced expression of
PGRP-LE, independent of infection. Consistent with this,

PGRP-LE is required for infection (E. coli)-induced melanization
(Takehana et al., 2002, 2004). Likewise, PGRP-LC regulates
melanization in Drosophila (Schmidt et al., 2007). Although
melanization is considered an integral component in insect
immunity, evidence of direct killing through quinone synthesis
and melanin production has been reported in a few studies in
insect species only. In Anopheles gamabiae, melanization was
shown to retard Beauveria bassiana growth and dissemination
(Yassine et al., 2012). In Manduca sexta, however, 60–94%
killing of a broad spectrum of gram-negative bacterial species
including Klebsiella pneumoniae, Escherichia coli, Pseudomonas
aeruginosa, and Salmonella typhimurium, and 52–99% killing of
gram-positive bacterial species including Staphylococcus aureus,
Bacillus subtilis, Bacillus cereus, and Micrococcus luteus was
reported in an active melanotic milieu (Zhao et al., 2007).
Similarly, a recent study in D. melanogaster publicitized a
novel role of melanization in anti-nematode immunity (Cooper
et al., 2019). It is worth noting here that some host–pathogen
interactions are “genotype by genotype” driven. Drosophila
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melanogaster’s melanotic and complement-like immunity, for
example, vary extensively against the parasitoid wasp Leptopilina
boulardi. PO activity is predominantly affected by the host
genotype, while TEP1 upregulation is controlled by the parasite
genotype itself. Lamellocyte differentiation, on the other hand,
depends on the specific combination of both the host and parasite
genotypes (Leitão et al., 2019).

RNA INTERFERENCE

The RNA interference (RNAi) pathway, which suppresses gene
expression through targeted RNA degradation, embodies an
ancient mechanism of anti-viral immunity in plants, nematodes,
and arthropods including Drosophila (Hamilton and Baulcombe,
1999; Li et al., 2002; Lu et al., 2005; Wilkins et al., 2005; Cherry
and Silverman, 2006; Wang et al., 2006; Zambon et al., 2006;
Saleh et al., 2009; Karlikow et al., 2014). This pathway emerges in
two major phases including the “initiation” and the “execution”
phase. Either endogenous (short hairpin RNAs manufactured by
the genome, perversely expressed trans-genes, and transposons)
or exogenous sources (naturally occurring or experimentally
made dsRNA) can introduce dsRNA to initiate RNAi (Hannon,
2002; Zambon et al., 2006). dsRNA are recognized and cleaved
by Dicer molecules to form small RNAs (Hammond et al.,
2000; Blaszczyk et al., 2001; Zambon et al., 2006) that get
integrated into the RNA-induced silencing complex (RISC),
denoting the execution phase of the RNAi pathway (Blaszczyk
et al., 2001; Nykanen et al., 2001; Zambon et al., 2006). Unlike
mammals that have only one Dicer gene, and which is difficult
to study, flies possess two genes, Dicer1 and Dicer2, that are
required for processing miRNA precursors from pre-miRNA
and siRNA precursors from long dsRNA, respectively (Robles-
Sikisaka et al., 2001). The single strand of either miRNA or
siRNA integrated into the RISC complex acts as a platform
for RISC to recognize complementary messenger RNA (mRNA)
transcript. Upon recognition, Argonaute, one of the proteins
in RISC, activates and cleaves the mRNA, inhibiting antiviral
functions and suppressing viral expression (Karlikow et al.,
2014) (Figure 4). Other existing, yet poorly identified, RNAi
pathways include the PIWI-interacting RNA (piRNA) pathway
that shields host cells from endogenous mobile genetic elements
(Buchon et al., 2014). Several studies in Drosophila reported
that loss-of-function mutations in essential RNAi pathway genes
increase host vulnerability to viral infection (Zambon et al.,
2006; Aliyari et al., 2008; Buchon et al., 2014). In mammals,
other antiviral defense strategies, including protein sensors that
recognize viral dsRNA motifs, have been identified. Among
these sensors are the DEAD-box helicases RIG-I (Retinoic
acid-inducible gene I) and MDA5 (Melanoma Differentiation-
Associated protein 5), together known as RIG-I-like receptors
(RLRs). Upon recognizing viral nucleic acid during the primary
viral infection stages, these sensors induce the expression of
type 1 interferons (IFNα and IFNβ) and other pro-inflammatory
cytokines (Song and Rossi, 2017; van der Veen et al., 2018;
Brisse and Ly, 2019). Interestingly, studies in Drosophila showed
that Dicer-2 closely resembles the mammalian RLRs, not only
by cleaving dsRNA into siRNA, but also by activating the
transcription of antiviral effectors proteins (Deddouche et al.,

2008). Genetic screening in the fruit fly revealed additional
antiviral roles of DEAD-box helicase. DDX17 (known as Rm62),
for example, exhibits antiviral activity against arthropod-borne
bunyaviruses (Deddouche et al., 2008). In addition to these
nucleic acid-elicited responses, some viruses can be directly
recognized by Toll-7, which promotes the activation of antiviral
autophagy in an AKT pathway-dependent manner through
phosphoinositide 3-kinase (PI3K) and target of rapamycin (Tor)
(Buchon et al., 2014). Likewise, other studies in Drosophila also
revealed a direct antiviral role of autophagy against the vesicular
stomatitis virus, initiated by the pathogen surface glycoprotein
VSVG (Shelly et al., 2009). Sabin et al. identified Ars2 (CG7843)
as a key element of Drosophila antiviral immunity using an
RNAi library and demonstrated that a loss of Ars2 function
in either cells or flies promotes vulnerability to RNA viruses.
In addition to its antiviral characteristic, Ars2 was shown to
modulate Dcr-2 activity in vitro by physically interacting with
it. It was also shown to play an essential role in siRNA-
and miRNA-mediated silencing. This crucial role of Ars2 in
these small RNA pathways delivers novel insight into the
biogenesis of small RNAs, a platform that could be extended
to other systems (Sabin et al., 2009). Similarly, unrecognized
host genes imperative for the influenza viral replication have
been identified using genome-wide RNAi screens in Drosophila.
Three of these identified genes have corresponding homologs
in humans (ATP6V0D1, COX6A1, and NXF1). When tested
in human HEK 293 cells, these genes were shown to be
involved in the replication of H5N1 and H1N1 influenza A
viruses, but not in vaccinia nor in vesicular stomatitis viral
replication (Hao et al., 2008). The natural resistance-associated
macrophage (NRAMP), a divalent metal ion transporter and a
cell surface molecule expressed on Drosophila cells and required
for binding and entry of sindbis virus to host cells, was also
identified using RNAi technology. dNRAMP mutant flies were
shown to be protected from viral infection (Rose et al., 2011).
Interestingly, Carpenter et al. identified many differentially
expressed genes in sigma virus-infected flies, several of which
are neither up-regulated by bacterial or fungal infection, nor
controlled by Toll, IMD, or JAK/STAT pathways, implying the
involvement of other distinct regulatory immune mechanisms
in defense against sigma virus in infected flies (Carpenter et al.,
2009).

Ongoing studies are now applying genome-wide association
study (GWAS) to identify the genetic basis of natural variation in
Drosophila’s immunity against pathogens. A study by Chapman
et al. identified single nucleotide polymorphisms associated with
genes (Bomanin gene BomBc1, krishah, and S6k) that significantly
affected the fly’s immunity to Enterococcus faecalis infection.
Surprisingly, none of these genes are classified as canonical
immune genes (Chapman et al., 2020).

Currently, the direction in unraveling host defense factors
and innate immune effector molecules in the Drosophila
model organism is heading toward bracketing classical genetic
approaches with GWAS and genome-wide RNAi screening of
flies with either loss of function or over-expressed immune
genes, in addition to the use of co-immunoprecipitation assays
and mass spectrometry to identify immune protein complexes.
Moreover, bioinformatics analysis is being extensively adapted
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FIGURE 4 | The RNA interference pathway. Upon entry into the cells, viruses

shed their shielding external coat, uncovering their RNA, and forming dsRNA.

This formed dsRNA gets recognized by the Dicer complex and processed to

form viral siRNA. A single strand of this siRNA gets incorporated into the RISC

complex and act as a template to recognize complementary mRNA, resulting

in mRNA cleavage and therefore silencing of viral RNA.

in deciphering candidate molecules and post-translational
alterations that could impact the host’s immune signaling
pathways (Kanoh et al., 2019; Chapman et al., 2020).
Nevertheless, and along with the ongoing high-throughput
screens to discover conserved genes involved in host–pathogen
interactions and immune signaling, the CRISPR/Cas9 technology
has paved the way for additional wide-scale-based screens in
Drosophila cultured cells, the results of which could be followed
up in vivo in flies and/or mammals (Viswanatha et al., 2019).
Some identified host factors required for defense against a broad
spectrum of pathogens are summarized in Table 1.

PATHOGEN VIRULENCE FACTORS

Diverse well-designed screening assay systems have been
established to identify virulence factors contributing to pathogen-
induced host killing using the Drosophila model organism.
Screening for virulence-attenuated mutants identified a set of
genes involved in the multi-host pathogenesis of P. aeruginosa
PA14, for example. Follow-up studies further characterized
these genes to validate the use of Drosophila as a model
for high-throughput identification of novel virulence factors.
Characterizing hudR, an identified virulence gene encoding a
MarR/SlyA family transcription factor, for instance, revealed that
eminent expression of hudA (homologous to UbiD) is required
and adequate to attenuate the virulence of hudR mutants in
infected flies (Kim et al., 2008). Since quorum sensing is involved

in the pathogenicity of P. aeruginosa, several studies focused
on identifying quorum sensing-regulated virulence factors, as an
appealing therapeutic approach to control P. aeruginosa infection
(Bjarnsholt and Givskov, 2007). P. aeruginosa oxylipin lipids
were also identified as pathogenic factors that promote bacterial
virulence and biofilm formation in Drosophila (Martinez and
Campos-Gomez, 2016). Further studies in P. aeruginosa also
revealed that the phosphorylation state of the transcriptional
response regulator AlgR inversely controls the production
of pyoverdine and pyocyanin, two important P. aeruginosa
virulence factors (Little et al., 2018). Other studies also focused
on deciphering the effect of bacterial toxins on the host using
fruit flies. P. aeruginosa exotoxin ExoS was shown to affect
the activity of Rho GTPases, as the directed expression of the
bacterial ExoS GAP domain (ExoSGAP) inhibits Rac1-, Cdc42-,
and Rho-dependent signaling, suppressing Drosophila cellular
immunity (Avet-Rochex et al., 2005). V. cholerae toxin, in
turn, was shown to decrease intestinal stem cell division, alter
epithelial regeneration, and induce cell–cell junctional damage
(Guichard et al., 2013; Wang et al., 2013). Interestingly, the
Vibrio polysaccharide (VPS)-dependent biofilm, which is highly
activated upon entry into the arthropod intestine, is essential
for Drosophila intestinal colonization (Purdy and Watnick,
2011). Surprisingly however, quorum sensing promotes a more
auspicious interaction between the fly host and V. cholerae
by reducing the nutritional burden of intestinal colonization
in the host (Kamareddine et al., 2018b). Novel H. pylori
effector proteins like the cytotoxin-associated gene A (CagA)
have been studied in transgenic Drosophila flies. CagA mimics
the eukaryotic adaptor protein Grb2-associated binder (Gab)
and activates phosphatase SHP-2, a component of the receptor
tyrosine kinase pathways. These findings in D. melanogaster
could provide more insight into the role of translocated
bacterial proteins that targets highly conserved eukaryotic
cellular processes (Botham et al., 2008). The Anthrax toxin
produced by Bacillus anthracis is comprised of protective antigen
(PA), edema factor (EF), and lethal factor (LF) (Lacy and Collier,
2002). Similar to their function in mammals, LF cleaves MAPK
kinases, and EF inhibits hedgehog pathway in flies (Guichard
et al., 2006). This similarity in function strengthens the argument
of choosing Drosophila as a multicellular host system to study in
vivo function of virulence factors and diverse toxins. Drosophila
has been also extensively used to study infectious properties of
several bacterial species like Porphyromonas gingivalis (W83), a
gram-negative obligate anaerobic bacteria strongly implicated in
adult periodontitis (Griffen et al., 1998; Ezzo and Cutler, 2003;
Igboin et al., 2011). P. gingivalis causes systemic infection in
Drosophila and promotes potent killing in a dose-dependent
manner. Interestingly, both heat-killed and live P. gingivalis
are similarly pathogenic to the fly, suggesting a role of P.
gingivalis cell surface components and Drosophila immunity
in dictating pathology in this host–pathogen model (Igboin
et al., 2011). Tabuchi et al. demonstrated an important role of
dltA, a gene responsible for D-alanylation of techoic acid in
the cell wall of gram-positive S. aureus, in inhibiting the fly’s
Toll pathway. S. aureus-infected dltA mutant flies exhibited an
increase in life span compared to flies expressing dltA normally
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TABLE 1 | Host defense factors.

Pathogen Host Defense factor Lessons from Drosophila References

Bacillus thuringiensis

and

Erwinia carotovora carotovora

Adult flies Diuretic

Hormone 31

(DH31)

The DH31 enteroendocrine peptide stimulates gut

contractions, favoring the elimination of opportunistic

bacteria

Benguettat et al., 2018

Erwinia carotovora

carotovora

Adult flies Drosophila

Peroxiredoxin V

(dPrxV)

dPrxV mutant flies exhibit reduced survival after gut

infection

The JNK/FOXO signaling mediated expression of the

immune-related antioxidant enzyme dPrxV

plausibly protects the host gut epithelial cells from

oxidative damage during bacterial infection

Ahn et al., 2012

Klebsiella pneumoniae Adult flies Phg1 Phg1 is implicated in resistance to Klebsiella infection
Benghezal et al., 2006

Photorhabdus asymbiotica and

Photorhabdus luminescens

Adult flies PGRP-LE PGRP-LE expression is upregulated following

Photorhabdus infection

Absence of functional PGRP-LE alters the transcriptional

pathway activity of JNK and IMD signaling upon infection

with Photorhabdus asymbiotica

Chevee et al., 2019

PGRP-LE mutant flies are more sensitive to

Photorhabdus luminescens

Photorhabdus luminescens infection modifies the activity

of JAK/STAT signaling

Scedosporium apiospermum

and Scedosporium prolificans

Adult flies Toll Pathway Wild-type flies are resistant to Scedosporium

apiospermum and Scedosporium

prolificans infections while Toll-deficiency results in acute

infection and high mortality rates

Lamaris et al., 2007

Cryptococcus

neoformans

Adult flies Toll Pathway The Toll pathway is necessary for clearing Cryptococcus

neoformans introduced directly into the fly hemolymph

and for the survival of systemically infected flies

Apidianakis et al., 2004

Zygomycetes Adult flies Toll Pathway Zygomycetes rapidly infect and kill wild-type flies and

Toll-deficient flies exhibit increased susceptibility to

Zygomycetes

Chamilos et al., 2008

Eater Phagocytosis impaired eater mutant flies exhibit

increased susceptibility to Zygomycetes infection

(Tabuchi et al., 2010). Fungal virulence factors have been also
reported in several Drosophila studies. Gliotoxin, for example,
contributes to the virulence of Aspergillus fumigatus in fruit
flies with functional phagocytes as well as in non-neutropenic
mice, suggesting that gliotoxin principally targets neutrophils
or other phagocytes (Spikes et al., 2008). Cas5 transcription in
Candida albicans regulates cell wall integrity and is essential for
fungal virulence in both murine and Toll mutant flies (Chamilos
et al., 2009). Likewise, Candida glabrata mutant strains lacking
the yapsin virulence factors or the high-osmolarity glycerol
pathway exhibit a less virulent effect in infected flies (Quintin
et al., 2013). Several antifungal drug efficacy studies against
invasive aspergillosis (Lionakis et al., 2005) and malasseziosis
(Merkel et al., 2018) have been conducted in the Drosophila
model. Many studies have also demonstrated the ability of
parasitic nematodes, like those belonging to the Heterorhabditis
genus, to infect and kill fruit flies at larval and adult stages
and to trigger an up-regulation in several genes belonging
to the Toll, IMD, JAK/STAT, and TGF-β signaling pathways
(Castillo et al., 2013, 2015; Arefin et al., 2014). Heterorhabditis
gerrardi, for example, harbors the pathogenic Photorhabdus
asymbiotica bacteria, which gets ejected from the nematode gut
into the host’s hemolymph. In the hemolymph, Photorhabdus
asymbiotica proliferates and releases toxins and virulence factors

that kills the host and provides a favorable environment for the
nematode (Waterfield et al., 2008; Eleftherianos et al., 2010).
To analyze the impact of the Photorhabdus-Heterorhabditis
mutualistic relation on the transcriptional profiles of the
host, Castillo et al. (2015) performed next-generation RNA-
sequencing on flies infected with Photorhabdus alone, germ-
free Heterorhabditis lacking Photorhabdus, and Heterorhabditis
carrying Photorhabdus. The bioinformatics analysis of that study
revealed an impact of Photorhabdus on the transcription of
fly genes associated with translational repression and stress
responses, and an effect of Heterorhabditis on the expression
profiles of genes involved in metabolism, lipid homeostasis,
stress responses, DNA/protein synthesis, and functions of the
nervous system.

In the last few years, a number of studies have examined
virulence factors of human viral pathogens in Drosophila, as
the fruit fly model facilitates the implementation of systematic,
genome-wide RNAi analysis commonly used to identify genes
that are involved in viral replication (Kuttenkeuler and Boutros,
2004). Since a broad spectrum of RNA viruses exploit internal
ribosome entry sites (IRESs) for translation, genome-wide RNAi
screen in Drosophila cells infected with Drosophila C virus were
performed to reveal host factors required for IRES-dependent
translation and viral replication. A study by Cherry et al. revealed
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TABLE 2 | Pathogen Virulence Factors.

Pathogen Host Virulence factor Lessons from Drosophila References

Pseudomonas aeruginosa Adult flies Cyanide Cyanogenic Pseudomonas aeruginosa strains cause

motionlessness and bradycardia and contribute to

lethality in infected flies

Broderick et al., 2008

Adult flies and larvae ExoS exotoxin ExoSGAP acts as a negative regulator of RhoGTPases

Rac1, Rho1 and Cdc42 in the fly eye/during eye

morphogenesis

Avet-Rochex et al., 2005

Adult flies FprA Role of FprA gene in superoxide-mediated stress

protection and virulence of Pseudomonas aeruginosa Boonma et al., 2017

Adult flies Ribonucleotide

reductases (RNRs)

RNRs contribute to Pseudomonas aeruginosa

pathogenicity in infected flies Sjoberg and Torrents, 2011

Adult flies pilGHIJKL chpABCDE

(pil chp gene cluster)

The pilGHIJKL chpABCDE gene cluster is required for

twitching motility and potentially encodes a signal

transduction system that controls the expression of

virulence factors

D’Argenio et al., 2001

Adult flies RelA RelA plays a role in bacterial adaptation to nutritional

deficiencies by the production of guanosine

pentaphosphate or tetraphosphate

Pseudomonas aeruginosa strains lacking relA

demonstrate reduced virulence in Drosophila

melanogaster feeding assay

Erickson et al., 2004

Helicobacter pylori Adult flies, larvae, and

pupae

Cytotoxin associated

gene A (CagA) protein

CagA mimics the eukaryotic Grb2-associated binder

(Gab) adaptor protein and activates SHP-2, a

component of receptor tyrosine kinase (RTK) pathways

Botham et al., 2008

Adult flies CagA promotes microbial dysbiosis and exacerbates

epithelial cell proliferation

Jones et al., 2017

Bacillus anthracis Adult flies and larvae Toxin Lethal factor (LF)

and edema factor (EF)

LF and EF cooperatively inhibit endocytic recycling by

the Rab11/Sec15 exocyst Guichard et al., 2010

Erwinia carotovora Larvae Erwinia Virulence

Factor (Evf)

Evf promotes accumulation of bacteria inside the larval

gut, affecting the gut physiology Acosta Muniz et al., 2007

Vibrio cholera,

Yersinia pseudotuberculosis,

and Pseudomonas aeruginosa

Adult flies KerV virulence factor KerV plays an important role in the Vibrio cholera, Yersinia

pseudotuberculosis, and Pseudomonas aeruginosa An et al., 2009

Staphylococcus aureus Adult flies Wall teichoic acids

(WTA)

WTA promotes bacterial pathogenicity by limiting the

ability of PGRP-SA to recognize Staphylococcus aureus Atilano et al., 2011

Mycobacterium marinum Adults flies Mag24 Absence of mag24 gene attenuates the virulence of

Mycobacterium marinum Dionne et al., 2003

Candida albicans Adult flies Efg1p and Cph1p cph1/cph1 and efg1/efg1 C. albicans mutants have

attenuated virulence, and efg1/efg1 cph1/cph1 double

mutants are almost avirulent in Toll deficient flies

Chamilos et al., 2006

Aspergillus fumigatus Adult flies Alb1 Toll-deficient Drosophila infected with alb1-deleted

hypovirulent Aspergillus mutant survives better than

those infected with a wild-type Aspergillus strain

Lionakis et al., 2005

Cryptococcus neoformans Adult flies Protein kinase A and

RAS signal

transduction pathways

Protein kinase A (PKA) and RAS signal transduction

pathways in Cryptococcus neoformans are involved in

Drosophila killing

Apidianakis et al., 2004

66 ribosomal proteins needed for Drosophila C virus, but not
for non-IRES-containing RNA virus (Cherry et al., 2005). Some
identified pathogen virulence factors are summarized in Table 2.

CONCLUSION

The use of animal models serves as a foundation to reveal
conserved aspects of human disease. Unraveling detailed
mechanisms of host–pathogen interactions using Drosophila
provides further insight into the pathogenic arm of a
microorganism and the defensive arm of a host. A better
understanding of host–microbe interactions is desirable for

the development of novel successful treatment regimens for
pathogen-caused diseases.
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