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Esophageal microbiota plays important roles in esophageal cancer. Esophagectomy, as
the most important therapeutic way, contributes to changes of esophageal microbiome.
However, there are few studies examining the esophageal microbiome and the
metabolic changes before and after esophagectomy. The present study characterized
the esophageal microbiome of 17 patients with esophageal squamous cell carcinoma
(ESCC), 11 patients with esophagogastric junction (EGJ) cancer, 15 patients at 9-12
months after radical esophagectomy and 16 healthy controls (HC). 16S ribosomal RNA
gene sequencing was used to evaluate the microbiome and predict the metabolic
pathways. Our results showed that the microbial diversity was significantly lower in ESCC,
EGJ and post-ESCC groups than that in the HC group. The abundance of Fusobacteria
was higher (7.01 vs. 1.12%, P = 0.039) and the abundance of Actinobacteria (1.61
vs. 4.04%) was lower in the ESCC group than that in the HC group. We found
significant differences in the abundance of Bacteroidetes (20.45 vs. 9.86%, P = 0.026),
Fusobacteria (7.01 vs. 1.66%, P = 0.030) between ESCC and post-ESCC groups.
The results of microbial composition analysis and PICRUSt demonstrated significant
differences between ESCC and HC groups. The B diversity and PICRUSt suggested
that the microbial composition and metabolic pathways were similar to HC group after
esophagectomy. The monitoring of the esophagus microbiota may be an essential
method to predict the recurrence of tumor.

Keywords: microbiota, esophageal squamous cell carcinoma, esophagectomy, 16S ribosomal RNA gene
sequencing, fusobacteria

INTRODUCTION

Esophageal cancer is a rapidly growing concern worldwide, with ~572,000 new cases annually and
509,000 deaths in 2018 (Bray et al., 2018). Esophageal squamous cell carcinoma (ESCC) is the most
common histological subtype of esophageal cancer, particularly in areas of eastern Asia and eastern
and southern Africa. Approximately 90% of esophageal cancer cases are ESCC in China, where the
disease is a major public health problem (Arnold et al., 2015; Fitzmaurice et al., 2015). The incidence
of adenocarcinoma of the esophagogastric junction (EGJ) also increased rapidly over the last few
decades, accounting for one-third of all esophagogastric adenocarcinoma cases (Wu et al., 2009).
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Esophageal cancer is highly invasive, and it has a poor
prognosis, with a five-year survival rate of ~30% in China (Bray
et al, 2018). The reported risk factors of esophageal cancer
included drinking, smoking, ingestion of hot food, obesity,
gastroesophageal reflux disease, and Barretts esophagus (BE)
(Bray et al, 2018; Ferlay et al, 2018). The gut microbiota
has been shown to play an essential role in several cancers,
including gastric cancer (Brawner et al, 2014), colon cancer
(Castellarin et al., 2012; Yang et al., 2017), and pancreatic cancer
(Riquelme et al, 2019). As an important part of the upper
gastrointestinal tract, the esophageal mucosa is also colonized by
microbes. Previous studies have reported that an imbalance of the
microbiome may promote esophageal cancer development and
progression. Some studies have shown lower microbial richness
in the upper digestive tract to be associated with esophageal
squamous dysplasia, regarded as a precursor lesion of ESCC (Yu
et al., 2014). The Fusobacterium nucleatum and Porphyromonas
gingivalis were associated with shorter survival and might
contribute to aggressive tumor behavior through the activation
of chemokines in ESCC patients (Bao et al., 2014; Yamamura
etal., 2019). The microbiota of the oral cavity (Peters et al., 2017)
and gastric cancer (Nasrollahzadeh et al., 2015) from patients
with ESCC also revealed a decrease in overall oral microbial
diversity and enrichment in Clostridiales and Erysipelotrichales in
the gastric corpus of patients with ESCC. Microbiota dysbiosis,
including the presence of Veillonella, Prevotella, Haemophilus,
Neisseria, Campylobacter, and Fusobacterium, has also been
reported in association with gastroesophageal reflux disease
(GRED) and is hypothesized to contribute to the evolution
toward BE and adenocarcinoma at the esophagogastric junction
(EGJ) (Di Pilato et al, 2016). Although a few studies have
suggested the effect of esophageal microbiota on ESCC and EGJ,
further data that can reveal the microbial composition in ESCC
and EG]J are needed.

The treatment of ESCC includes many choices, such as
endoscopic treatment, oncological treatment, surgery, and
chemoradiotherapy (Lagergren et al., 2017). Esophagectomy, as
one of the most radical therapeutic methods of esophageal cancer,
can achieve the goal of a radical cure for early-stage patients
and extend overall survival time for middle- and advanced-
stage patients. Gastroesophageal reflux has been a long-standing
complication after esophagectomy due to the resection of cardia.
Previous studies have shown that bile reflux after subtotal
gastrectomy was associated with the presence of Streptococcus
and Veillonella in gastric aspirates and Escherichia, Klebsiella,
and Clostridium in the intestine (Tseng et al., 2016). However,
there was no study reporting a microbial characterization of
ESCC patients receiving esophagectomy. We plan to investigate
the composition of the esophageal microbiota in healthy tissues,
tumor tissues, and after esophagectomy in the present study.

MATERIALS AND METHODS
Study Population and Sample Collection

Normal esophagus, esophageal squamous cell carcinoma (ESCC),
esophagogastric junction cancer (EGJ, in accordance with the
8th Edition of the AJCC TNM Classification), and postoperative

esophageal squamous cell carcinoma (post-ESCC) specimens
were collected under electronic gastroscopy from January 2018
to June 2019 at Renmin Hospital, Wuhan University (Wuhan,
China). Healthy controls (HC) were normal esophageal (upper,
middle, and lower segments) specimens obtained from 16 healthy
volunteers with no digestive symptoms and esophagogastric
mucosal lesions, as confirmed by electronic gastroscopy. ESCC
(n = 17) and EGJ (n = 11) specimens were harvested from
28 patients with primary tumors, and all EGJ cases were
adenocarcinoma. Post-ESCC (n = 15) specimens were obtained
from the esophageal stump (1.5 cm above the anastomosis site of
the esophageal stump and stomach) at 9-12 months after radical
esophagectomy without chemoradiotherapy. All patients were
diagnosed by pathological examinations.

The exclusion criteria were as follows: a systemic
infectious disease, other coexisting malignant tumors,
preoperative neoadjuvant chemoradiotherapy, biotherapy,

or a history of gastrointestinal surgery. Patients using
antibiotics and microecological preparations (probiotics,
prebiotics, or symbiotics) within 2 months were also excluded.
Demographic data and general clinical information related to the
microecological analysis were acquired, and written informed
consent was obtained from each participant. The experiments
were approved by the Institutional Review Board of the Renmin
Hospital, Wuhan University.

DNA Extraction, Amplification, and

Sequencing

Microbial genomic DNA was extracted from normal esophagus,
ESCC, EGJ, and post-ESCC specimens using the E.Z.N.A.® Soil
DNA Kit (Omega Bio-Tek, Norcross, GA, USA). The quantity
and purity of DNA were determined with a NanoDrop 2000
UV-Vis Spectrophotometer (Thermo Scientific, Wilmington,
MA, USA). The hypervariable region V3-V4 directionally
targeted by the bacterial 16S rRNA gene was amplified with
primers (338F: 5'- ACTCCTACGGGAGGCAGCAG—3'; 806R:
5'-GGACTACHVGGGTWTCTAAT—-3') in a GeneAmp 9700
PCR System (Applied Biosystems, Foster City, CA, USA) (Edgar,
2013). The PCR products were purified using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA,
USA) and quantified using QuantiFluor™-ST (Promega, USA)
according to the manufacturers’ instructions. Purified amplicons
were pooled in equimolar concentrations, and paired-end high-
throughput sequencing was performed using a 2 x 300 kit on the
Mumina MiSeq Platform (Illumina, San Diego, CA, USA). The
protocol of Majorbio Bio-Pharm Technology Co, Ltd. (Shanghai,
China) was followed.

Data Processing and Statistical Analysis

Raw Fastq files were merged in FLASH software (Magoc and
Salzberg, 2011) and quality-filtered with Trimmomatic (Bolger
etal., 2014) using the following criteria (Schirmer et al., 2015): (i)
reads were truncated at any site receiving an average quality score
<20 over a 50 bps sliding window, which retained sequences with
overlaps >10 bps and mismatches of no more than 2 bp, and
(ii) sequence data were demultiplexed and assigned to samples
based on barcodes (exact matches) and primers (two nucleotide
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mismatches were allowed). Reads containing ambiguous bases
were removed.

Operational taxonomic units (OTUs) were clustered with
a 97% sequence similarity cutoff using UPARSE (version 7.1,
https://drive5.com/uparse/) (McDonald et al., 2012; Edgar, 2013)
and a novel “greedy” algorithm that simultaneously performed
chimera filtering and OTU clustering. The taxonomic assignment
of each sequence was carried out using the Ribosomal Database
Project (RDP) Classifier algorithm (http://rdp.cme.msu.edu/)
against the Silva (SSU123) 16S rRNA database with a confidence
threshold of 70% (Liu et al., 2018).

Statistical analysis was carried out using GraphPad Prism
(version 8.0.2) and the Majorbio I-Sanger Cloud Platform
(http://www.i-sanger.com). The Kruskal-Wallis test, Fisher’s
exact test, and paired t-test were used to compare demographic
characteristics. Alpha diversity indexes were calculated using
MOTHUR (version 1.30.1) (Schloss et al, 2009). Principal
coordinates analysis (PCoA) based on the weighted and
unweighted UniFrac distance and analysis of similarities
(ANOSIM) was carried out to compare the global microbial
composition at the operational taxonomic unit (OTU) level
(Kageyama et al.,, 2019). Welch’s t-test and the Wilcoxon rank-
sum test were used to identify species at phylum and genus levels.
The detection of discriminant bacterial species was performed
using the linear discriminant analysis effect size (LEfSe) (Segata
et al., 2011). The linear discriminant analysis score (LDA score)
indicated the effect size of each OTU, and OTUs with an LDA
score >3.0 were defined as differentially abundant OTUs (Yang
etal., 2018; Kageyama et al., 2019). Phylogenetic investigation of
communities by reconstruction of unobserved states (PICRUS)
(Langille et al., 2013) analysis was used to identify Kyoto
Encyclopedia of Genes and Genomes (KEGG) biochemical
pathways, and the results were visualized as a heatmap with the
Multiple Experiment Viewer (version 4.9.0).

RESULTS

Demographic Characteristics of All

Individuals

The demographic characteristics of all individuals (n = 59)
are shown in Table 1. No differences were observed in age,
sex, alcohol intake, tobacco smoking, and TNM stage. The
percentages of II and III patients in the EGJ, ESCC, and post-
ESCC groups were 90.9, 88.2, and 86.7%, respectively. It is of
note that gastroesophageal refluxing, which is the most common
complication after esophagectomy, existed in 11 (73.3%) patients
of the post-ESCC group but was not observed in other groups.

Decreased Microbial Diversity and
Richness in the ESCC, EGJ, and
Post-ESCC Groups Compared With the HC
Group

For community coverage, the value of the Good’s coverage for all
samples was >99% (Figure S1A), indicating that the sequencing
results reflected the bacterial composition of the samples. We
also evaluated the flat refraction curve, and the results suggested

that the quantity of sequencing data was sufficient (Figure S1B).
We examined estimators of community richness (Sobs index),
diversity, and evenness (Shannon index). Significant differences
were observed in the Sobs and Shannon indexes between the
ESCC and HC groups (Sobs, 324.59 vs. 565.69, P = 0.008;
Shannon, 2.95 vs. 3.64, P = 0.017), the EGJ and HC groups (Sobs,
331.36 vs. 565.69, P = 0.044; Shannon, 2.48 vs. 3.64, P = 0.039),
and the post-ESCC and HC groups (Sobs, 318.47 vs. 565.69,
P = 0.021; Shannon, 2.48 vs. 3.64, P = 0.014, Figures 1A,B),
indicating that microbial diversity was significantly lower in the
ESCC, EG]J, and post-ESCC groups than that in the HC group.
In addition, no significant differences were observed in Sobs
and Shannon indexes between ESCC and EGJ groups, whose o
diversity was not significantly different (Figure S1C).

Microbial Differences Between Tumor and

Healthy Tissues

We analyzed the microbiomes of the ESCC, EGJ, and HC
groups. Firmicutes was the predominant phylum in ESCC
and EGJ tumor specimens, whereas Proteobacteria was the
predominant phylum in healthy specimens (Figure 1C). We also
examined the microbial community at the genus level. ESCC
specimens were rich in Streptococcus, Lactobacillus, Prevotella,
and Fusobacterium, while EGJ specimens were abundant in
Streptococcus, Staphylococcus, and Pseudomonas. By contrast,
HC specimens were rich in Streptococcus, Ralstonia, and
Burkholderia-Caballeronia-Paraburkholderia (Figure 1D). We
carried out tests of significance between tumor and healthy
specimens. The relative abundance of Fusobacteria was higher
(7.01 vs. 1.12%, P = 0.039) and that of Actinobacteria was lower
(1.61 vs. 4.04%, P = 0.002) in the ESCC group than in the HC
group (Figure 2A), while the EGJ group showed an increased
abundance of Firmicutes (61.24 vs. 26.66%, P = 0.001) but a
decreased abundance of Proteobacteria compared with the HC
group (16.59 vs. 39.15%, P = 0.002, Figure 2B). A difference
in the relative abundance of only one phylum, Firmicutes, was
observed between the ESCC and EGJ groups (38.38 vs. 61.24%, P
= 0.025, Figure S2A). Interestingly, we identified an unclassified
bacterium whose relative abundance was higher in the HC
group than in the ESCC and EGJ groups (13.69 vs. 1.50%, P
= 0.005; 13.69 vs. 0.82%, P = 0.003, Figures 2A,B). Compared
with the HC group, the relative proportion of Pseudomonas
increased (5.33 vs. 1.46%, P = 0.003) and those of Ralstonia and
Burkholderia-Caballeronia-Paraburkholderia decreased (0.21 vs.
11.38%, P < 0.001; 0.77 vs. 9.28%, P < 0.001, Table S1) in the
ESCC group.

To further evaluate differences in the esophageal microbiome,
we examined the B diversity and represented the results of
principal coordinate analysis (PCoA) as a plot. The results
revealed significant differences between the esophageal
microbiomes of the ESCC and HC groups (Figure2C,
Figure S2B). We also examined the LDA coupled with LEfSe.
We found that Clostridiales, Pseudomonas, and Selenomonadales
were the key taxa contributing to the changes in the microbiome
of ESCC patients, whereas Burkholderiaceae, Ralstonia, and
Burkholderia—-Caballeronia-Paraburkholderia were the key taxa
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TABLE 1 | Demographic characteristics of all individuals.

Characteristic EGJ (n = 11) ESCC (n =17) HC (n = 16) P! ESCC (n =17) Post-ESCC (n = 15) P?
Sex

Male, No. (%) 8(72.7) 12 (70.6) 10 (62.5) 0.824 12 (70.6) 9 (60.0) 0.712
Female, No. (%) 3(27.9) 5(29.4) 6 (37.5) 5 (29.4) 6 (40.0)

Age, mean + SD,y 61.4+6.2 61.2+9.8 58.6 +9.8 0.896 61.2+9.8 5902+ 43 0.344
Alcohol intake, No. (%) 3(27.9) 5 (29.4) 3(18.8) 0.763 5 (29.4) 4 (26.7) >0.99
Tobacco smoking

Never 4(36.9) 6 (35.3) 9 (56.2) 0.76 6 (35.3) 8 (53.4) 0.216
Current 4(36.9) 7(41.2) 4(25.0) 7(41.2) 2(13.3)

Former 3(27.9) 4 (23.5) 3(18.8) 4 (23.5) 5(33.3)

TNM stage

I 1 2 0.863 2 2 0.988
Il 5 9

Il 5 6

EGJ, esophagogastric junction cancer; ESCC, esophageal squamous cell carcinoma; HC, healthy control; post-ESCC, postoperative esophageal squamous cell carcinoma;, SD, standard
deviation; P, p-value. P': Fisher’s Exact and Kruskal-Wallis test were used to compare demographic characteristics of the EGJ, ESCC and HC groups. P2: Fisher's Exact test and paired
t-test were used to compare demographic characteristics of the ESCC and Post-ESCC groups.

contributing to the changes in the microbiome of HC patients
(Figures 3A,B). The results of LDA coupled with LE{Se between
the EGJ and HC groups are also presented (Figures S2C, S3A).

Differences Between the Microbial
Communities of ESCC and Post-ESCC

Patients

To examine microbial differences caused by esophagectomy, we
examined the a and P diversities of the ESCC and post-ESCC
groups. There are no significant differences in their Sobs and
Shannon indexes (Figure S3B), indicating that the community
richness, diversity, and evenness were similar between the
two groups. However, the results of PCoA demonstrated
that the microbial composition was significantly different
(Figure 4A). We found significant differences in the proportions
of Bacteroidetes (20.45 vs. 9.86%, P = 0.026) and Fusobacteria
(7.01 vs. 1.66%, P = 0.030) at the phylum level (Figure 4B) and
in the proportions of Pseudomonas (5.33 vs. 13.83%, P = 0.008),
Fusobacterium (5.77 vs. 1.25%, P = 0.045), and Prevotella (4.42
vs. 1.02%, P = 0.001) at the genus level between the ESCC and
post-ESCC groups (Table S2). The f diversity results suggested
that the microbial community of the post-ESCC group was
similar to that of the HC group (Figure S4). The results of LDA
and LEfSe confirmed that Bacteroidetes and Pseudomonas were
the key taxa contributing to the changes in the microbiome of the
ESCC and post-ESCC groups (Figures 5A,B).

Differences in Microbial Communities Lead
to Differences Between the Metabolic
Pathways in ESCC and HC Patients

Microbial imbalances can induce systemic metabolic alterations
(Nieuwdorp et al., 2014) and vice versa (Cani, 2017). We carried
out PICRUSt to predict the metagenomes from the 16S data,
and these were used to identify the KEGG pathways involved in
ESCC, HC, and post-ESCC specimens. The results are presented

as a heatmap. We found that the HC group was enriched in
pathways related to the metabolism of fatty acids, short-chain
fatty acids (SCFAs), butanoate, propanoate, tryptophan, and
beta-alanine, as well as in pathways related to the degradation of
benzoate, lysine, geraniol, aminobenzoate, limonene, and pinene.
The ESCC group was enriched in pathways related to metabolism
of cysteine, methionine, fructose, galactose, and starch, as well as
in pathways related to DNA repair and recombination, protein
translation, chromosomal dynamics, and peptidase activity
(Figure 6). The PICRUSt taxonomic functional relationships
suggested that the microbial composition determined which
metabolic pathways were involved. Interestingly, the pathways
associated with the post-ESCC group were moderately similar to
those of the HC group (Figure 6).

DISCUSSION

Microbes colonize the esophageal mucosa, and increasing
evidence suggests that the esophageal microbiome plays
important roles in esophageal diseases. Most studies on the
esophageal microbiome and esophageal diseases address
BE and EAC, but there are few studies concerning ESCC.
This is the first study to profile the esophageal microbiome
in cancer patients before and after esophagectomy and to
predict systemic metabolic alterations. We found the microbial
richness and diversity (Sobs and Shannon indexes) to be
significantly lower in esophageal cancer and postoperative
patients than in healthy controls, which was consistent with
the results of a previous study (Castaiio-Rodriguez et al,
2017). The o diversity and B diversity were not statistically
different between the ESCC and EGJ groups, which is
possibly because that the tumor microenvironment creates
a niche for similar microbial communities to colonize
and thrive even in unique tissue types (Shao et al., 2019).
Proteobacteria and Streptococcus were the predominant taxa
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FIGURE 1 | Comparison of « diversity and the relative abundance of taxa in the healthy patients and those of the EGJ, ESCC, and post-ESCC groups. Estimators of
community richness [Sobs index, (A)] and diversity [Shannon index, (B)] in OTU levels. (C) Average relative abundance of taxa at the phylum level. (D) Average relative
abundance of taxa at the genus level. OTU, operational taxonomic unit.

in normal esophagus, which was in accordance with earlier
studies. In addition, we detected Ralstonia and Burkholderia-
Caballeronia—Paraburkholderia, which were members of the
Betaproteobacteria family, in healthy controls. Ralstonia was
the most abundant genus in normal breast tissue and gastric
cancer (Tseng et al., 2016; Costantini et al., 2018). Our results
showed that Ralstonia comprised the microbiome of the

normal esophagus, and further studies are needed to verify
these results.

The esophagus of patients with ESCC was enriched in
Streptococcus, Prevotella, Fusobacterium, Veillonella, and
Lactobacillus, which is in conformity with a previous study
(Shao et al, 2019). In Japanese patients with esophageal
cancer, Fusobacterium nucleatum was enriched in ESCC tissue
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differences were observed between the microbiomes of the ESCC and HC groups. (B) Significant differences were observed between the microbiomes of the EGJ
and HC groups. (C) PCoA based on unweighted UniFrac distances between the ESCC and HC groups. P-values were calculated by analysis of similarities (ANOSIM)

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6

June 2020 | Volume 10 | Article 268


https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

Lietal

Microbiota in Esophagus

o_Clostridiales
g_Pseudomonas
f_Pseudomonadaceae
o_Pseudomonadales
o_Selenomonadales
f_Veillonellaceae
f_Lachnospiraceae
f_Bacillaceae
f_Peptostreptococcaceae
g_Peptostreptococcus

i g_Parvimonas
f_Family_XI_o_Clostridiales
._Selenomonas
g_Selenomonas_3
g_Lachnoanaerobaculum
g_unclassified-f_Veillonellaceae
_Citrobacter

ribacterium

gl

g_norank_o_Chloroplast
o_Chloroplast

Il ESCC
Il HC

f_Burkjolderiaceae
0_Betaproteobacteriales )
g_unclassified_k_norank_d_Bacteria
o_unclassified_k_norank_d_Bacteria
f_unclassified_k_norank_d_Bacteria
g_Ralstonia _ :
Burkholderia_Caballeronia_Paraburkholderia
f_unclassified_p_Proteobacteria
o_unclassified_p_Proteobacteria
g_unclassified_p_Proteobacteria
o_Corynebacteriales

f_Moraxellaceae

g_Rhodococcus

f_Nocardiaceae

g_Acinetobacter

o_Micrococcales

o_Propionibacteriales
f_'Proglonlba.ctenaceae

g_Cutil

bacterium

O_Rickettsiales

f_Micrococcaceae .
g_norank_f_Mitochondria
f Mitochondira
f_Rhodobacteraceae
o_Rhodobacterales
I_Acidovarax
norank_o_Chloroplast

5.0 40 35 30 25 20 15 10 05 00

4.5

05 10 15 20 25 30 35 40 45 50

LDA score (log10)

Il ESCC
Il HC

a: p__Actinobacteria

b:c_ Actinobacteria

¢ : o__Propionibacteriales
d : f__Propionibacteriaceae
e :g__Cutibacterium

f:g_ Cryptobacterium

g: o__Corynebacteriales
h: f__Nocardiaceae

i: g__Rhodococcus

h1:g__Ralstonia

it:g_| ia_Ci ia_|
j1: g__Acidovorax

k1: o__Pseudomonadales
I1:f_Pseudomonadaceae

m1:g_ Pseudomonas
n1:f__Moraxellaceae

o1:g_ Acinetobacter

p1: c_ Deltaproteobacteria
q1: c_Alphaproteobacteria

1 : o__Rhodobacterales
s1:f__Rhodobacteraceae

t1: o__Rickettsiales

u1 : f__Mitochondria
v1:g__norank_f__Mitochondria

j:9__Scardovia

k : o__Micrococcales
1:f_Micrococcaceae

m: c_ Clostridia

n : o__Clostridiales

o: f__Family_X|_o__Clostridiales

p:g_ Parvimonas w1 : c__unclassified_p__Proteobacteria
q:f__Lachnospiraceae x1:0__unclassified_p__Proteobacteria
r:g__Catonella y1:f__unclassified_p__Proteobacteria

s:g_ Oribacterium
t:g_ Lachnoana
u: f__Peptostreptococcaceae

v : g__Eubacterium__yurii_group

21:g__unclassified_p__Proteobacteria
a2: p__unclassified_k__norank_d__Bacteria
b2 : ¢__unclassified_k__norank_d__Bacteria
©2: o__unclassified_k__norank_d__Bacteria
d2:f_unclassified_k__norank_d__Bacteria

erobaculum

w:g_ Peptostreptococcus
X : g__Christensenellaceae_R_7_group
y : f__Bacillaceae

z:¢__Negativicutes

a1:o_ Selenomonadales

€2:g__unclassified_k__norank_d__Bacteria
2 : p__Cyanobacteria

g2 : c__Oxyphotobacteria

h2: o__Chloroplast

i2 : f__norank_o__Chloroplast

j2: g__norank_o__Chloroplast

b1 :f__Veillonellaceae
c1:g__Selenomonas

d1:g_ Selenomonas, . 3 K2 : p__Chloroflexi
e1:g__unclassified_f_ Veillonellaceae 12: ¢__Anaerolineae
1 : o__Betaproteobacteriales m2 : p__Acidobacteria

g1 :f__Burkholderiaceae n2: p__Planctomycetes

FIGURE 3 | Results of linear discriminant analysis (LDA) and effect size measurements (LEfSe) between the ESCC and HC groups. (A) Bar plot shows taxa with LDA
score >3.0 from the order to the genus level. (B) LEfSe analysis shows the most abundant taxa from the phylum to the genus level between the ESCC and HC groups.

compared with matched normal esophagus tissue, and is quantity
was negatively correlated with survival (Yamamura et al., 2016,
2019). F. nucleatum has potential prognostic value for ESCC and
had been detected in colon cancer. Other studies have reported

a robust association between F. nucleatum and colorectal cancer
(Castellarin et al., 2012; Kostic et al., 2013; Rubinstein et al.,
2013; Yu et al,, 2017). The F. nucleatum presented in these tissues
had been verified by isolating F. nucleatum strains directly from
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biopsy samples and from patient-derived xenografts passaged in
mice (Castellarin et al., 2012; Bullman et al., 2017). F. nucleatum
can induce expression of the pro-inflammatory cytokines in
epithelial cells, including IL-6 and IL-8 (Ahn et al, 2017),
which can contribute to the dynamic cross-talk between tumor
cells and cancer-associated fibroblasts (CAF) in the TME for
ESCC (Karakasheva et al., 2018). F. nucleatum infection can
induce expression of the antimicrobial peptide B-defensin 2
and high-mobility group box 1 protein (HMGBI1) (Bui et al.,
2016), which can result in increased proliferation and modulated
autophagy in ESCC cell lines (Di et al., 2019). In the ESCC group,
the relative abundances of Clostridiales and Pseudomonas also
significantly increased compared to the HC group. Clostridiales
are obligate anaerobes that thrive in hypoxic environments
such as those created by tumors. A previous study reported that
Clostridiales in the gastric corpus could contribute to esophageal
squamous dysplasia (Nasrollahzadeh et al., 2015). Transplanting

Clostridium to germ-free nutrition-deficient mice can increase
the acylcarnitine level in the gut and decrease protein synthesis
and amino acid oxidation in the liver (Blanton et al., 2016),
thereby promoting the development of cancer. Clostridiumalos
difficile, as a member of the Clostridiales class, also plays a
pivotal role in regulating Clostridium difficile infections (CDI)
(Farowski et al., 2019). The Gram-negative Pseudomonas is
over-represented in cases of oral squamous cell carcinoma
(OSCC) (Perera et al., 2018), a kind of tumor that is similar to
ESCC. Pseudomonas can induce Toll-like receptors to activate
cytokines, chemokines, and COX-2 and recruit cells of the innate
and adaptive immune system (Markou and Apidianakis, 2014).
Infection with Pseudomonas could activate the c-Jun N-terminal
kinase (JNK) pathway to induce enterocyte apoptosis, and
intestinal stem cell proliferation (Apidianakis et al., 2009),
intestinal innate immune responses, and stem cells may initiate
the development of tumors and metastasis (Schwitalla et al,
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2013). In addition, no significant change was observed in the
relative abundance of Porphyromonas gingivalis in our study,
which was evidenced in esophageal cancer and dysplasia tissues
but was rarely found in non-cancerous and normal tissues (Gao
etal., 2016).

We also noticed differences in the esophageal microbiome
after surgery. At the genus level, the abundance of Fusobacterium
and Prevotella decreased after surgery. In another study, the
relative proportions of Firmicutes and Bacteroidetes increased,
while those of Proteobacteria and Actinobacteria decreased
after gastrectomy (Tseng et al., 2016). Bacteroidetes are
Gram-negative anaerobes and micro-aerophiles that reside
in the diseased esophagus (Yang et al, 2009). Compared

to the HC group, Lactobacillus significantly increased in
the post-ESCC group, which was associated with the acidic
microenvironment caused by the increased gastric acid reflux
after esophagectomy. Another study also indicated that
a low pH is needed for the proliferation of Lactobacillus
(Elliott et al., 2017). The gastric microenvironment is
populated by microbial communities mainly comprised of
the Lactobacillus, Streptococcus, and Propionibacterium genera
(Nardone et al., 2017).

The results of PICRUSt showed that the pathways related to
the metabolism of cysteine and methionine, monosaccharides,
starch were upregulated and the metabolic levels of fatty
acids, short-chain fatty acids (SCFAs), tryptophan, and
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beta-alanine were low in the ESCC group. Meanwhile, pathways
related to other cellular functions, including DNA repair and
recombination, protein translation, chromosomal dynamics,
and peptidase activity were also altered. Methionine uptake
and breakdown associate with various cellular processes such
as methylation reactions, polyamine synthesis, and redox
maintenance. SCFAs are produced by colonic microbial
fermentation of undigested or partially digested dietary fibers
and have broad effects on host immune system development
and function, which can enhance epithelial barrier function
and immune tolerance (Rooks and Garrett, 2016). Tryptophan
has been shown to play a crucial role in the balance between
intestinal immune tolerance and gut microbiota maintenance
(Lee and Lee, 2010). The metabolic heterogeneity between
the ESCC and HC groups was essential for host immune
function and tumorigenesis. After radical esophagectomy,
the microbial metabolism became similar to that of healthy
control, suggesting that tumors can alter the microbial
microenvironment and metabolic profile. The microbial
composition of the esophagus may tend to become similar to
normal status after surgery. It is suggested that the microbiota
composition and metabolism profile are associated with the
physiological or pathological status of the esophagus and
that the emergence of some microbes, which dominated in
the tumor patients, may be predictors of the recurrence of
the tumor.

Of course, there were several limitations to this study.
First, the sample size of each group was limited, and larger
studies should be performed to validate our findings.
Second, the microbiome that we studied was likely to
be contaminated by saliva during endoscopic sampling.
Finally, we only examined the microbiome at 9-12
months after surgery. Additional time points may better
describe the changes in the microbial microenvironment for
postoperative cases. In addition, investigations of the biological
mechanisms of the microbiota are needed to elucidate the
association between complex microbial environments and
esophageal cancer.

In conclusion, we compared the microbial composition

of esophagus in different statuses and found some
microbiota associated with the tumorigenesis. We also
discovered the microbial metabolism of postoperative
esophagus to be similar to that of healthy tissue.
Monitoring of the esophagus microbiota may be
an essential method for predicting the recurrence
of tumor.
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