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Members of different virus families including Hantaviridae cause viral hemorrhagic

fevers (VHFs). The decisive determinants of hantavirus-associated pathogenicity are still

enigmatic. Pathogenic hantavirus species, such as Puumala virus (PUUV), Hantaan virus

(HTNV), Dobrava-Belgrade virus (DOBV), and Sin Nombre virus (SNV), are associated

with significant case fatality rates. In contrast, Tula virus (TULV) only sporadically

causes mild disease in immunocompetent humans and Prospect Hill virus (PHV) so

far has not been associated with any symptoms. They are thus defined here as low

pathogenic/apathogenic hantavirus species.We found that productive infection of cells of

the mononuclear phagocyte system (MPS), such as monocytes and dendritic cells (DCs),

correlated well with the pathogenicity of hantavirus species tested. HTNV (intermediate

case fatality rates) replicated more efficiently than PUUV (low case fatality rates) in

myeloid cells, whereas low pathogenic/apathogenic hantavirus species did not produce

any detectable virus titers. Analysis of PHPUV, a reassortant hantavirus derived from a

pathogenic (PUUV) and an apathogenic (PHV) hantavirus species, indicated that the viral

glycoproteins are not decisive for replication in MPS cells. Moreover, blocking acidification

of endosomes with chloroquine decreased the number of TULV genomes in myeloid

cells suggesting a post-entry block for low pathogenic/apathogenic hantavirus species

in myeloid cells. Intriguingly, pathogenic but not low pathogenic/apathogenic hantavirus

species induced conversion of monocytes into inflammatory DCs. The proinflammatory

programming of MPS cells by pathogenic hantavirus species required integrin signaling

and viral replication. Our findings indicate that the capacity to replicate in MPS cells is a

prominent feature of hantaviral pathogenicity.
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INTRODUCTION

Hantaviruses (order Bunyavirales, family Hantaviridae) are
globally emerging zoonotic pathogens that cause different types
of viral hemorrhagic fever (VHF) (Kruger et al., 2015; Papa
et al., 2016). The hallmarks of hantavirus-induced disease are
increased vascular permeability as well as loss and dysfunction
of platelets (Rasmuson et al., 2011; Vaheri et al., 2013b). In
severe cases fatal shock and multiorgan failure can occur. The
severity and case fatality rate of hantavirus-associated VHF
depends on the hantavirus species involved (Jonsson et al., 2010;
Kruger et al., 2011). Inadequate immune responses contribute to
hantaviral pathogenesis (Schonrich et al., 2008, 2015; Schonrich
and Raftery, 2016; Klingstrom et al., 2019).

Hantavirus species circulating in Europe and Asia, such as
Puumala virus (PUUV), Hantaan virus (HTNV), and Dobrava-
Belgrade virus (DOBV) are associated with hemorrhagic fever
with renal syndrome (HFRS) with case fatality rates of <1%
(PUUV), ∼5% (HTNV), and ∼10% (DOBV) (Vaheri et al.,
2013a). Hantavirus species circulating in the Americas, such as
Sin Nombre virus (SNV) and Andes virus (ANDV) can induce
hantavirus cardiopulmonary syndrome (HCPS), a more severe
form of VHF with case fatality rates of up to 40% (Macneil et al.,
2011; Figueiredo et al., 2014). In contrast, hantavirus species
that only sporadically cause mild disease, such as Tula virus
(TULV) (Klempa et al., 2003; Zelena et al., 2013; Reynes et al.,
2015) or infect humans without symptoms, such as Prospect
Hill virus (PHV) (Yanagihara et al., 1984) are regarded as low
pathogenic/apathogenic hantavirus species.

A group of myeloid cells that constitute the mononuclear
phagocyte system (MPS) play a critical role in infectious
diseases (Lugo-Villarino et al., 2019). TheMPS cells—monocytes,
macrophages and myeloid dendritic cells (DCs)—are distinct but
morphologically and functionally similar professional antigen-
presenting cells (APCs) that express major histocompatibility
complex (MHC) class II molecules (Hume, 2006; Guilliams
et al., 2014). They not only act as early checkpoints of the
antiviral defense and stimulators of adaptive immunity but
also substantially contribute to immunopathogenesis in zoonotic
diseases caused by viruses, such as ebola virus, zika virus, dengue
virus, and chikungunya virus (Supramaniam et al., 2018). The
function of MPS cells is regulated by β2 integrins (Schittenhelm
et al., 2017), which also serve as hantavirus receptors (Raftery
et al., 2014). This suggests that hantaviral pathogenicity is linked
to the MPS and β2 integrins. In accordance, several pathogenic
hantavirus species (HTNV, PUUV, and ANDV) have previously
been demonstrated to productively infect human DCs in vitro
(Raftery et al., 2002a; Marsac et al., 2011; Scholz et al., 2017;
Schonrich and Raftery, 2019). Previous studies also reported
in vitro infection of primary monocytes (Nagai et al., 1985;
Temonen et al., 1993; Scholz et al., 2017) or a monocytic cell
line (Markotic et al., 2007) with pathogenic hantavirus species.
It is unclear, however, whether the capacity to replicate in MPS
cells differentiates pathogenic from low pathogenic/apathogenic
hantavirus species.

In this study, we comparatively analyzed the capacity of
pathogenic and low pathogenic/apathogenic hantavirus species

to infect MPS cells. Moreover, we investigated the functional role
of integrin signaling during hantavirus infection of MPS cells.

MATERIALS AND METHODS

Vero E6 Cells
Vero E6 cells were cultured in Dulbecco’s MEM (Gibco)
supplemented with 10% hiFCS (BioWhittaker), 2mM L-
glutamine, penicillin, and streptomycin (PAA). Cells were
passaged by washing with PBS (Biochrom), addition of trypsin
until cells detached, and finally addition of FCS-containing
medium to stop trypsin activity.

Peripheral Blood Mononuclear Cell
(PBMCs)
Density gradient centrifugation was used to isolate PBMCs
from buffy coat units supplied by the German Red Cross
(Dresden) as previously described (Raftery et al., 2002b). The
PBMCs were derived from both female and male healthy donors.
In brief, blood was diluted 1:1 with RPMI medium (RPMI
1640 with 2% heat-inactivated FCS, 0.2mM EDTA) and placed
on top of Ficoll-Hypaque (PAA). Tubes were subsequently
centrifuged at 800 g for 30min at room temperature. PBMCs
were collected and washed twice with RPMI medium before
use. PBMCs were cultured in RPMI 1640 supplemented with
10% hiFCS (BioWhittaker), 2mM L-glutamine, penicillin, and
streptomycin (PAA).

Untouched Monocytes
Monocyte isolation kit II (Miltenyi Biotec) was used for
isolation of untouched monocytes according to manufacturer’s
protocol. Subsequently, monocytes were cultured in RPMI
1640 supplemented with 10% hiFCS (BioWhittaker), 2mM L-
glutamine, penicillin and streptomycin (PAA).

Isolation of Immature DCs (iDCs) From
Peripheral Blood and Generation of
Monocyte-Derived iDCs in vitro
Blood DC isolation kit II (Miltenyi Biotec) was used for
isolation of myeloid iDCs from human PBMCs. Isolated iDCs
were cultured in RPMI 1640 supplemented with 10% hiFCS
(BioWhittaker), 2mM L-glutamine, penicillin and streptomycin
(PAA). Monocytes for in vitro generation of iDCs were isolated
with CD14+ microbeads (Miltenyi Biotec). Subsequently, iDCs
were generated from monocytes by adding a cytokine cocktail
consisting of 500 IU/ml GM-CSF (ImmunoTools) and 200 IU/ml
IL-4 (ImmunoTools). Medium and cytokines were changed every
2–3 days. Monocytes were also isolated from a LADIII patient
(male) to generate LADIII iDCs in vitro as described above.
The LADIII patient expressed normal levels of integrins but was
defective in integrin signaling due to a homozygous mutation in
Fermitin Family Member 3 (FERMT3), which encodes kindlin-
3, located in exon 12 (c.1525C>T) resulting in a premature stop
codon (p.Arg509X) (Kuijpers et al., 2009).
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Humanized Mouse Model
Generation of mice with a humanized immune system has
previously been published (Kobak et al., 2015). Briefly, NSG
mice expressing HLA-A2, a human MHC class I molecule, were
humanized by reconstitution with HLA-A2+ human CD34+

hematopoietic stem cells isolated from umbilical cord blood.
Engraftment was evaluated at 11 weeks post-inoculation by
cytofluorimetric analysis of PBMCs. Successfully engrafted mice
were infected intraperitoneally (i.p.) with 105 focus-forming
units (FFU) of HTNV (strain 76-118). Infection was successful
as determined by RT-qPCR from sera.

Flow Cytometry
For surface staining, cells were harvested and washed twice
in ice-cold FACS washing solution. Thereafter, cells were
resuspended in 50 µl FACS blocking solution, containing the
primary antibody in appropriate dilution (see below), and
incubated for 1 h. After incubation, cells were again washed
twice with FACS wash solution and for unconjugated primary
antibodies, a corresponding labeled secondary antibody, diluted
in FACS block solution, was added. After 45min the cells were
washed with FACS wash solution and resuspended in FACS
fixation solution. For quantifying fluorescence of labeled cells
a FACSCalibur R© (BD Biosciences) was used. Results were
evaluated with the flow cytometry analysis software program
CellQuestPro R© (BD Biosciences) and FlowJoTM Software
(BD Biosciences).

Viruses and Infection
Virus stocks of HTNV (strain 76-118), TULV (strain Lodz),
PHV (strain 3571), PHPUV (Handke et al., 2010), DOBV
(genotype Sochi), SNV, and K26GFP were propagated on
VeroE6 cells. K26GFP was derived from HSV-1 strain KOS
and expresses green fluorescent protein (GFP) coupled to the
12 kDa capsid protein designated VP26, which is encoded by
open reading frameUL35 (Desai and Person, 1998). Hantaviruses
were propagated and titrated in a biosafety level 3 (BSL3)
laboratory as previously described (Kraus et al., 2005). Virus
stocks were regularly tested for mycoplasma contamination
by PCR and stored at −80◦C before use. In order to infect
cells, virions were allowed to adsorb to cells for 1 h at 37◦C.
Thereafter, cells were washed three times with medium before
being seeded in a cell culture vessel at a density of 106/ml
and incubated in a humidified atmosphere at 37◦C. Uninfected
cells treated with medium instead of virions were used as
mock control.

Reagents, TLR Ligands, and Cytokines
In order to block integrin signaling the Src kinase inhibitor
PP2 (Merck) at 10µM in DMSO was used. In addition, the
following TLR ligands, cytokines, and reagents were used: LPS
(InvivoGen) at 1µg/ml, poly I:C (Sigma) at 1µg/ml, IFNα-
2a (ImmunoTools) at 5,000 U/ml, chloroquine (Sigma) at
10µM, and phorbol 12-myristate 13-acetate (PMA) (Sigma)
at 10 nM.

Antibodies and Staining Reagents
Anti-CD14 (clone M5E2), anti-CD83 (clone HB15e), anti-
CD107a (clone H4A3), and anti-integrin αM (clone 44), were
supplied by BD PharMingen; anti-integrin β1 (clone MEM-101),
anti-integrin β3 (clone C17), and anti-CD86 (clone IT2.2) were
supplied by ImmunoTools; anti-DC-SIGN (Clone MR-1) was
purchased from Acris; anti-gC1qR (clone 74.5.2) was supplied
from Chemicon; anti-CD55/DAF (clone 143-30) was purchased
from Southern Biotechnology; anti-CD51 (anti-integrin αv)
(clone 13C2) was supplied from QED Science. Anti-MHC
class II (clone L243) was produced in-house. Annexin V-FITC
(ImmunoTools) was used to detect phosphatidyl serine residues
on the surface of apoptotic cells. TUNEL assay was performed
using In situ TUNEL kit (Roche). Hantavirus nucleocapsid (N)
protein was stained with N-specific polyclonal rabbit serum
(Razanskiene et al., 2004), monoclonal antibody 1C12 (Lundkvist
et al., 1991) or pig anti-hantavirus N protein sera. The pig
antisera were raised against yeast-expressed N proteins of DOBV,
PUUV or TULV according to a standard protocol. The anti-
DOBVN protein polyclonal pig serum cross-reacted with HTNV
N protein. Anti-ß-actin (clone ab6276) was purchased from
Abcam. Polyclonal rabbit anti-human B2M (hB2M) was supplied
by Dako. Anti-MxA monoclonal antibody M143 was kindly
supplied by O. Haller. Anti-MHC-I heavy chain D226-3 was
supplied by Biozol, Eching. Isotype-matched control antibodies
were supplied by BD Pharmingen. Secondary antibodies coupled
to fluorochromes or horseradish peroxidase were supplied
by Dianova.

Immunohistochemistry and
Immunocytometry
Infected DCs were adhered to poly-L-lysine treated slides for
10min before being fixed with cold 1% paraformaldehyde
in PBS for 20min at 4◦C. Cells were then stained for
hantavirus N protein and MHC class II as previously
described (Kraus et al., 2005). Fluorescence microscopy
was performed on an Olympus BX60 microscope, confocal
analysis on a Leica DM 2500 and LCS software. Primary
and secondary antibodies were used at a 1:300 dilution
for immunocytometry, whereas a 1:100 dilution was used
for immunohistochemistry of formalin-fixed paraffin-
embedded sections. Deparaffination was perfomed by standard
procedures and autofluorescence was quenched using a Sudan B
0.1% solution.

Western Blot
For infection, iDCs and bDCs were incubated with live virus
using a multiplicity of infection (MOI) of 1 or 1.5 for 1 h at
37◦C. The cells were then washed three times with RPMI 1640
containing 5% heat-inactivated FCS before being resuspended
in the appropriate medium at a density of 106/ml. After
incubation as indicated in the figure legends, cells were lysed
in lysis buffer (250mM Tris, 2% SDS, 10% glycerol, 5%
mercaptoethanol, 0.01% bromphenol blue) followed by heat-
denaturation of the sample for 5min at 95◦C. Proteins were
separated by 10% sodium dodecyl sulfate (SDS)-polyacrylamide
gel electrophoresis and transferred onto a PVDF membrane
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(Millipore) before blocking and staining for hantavirus N protein
and β-actin.

RT-qPCR
Light cycler RT-qPCR has been previously described (Lutteke
et al., 2010). Briefly, cells were lysed with MagNA Pure lysis
buffer (Roche) and mRNA was isolated with a MagNA Pure-
LC device. Subsequently, RNA was reverse-transcribed with
avian myeloblastosis virus reverse transcriptase (AMV-RT) and
oligo (dT) primer using the First Strand cDNA Synthesis
Kit from Roche. Special LightCycler Primer Sets (Search-LC)
were used with LightCycler FastStart DNA Sybr Green I Kit
(Roche) in order to amplify targets. The input RNA was
normalized using average expression of β-actin and cyclophilin
B housekeeping genes. In order to generate a virtual standard
curve a known input concentration of a plasmid was plotted
to the PCR cycle number at which the fluorescence intensity
reached a fixed value. The standard curve was used to calculate
transcript copy numbers. The relative copy numbers represent
mean averages of data from two independent analyses for each
sample and parameter. For RT-qPCR of hantavirus genomes
primer sets binding to a highly conserved region within the
S-segment of hantavirus genomes were used as previously
published (Kramski et al., 2007).

Heat Maps
For generation of heat maps, mean values from the RT-qPCR
analysis of iDCs derived from three different donors were
normalized to the maximum positive control value for each gene
giving values from 0 (no expression; light blue) to 1 (maximum
expression; red).

Statistical Analysis
Student’s t-test was used to determine statistical significance.
P-values below 0.05 (95% confidence) were considered to
be significant. Prism 5 software (GraphPad) was used for
statistical analysis.

RESULTS

Susceptibility of MPS Cells to HTNV but
Not TULV
First, we comparatively studied the ability of pathogenic
(HTNV) and low pathogenic (TULV) hantavirus species to
infect monocyte-derived immature DCs (iDCs) or iDCs isolated
from peripheral blood (bDCs). At 5 days post-infection (p.i.),
hantavirus N protein was detected in all HTNV-infected cells but
neither in iDCs nor in bDCs infected with TULV (Figure 1A).
In contrast, viral N protein was found in both HTNV-
infected and TULV-infected Vero E6 cells (Figure 1A). Vero
E6 cells are of epithelial origin and lack type I interferon
(IFN) genes (Diaz et al., 1988). This result indicates that
MPS cells, such as iDCs are susceptible to HTNV but
not TULV.

Next we investigated HTNV infection of MPS cells in mice
with a humanized immune system (HIS), a valuable tool in
VHF research (Schonrich and Raftery, 2017). In fact, renal

tissue from HTNV-infected HIS mice showed few infiltrating
human immune cells and only localized areas of infection
(Figure 1B, top left). Lung tissue fromHTNV-infected HIS mice,
however, showed widespread infection and infiltrating human
immune cells that were identified by expression of human β2
microglobulin (Figure 1B, bottom left) and human MHC class
II molecules (Figure 1B, bottom right).

The human MHC-II+ cells in HIS mice could have been
human MPS cells or human lymphocytes (B cells and T cells)
which can also express MHC class II molecules (Costantino et al.,
2012). To differentiate between these possibilities, we investigated
the infectability of human peripheral blood mononuclear cells
(PBMCs) that mainly consist of lymphocytes (in the order of
frequency: T cells, B cells, NK cells) and monocytes (3–10% of
peripheral blood cells). Indeed, PBMCs derived from healthy
human donors produced significant viral titers after 6 days
incubation with HTNV in vitro (Figure 1C). In contrast, PBMCs
inoculated with TULV showed no obvious viral replication at 6
days after inoculation (data not shown). In order to pinpoint the
cell type most susceptible to HTNV, common lymphocyte subsets
(CD3+ T cells, CD19+ B cells, CD56+ NK cells) and common
myeloid cells (CD14+ monocytes) were isolated by magnetic
cell sorting (MACS) and subsequently inoculated with HTNV.
Of these, monocytes but not lymphocytes generated significant
HTNV titers (Figure 1C). Confirming this result, PBMCs
depleted of CD14+ monocytes (PBMCs CD14−) and infected
with HTNV did not produce significant viral titers (Figure 1C).
In addition, immunofluorescence analysis of HTNV-infected
PBMCs showed infection of MHC class II expressing adherent
cells, whereas PBMCs depleted of CD14+ monocytes (PBMCs
CD14−) had both fewer adherent cells and no sign of infection
(Figure 1D, upper panel). HTNV-Infected CD14+ monocytes,
however, showed hantaviral N protein in patterns of small
threads and inclusions typical of productive hantavirus infection
(Figure 1D, lower panel). TULV infected cells showed no
significant staining (data not given).

Taken together, cells of the MPS system support replication of
HTNV but not TULV.

Association of Hantavirus Pathogenicity
and Hantavirus Replication in MPS Cells
Next, we extended the spectrum of hantavirus species with
distinct pathogenic potential in our analysis. Besides HTNV
and TULV we included PHV, which can infect humans but has
never been associated with human disease (Yanagihara et al.,
1984), and PUUV, which unlike HTNV only causes mild to
moderate HFRS that is rarely fatal (Vaheri et al., 2013a). We also
analyzed PHPUV, a reassortant hantavirus virus. The hantaviral
RNA genome consists of a small (S), medium (M), and large
(L) segment (Elliott and Schmaljohn, 2014). The L- and S-
segment of PHPUV are derived from PHV, whereas the M-
segment encoding the envelope glycoproteins originates from
PUUV (Handke et al., 2010). These different hantavirus species
were used to infect CD14+ monocytes, iDCs derived from
CD14+ monocytes, and HEL cells, a promegakaryocyte cell line
of myeloid origin similar to MPS cells, which support HTNV
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FIGURE 1 | Susceptibility of MPS cells to HTNV but not TULV. (A) Detection of hantavirus N protein in monocyte-derived iDCs or iDCs isolated from blood (bDCs) at 5

days p.i. with HTNV or TULV (MOI 1). As a positive control, Vero E6 cells were also infected with HTNV or TULV. Results shown are representative for three

independent experiments. (B) Humanized immune system (HIS) mice or unreconstituted mice (Control) were infected for 22 days before sacrifice, fixation and

embedding of lung or kidney tissues in paraffin. Slices were prepared and stained with anti-DOBV N protein polyclonal pig serum, which cross-reacts with HTNV N

protein (FITC, green), DNA (DAPI, blue) and either polyclonal rabbit anti-human B2M (Alexa 594, red) or anti-human MHC-II (Alexa 594, red). Arrows indicate the

presence of infected human cells. Scale bar is 100µm. (C) PBMCs, PBMCs depleted of CD14+ monocytes (PBMCs CD14−) and PBMC subsets (CD14+

monocytes, CD3+ T cells, CD19+ B cells, and CD56+ NK cells) were purified by density gradient and MACS from healthy human donors and infected with HTNV

(MOI of 0.1). After 6 days incubation supernatant was assessed for viral replication. Viral titers are given as focus-forming units per ml (FFU/ml). Results are derived

from 3 to 5 independent experiments. (D) Cells infected as for (C) were stained using anti-DOBV N protein polyclonal pig serum, which cross-reacts with HTNV N

protein (FITC, green), monoclonal anti-human MHC-II (Alexa 594, red) and DNA (DAPI, blue). Inserts show three times magnified areas with characteristic HTNV N

staining in PBMCs and CD14+ monocytes but not in PBMCs depleted of CD14+ cells (PBMCs CD14−). Scale bar is 100 µm.

replication (Lutteke et al., 2010).We found that HTNV replicated
more efficiently than PUUV (low case fatality rate) in myeloid

cells, whereas low pathogenic (TULV) and apathogenic (PHV)
hantavirus species did not produce any detectable virus titers
(Figure 2A). Intriguingly, the reassortant hantavirus PHPUV did
not replicate, although it expressed the envelope glycoproteins
from a pathogenic hantavirus (Figure 2A). In stark contrast,

all hantavirus species and PHPUV could infect Vero E6 cells

(Figure 2A).
To confirm these findings we examined hantavirus N protein

expression in human myeloid cells (iDCs, HEL cells) and

for comparison in human umbilical vein endothelial cells

(HUVECs). Immunofluorescence analysis at 4 days p.i. (MOI
of 1) revealed strong N protein expression in HTNV-infected

iDCs but less in PUUV-infected iDCs (Figure 2B, upper row).
No iDCs were found positive for PHV, PHPUV, or TULV
(data not shown). HEL cells were permissive to HTNV and
PUUV but only sporadically showed expression of hantavirus N

protein after exposure to PHV, PHPUV, or TULV (Figure 2B,
middle row), suggesting viral entry was taking place but
replication was inhibited. As expected, HUVECs were susceptible
to infection with all hantavirus species tested, albeit to a different
extent (Figure 2B, bottom row). Similar to other pathogenic
hantaviruses, DOBV and SNV could also infect iDCs and HEL
cells (Figure S1).

These results together suggest that the capacity to
replicate in myeloid cells differentiates pathogenic from
low pathogenic/apathogenic hantavirus species.

Evidence for Post-entry Block of TULV
Replication in the MPS
Now we explored why low pathogenic/apathogeneic hantavirus
species do not replicate in myeloid cells. Hantavirus replication
is known to trigger endoplasmic and cytoplasmic pattern
recognition receptors (PRR), i.e., toll-like receptor (TLR)3
(Handke et al., 2009) and retinoic acid inducible gene I
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FIGURE 2 | Relationship between hantavirus pathogenicity and hantavirus replication in the MPS. (A) Titration assay of virus released from infected myeloid cells.

CD14+ monocytes (Mono), CD14+ monocytes stimulated with GM-CSF and IL-4 (iDCs), human megakaryocyte cell line HEL stimulated with 10 nM PMA (HEL), and

Vero E6 cells (Vero) were infected with hantaviruses (MOI of 1) for 4 days. Viral titers are given as focus-forming units (FFU), the reported case fatality rates are given in

brackets (Jonsson et al., 2010; Vaheri et al., 2013a). (B) Cells were infected as for (A) except that virus stocks were filtered by a 0.2µm filter to remove possible debris

that might be uptaken by phagocytosis, and that HUVECs were used instead of Vero E6 cells. After 4 days cells were fixed, stained for hantavirus N protein (FITC,

green), DNA (DAPI, blue), and for either MHC class II (Texas red, red) (Top and middle row) or the endothelial marker von Willebrand factor (vWF) (Texas red, red)

(Bottom row) before immunofluorescence microscopy. Scale bar is 20µm.

(RIG-I) (Lee et al., 2011). The resulting signaling cascades
induce mostly IFN-β and IFN-stimulated genes (ISGs) that
interfere with viral replication. Intriguingly, induction of ISGs
in TULV-infected iDCs was barely detectable and did not
increase with time (Figure 3A). In contrast, HTNV clearly
induced IFN-β and ISGs although mostly later in infection
(Figure 3A). Both hantavirus species failed to induce NF-kB
driven transcripts, such as IL-6 and IL-1β within 48 h of
infection (Figure 3B). In contrast, both HTNV and TULV
increased expression of transcripts encoding CD86, a key T
cell costimulatory molecule (Figure 3B). The TULV-induced
effect on CD86 expression, however, was short-lived and no
longer visible at 48 p.i., whereas, the CD86 transcript level of
HTNV-infected iDCs remained elevated at this time point
(Figure 3B). Flow cytometric analysis confirmed the

upregulation of CD86 molecules on iDCs exposed to either
HTNV or TULV for 12 h (Figure 3C). In this type of experiment,
LPS-stimulated iDCs served as a maximum control. These data
exclude that an overwhelming cell-intrinsic immune response
abrogates TULV replication in iDCs.

MPS cells strongly express integrin β1, the only receptor
described for low pathogenic/apathogenic hantavirus species
(Gavrilovskaya et al., 1998, 1999) as well as receptors described
for pathogenic hantavirus species (integrin β2, integrin β3,
gC1qR, and CD55) (Figure S2) (Gavrilovskaya et al., 1998,
1999; Choi et al., 2008; Krautkramer and Zeier, 2008; Raftery
et al., 2014). After receptor binding hantaviruses enter target
cells by an endocytic pathway and are finally released
from endosomes into the cytoplasm (Albornoz et al., 2016;
Mittler et al., 2019). The latter process requires acidification
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FIGURE 3 | Post-entry block of TULV replication in myeloid cells. (A) iDCs were left uninfected or infected with either HTNV or TULV (MOI of 1.5) for 12 or 48 h. As

positive controls cells were treated with LPS (1µg/ml), poly I:C (1µg/ml), or IFN-α 2a (5,000 U/ml) for 8 h. Heat map of RT-qPCR analysis of (A) ISGs (OAS, IRF-7,

MxA, ISG15, RIG-I, and IFN-β) and of (B) NF-kB driven genes (IL-1β, IL-6, CD86). The RT-qPCR analyses corresponding to the heat maps are shown in

Figures S4, S5. Mean values from three different donors were normalized to the maximum positive control value for each gene giving values from 0 (no expression;

light blue) to 1 (maximum expression; red). (C) Flow cytometric analysis of CD86 expression on iDCs infected for 12 h. The data are shown as CD86-specific MFI.

LPS-stimulated iDCs served as a maximum control. Error bars represent the mean ± SD. The data are derived from iDCs from three different donors (*p < 0.05,

Students t-test). (D) HEL cells were pretreated with 2mM chloroquine or left untreated before being incubated with TULV (MOI of 5) for 2 h at 37◦C. Cells were washed

thoroughly with PBS with 50µg/ml heparin before being harvested and analyzed by RT-qPCR for TULV genome. The reduction in viral genome numbers relative to

untreated cells is shown, error bar represents mean ± SEM of four independent experiments.

of endosomes, which can be blocked by lysosomotropic
bases, such as chloroquine (Mercer et al., 2010). We found
that pre-treatment with chloroquine before incubation with

TULV reduced the number of viral genomes detected in
HEL cells suggesting that TULV can enter myeloid cells
(Figure 3D).
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FIGURE 4 | Hantavirus-induced DC maturation requires integrin signaling. (A) LADIII iDCs were stained for DC-SIGN, MHC class II molecules, integrin β1, integrin αM,

integrin αv, and integrin β3 before flow cytometric analysis. The x-axis shows fluorescence intensity (log scale), and the y-axis depicts the relative cell number (open

curve: isotype control). (B) LADIII iDCs and normal iDCs were left uninfected or infected with either HTNV or TULV (MOI of 1.5) for 12 h. Subsequently, cells were

stained for CD86 and analyzed by flow cytometry. The CD86 expression on infected cells is given as a percentage of CD86 expression on the corresponding

uninfected cells. Results shown are representative of three experiments. (C) LADIII iDCs were infected with HTNV (MOI of 1.5) for the time indicated, harvested and

analyzed by western blot for expression of hantavirus N protein. (D) Normal iDC pretreated with PP2 (1mM) or DMSO (1 µl/ml) for 30min before being exposed to

HTNV (MOI of 1.5) or treated with LPS (1µg/ml) for 12 h. Subsequently, cells were stained for CD86 and analyzed by flow cytometry. Results shown are representative

of three experiments (***p < 0.001; Students t-test). (E) HEL cells pretreated with PP2 (1mM in DMSO) or DMSO (1 µl/ml) as a control were infected with HTNV (MOI

of 0.5) for 1 h before being washed three times and incubated for 3 days. After staining for hantavirus N protein (FITC) and DNA (DAPI), cells were counted in 4 fields of

view and infected cells were determined by N protein expression. The percentage of inhibition of infection in PP2-treated cells as compared to cells treated with

DMSO is shown. Results are derived from three independent experiments; error bars represent mean ± SD.
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Taken together, these results are consistent with the idea that
replication of low pathogenic/apathogenic hantavirus species
in MPS cells is blocked early after entry thereby preventing
induction of a vigorous cell-intrinsic immune response.

Requirement of Integrin Signaling for
Proinflammatory Programming of MPS
Cells by Hantaviruses
We now tested whether integrin signaling is involved in the
MPS maturation program driven by pathogenic hantavirus
species. For this purpose we used iDCs from a patient with the
extremely rare leukocyte adhesion deficiency (LAD)III, which
shows impaired signaling through β1, β2, and β3 integrins
(Kuijpers et al., 2009). LADIII iDCs were phenotypically normal
(Figure 4A). Similar to normal iDCs, upon infection with herpes
simplex virus type 1 (HSV-1) LADIII iDCs downregulated CD83
(Figure S3), a reaction that is proteasome-dependent and not
known to require integrin signaling (Salio et al., 1999; Kruse
et al., 2000; Kummer et al., 2007). In stark contrast to normal
iDCs, however, LADIII iDCs did not upregulate the CD86
molecules in response to HTNV and TULV, respectively, at 12 h
after infection (Figure 4B). Intriguingly, the hantaviral N protein
was not detectable in HTNV-infected LADIII iDCs suggesting
that HTNV replication requires integrin signaling (Figure 4C).
We confirmed these findings by blocking hantavirus-induced
upregulation of CD86 on healthy iDCs with PP2 (Figure 4D),
which blocks Src tyrosine kinases that play a pivotal role
in outside-in-signaling through β2 integrins (Berton et al.,
1994). In contrast, integrin-independent CD86 upregulation
through stimulation of TLR4 with LPS was not affected by
PP2 (Figure 4D). Pretreatment with PP2 also inhibited HTNV
infection in HEL cells (Figure 4E).

In conclusion, these data indicate that integrin signaling
facilitates replication of pathogenic hantavirus species in myeloid
cells and proinflammatory programming of the MPS.

Induction of Inflammatory DCs by
Hantavirus Replication in Monocytes
Next, we investigated the functional impact of hantavirus
replication in human CD14+ monocytes. These cells circulate
in the peripheral blood before they enter tissue and differentiate
during inflammation. In culture, however, human monocytes are
short-lived and undergo spontaneous apoptosis in the absence of
external survival signals, such as cytokines or microbial products
(Mangan et al., 1991). In accordance, the majority of uninfected
monocytes (Control) but only a relatively low percentage of
HTNV-infected monocytes were Annexin V-positive after 3 days
of culture (Figure 5A). In a further experiment, we stained
uninfected (Control) and infected monocytes after 3 days of
culture for both Annexin V (PE) andDNA fragmentation (FITC),
which is a more stringent test for apoptosis. Subsequently, we
calculated the percentage of surviving cells (PE-negative and
FITC-negative) relative to the uninfected control (Figure 5B).
There was a tendency toward more survival in HTNV-infected
monocytes as compared to TULV-infected and uninfected
cells although this difference was statistically not significant.

Intriguingly, cytofluorimetric analysis revealed that HTNV-
infected monocytes developed into inflammatory DCs. They
showed upregulation of DC maturation marker CD83, the co-
stimulatory molecule CD86, and the DC-specific C-type lectin
ICAM-3-grabbing non-integrin (DC-SIGN) on day 3 of culture
(Figure 5C, histograms in the lower row and box-and-whisker
plots). In this type of analysis, uninfected monocytes on the day
of isolation served as a control (Figure 5C, histograms in the
upper row and box-and-whisker plots) due to their spontaneous
apoptosis in culture. In contrast to HTNV, TULV did not induce
upregulation of these markers on monocytes during culture
(Figure 5C, box-and-whisker plots).

These results indicate that pathogenic but not low
pathogenic/apathogenic hantavirus species induce the
generation of inflammatory DCs that could contribute
to both clearance of hantavirus-infected cells and
hantavirus-associated immunopathology.

DISCUSSION

In this study, we provide evidence that hantavirus pathogenicity
is associated with replication in MPS cells resulting in
proinflammatory programming of the MPS. Our data indicate
that the failure of low pathogenic/apathogenic hantavirus species
to replicate in MPS cells is due to a post-entry block rather
than an overwhelming innate response. Furthermore, our
experimental results suggest that integrin signaling is required
for proinflammatory programming of MPS cells by pathogenic
hantavirus species.

Due to their much higher frequency in PBMCs, monocytes
rather than DCs probably contribute the most to replication of
pathogenic hantavirus species in peripheral blood. In contrast
to monocytes, common lymphoid cell types (NK cells, T cells, B
cells) were refractory to infection with pathogenic hantavirus, as
we have previously shown for granulocytes (Raftery et al., 2014).
We cannot exclude, however, that rare lymphoid cell subsets are
hantavirus permissive. In monocytes, DCs and HEL cells, HTNV
(intermediate pathogenicity) replicated more efficiently than
PUUV (low pathogenicity) whereas low pathogenic/apathogenic
hantavirus species, such as TULV and PHV did not generate
significant virus titers. This observation is in accordance with
a recent study that did not find TULV replication in human
macrophages (Bourquain et al., 2019). Moreover, clinical studies
of acute HFRS detected increased numbers of circulating
monocytes and provided evidence for a positive correlation
between monocyte activation and severity of HFRS (Wang
et al., 2014; Tang et al., 2015; Li et al., 2018). Altogether, these
findings strongly suggest that the capacity of hantavirus species
to replicate in MPS cells determines their pathogenic potential.

The reassortant hantavirus PHPUV did not replicate in MPS
cells although it expressed the envelope glycoproteins from a
pathogenic hantavirus species. Moreover, TULV and PHV failed
to productively infect MPS cells despite high levels of β1 integrin,
the receptor for low pathogenic/apathogenic hantavirus species
(Gavrilovskaya et al., 1998, 1999). Thus, hantaviral receptors
and their ligands are not central for the differential MPS cell
tropism of hantavirus species. An overwhelming cell-intrinsic
immune response could have terminated the replication of
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FIGURE 5 | Generation of inflammatory DCs upon HTNV infection of monocytes. CD14+ monocytes derived from healthy human donors were left uninfected (Control)

or infected with HTNV (MOI of 1). (A) Cells were stained with Annexin V-FITC before flow cytometric analysis. The x-axis depicts Annexin V-staining whereas the y-axis

shows cell size according to forward Scatter (FSC). Percentage of Annexin V-positive cells is indicated in the analysis gate. Results from one out of two independent

experiments are shown. (B) Uninfected cells (Control) or cells infected with TULV or HTNV (MOI of 1) for 3 days were stained with Annexin V (PE) and DNA

fragmentation was labeled by TUNEL (FITC) staining. The percentage of surviving (PE-negative, FITC-negative) is given relative to uninfected cells (Control). The data

are derived from three independent experiments, error bars represent mean ± SEM. (C) Monocytes were infected with HTNV or TULV and cultured for 3 days before

being analyzed by flow cytometry for expression of CD14, CD83, CD86, and DC-SIGN. Uninfected monocytes on the day of isolation (d0) were used as a control as

they rapidly undergo spontaneous apoptosis in culture. Upper panel: histograms showing one representative analysis of d3 HTNV-infected monocytes (open curves:

isotype control). The x-axis shows staining with specific antibody as mean fluorescence intensity (MFI) whereas the y-axis indicates cell count. The relevant MFI is

given in the upper right corner. Lower panel: Box-and-whisker plots of statistical analysis of DC-SIGN, CD83, and CD86 expression on uninfected monocytes (d0),

HTNV-infected monocytes (d3), or TULV-infected monocytes (d3). The data are derived from at least three independent experiments (*p < 0.05; Students t-test).
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low pathogenic/apathogenic hantavirus species after entry into
myeloid cells as observed for endothelial cells (Geimonen et al.,
2002; Kraus et al., 2004; Rang, 2010). This can be ruled out,
however, as TULV did not activate significant expression of
ISGs in iDCs. In addition, TULV only transiently upregulated
CD86 on DCs, possibly due to binding to and entry via β1 or
β2 integrins. Similarly, UV-inactivated HTNV did not induce
sustained upregulation of CD86 on iDCs (Raftery et al., 2002a).
In stark contrast, replication-competent HTNV induced a clear
and long lasting proinflammatory signature in myeloid cells. This
suggests that proinflammatory programming of MPS cells by
pathogenic hantavirus species requires both outside-in-signaling
through integrins and signals emanating from cell-intrinsic
sensors of viral replication, such as RIG-I.

We detected reduced numbers of TULV genomes at 2 h
post-infection in myeloid cells pretreated with chloroquine as
compared to untreated control cells. This is not due to viral
replication in untreated cells as the copy number of viral RNAs
does not start to increase before 9 h post-infection with Old
World hantavirus species (MOI of 10) (Wigren Bystrom et al.,
2018). Importantly, no increase is detected at 2, 5, and 7 h post-
infection (Wigren Bystrom et al., 2018). Old world hantavirus
species enter cells via clathrin-coated pits (Jin et al., 2002).
Chloroquine not only blocks acidification of endosomes and
release of viral particles from endosomes into the cytoplasm
but also reduces the rate of endocytosis via clathrin coated
pits (Hu et al., 2020). The latter is due to inhibitory effect
of chloroquine on expression of phosphatidylinositol binding
clathrin assembly protein (PICALM), which represents one
of the three most abundant proteins in clathrin-coated pits
(Wolfram et al., 2017). Altogether, these findings suggest that low
pathogenic/apathogenic hantavirus species, such as TULV can
enter myeloid cells via clathrin-coated pits but do not replicate
due to an not yet defined post-entry block.

We observed that CD14+ monocytes infected with HTNV
in vitro differentiate into inflammatory DCs with upregulation
of functionally important molecules, such as C-type lectin DC-
SIGN, DC maturation marker CD83 and the T cell-stimulatory
molecule CD86. In accordance, it has been reported that HTNV-
infected monocytes acquire the morphology of DC-like cells
(Markotic et al., 2007) and PUUV-infected monocytes increase
expression of CD86 (Scholz et al., 2017). For other viruses
(influenza A virus, vesicular stomatitis virus, vaccinia virus)
it has been demonstrated that virus-induced differentiation of
CD14+ monocytes into inflammatory DCs is independent of cell
division, requires viral gene expression, and is not associated
with induction of cell death (Hou et al., 2012). In line with
these findings, we observed a tendency toward more survival in
HTNV-infected monocyte cultures as compared to uninfected
control cultures after 3 days of culture. Similarly, PUUV-infected
monocytes showed increased survival compared to uninfected
control cells (Scholz et al., 2017). It is likely that autocrine GM-
CSF and tumor necrosis factor (TNF)-α promoteHNTV-induced
monocyte differentiation into DCs as suggested for other viruses
(Hou et al., 2012). Type I IFN also promotes the differentiation
of monocytes into DCs (Blanco et al., 2001).

During inflammatory processes monocytes leave the
bloodstream to enter the tissue and develop into inflammatory

DCs that substantially contribute to virus elimination and
also cause immunopathogenesis (Shi and Pamer, 2011). A
significant influx of mononuclear cells expressing MHC
class II molecules is detected in mucosal biopsies from the
airways of patients during the acute stage of mild HFRS
(Scholz et al., 2017). In accordance, by analyzing a mouse
model of hantavirus infection based on HIS mice we detected
hantaviral N protein in lung cells expressing human MHC
class II molecules. In this mouse model, the highest numbers
of viral genomes are found in the lung (Kobak et al., 2015).
This results in non-cardiogenic acute pulmonary edema
due to capillary leakage, which is observed in both HFRS
and HPS (Clement et al., 2014), whereas kidney function is
not affected (Kobak et al., 2015). The lung infiltrating cells
were professional human APCs as human lymphocytes, the
only cells that also can express functional MHC class II
molecules (Costantino et al., 2012), are not susceptible to
hantavirus infection.

It is likely that during infection with pathogenic hantavirus
species monocytes mobilized from the peripheral blood enter
the lung and further differentiate into inflammatory DCs, which
are as active as classical DCs with regard to antigen-presenting
function (Cheong et al., 2010). The generation of inflammatory
DCs may significantly contribute to activation of virus-specific
CD8+ T cells during the acute phase of HFRS. Moreover,
hantavirus-infected CD14+ monocytes induce bystander T
cell activation (Raftery et al., 2018). Thus, hantavirus-driven
monocyte-to-DC conversion may contribute to both virus
elimination and virus- immunopathology.

We collected further evidence that integrin signaling is
important for hantavirus-driven differentiation of MPS cells.
Firstly, iDCs derived from a LADIII patient showed a normal
phenotype but failed to upregulate CD86 in response to
hantavirus due to defective integrin signaling. Secondly, normal
iDCs did not increase CD86 expression upon HTNV infection
in the presence of PP2, which efficiently blocks outside-in-
signaling through β2 integrins (Berton et al., 1994). Thirdly,
hantavirus N protein was not detectable in HTNV-infected
LADIII iDCs and hantavirus infection of normal iDCs was
inhibited by pretreatment with PP2. These observations imply
that intact integrin signaling is required for hantavirus-induced
generation of inflammatory DCs. In line with this view,
monocyte-to-DC conversion in a model of transendothelial
trafficking was dependent on β2 integrins (Randolph et al.,
1998).

In conclusion, hantavirus replication in MPS cells drives
differentiation of these important immune cells and is a feature
that differentiates pathogenic from low pathogenic/apathogenic
hantavirus species. The correlation between hantaviral
pathogenicity and replication in MPS cells could be exploited
to evaluate the considerable number of hantavirus species with
unknown pathogenicity in humans.
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