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Galectins are animal lectins with high affinity for β-galactosides that drive the immune

response through several mechanisms. In particular, the role of galectin-8 (Gal-8)

in inflammation remains controversial. To analyze its role in a chronic inflammatory

environment, we studied a murine model of Trypanosoma cruzi infection. The parasite

induces alterations that lead to the development of chronic cardiomyopathy and/or

megaviscera in 30% of infected patients. The strong cardiac inflammation along with

fibrosis leads to cardiomyopathy, the most relevant consequence of Chagas disease. By

analyzing infected wild-type (iWT) and Gal-8-deficient (iGal-8KO) C57BL/6J mice at the

chronic phase (4–5 months post-infection), we observed that the lack of Gal-8 favored

a generalized increase in heart, skeletal muscle, and liver inflammation associated with

extensive fibrosis, unrelated to tissue parasite loads. Remarkably, increased frequencies

of neutrophils and macrophages were observed within cardiac iGal-8KO tissue by flow

cytometry. It has been proposed that Gal-8, as well as other galectins, induces the

surface expression of the inner molecule phosphatidylserine on activated neutrophils,

which serves as an “eat-me” signal for macrophages, favoring viable neutrophil removal

and tissue injury protection, a process known as preaparesis. We found that the

increased neutrophil rates could be associated with the absence of Gal-8-dependent

preaparesis, leading to a diminished neutrophil-clearing capability in macrophages. Thus,

our results support that Gal-8 exerts an anti-inflammatory role in chronic T. cruzi infection.

Keywords: preaparesis, inflammation, neutrophils, fibrosis, Chagas disease

INTRODUCTION

Galectins (Gals) bind β-galactosides via carbohydrate recognition domains and modulate immune
cell responses through several mechanisms. Specifically, galectin-8 (Gal-8) has been involved
in homeostatic and pathological processes. It regulates cytokine production, cellular adhesion,
apoptosis, chemotaxis, endocytosis, differentiation, and migration in a wide range of cell types
including immune cells (Elola et al., 2014). High concentrations of Gal-8 have been proposed
to induce a strong T-cell proliferation even in the absence of the specific antigen, whereas low
concentrations co-stimulate T-cells in the presence of antigen-presenting cells and their cognate

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2020.00285
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2020.00285&domain=pdf&date_stamp=2020-07-02
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sleguiza@unsam.edu.ar
https://doi.org/10.3389/fcimb.2020.00285
https://www.frontiersin.org/articles/10.3389/fcimb.2020.00285/full
http://loop.frontiersin.org/people/461480/overview
http://loop.frontiersin.org/people/361015/overview
http://loop.frontiersin.org/people/435376/overview
http://loop.frontiersin.org/people/362105/overview
http://loop.frontiersin.org/people/361365/overview
http://loop.frontiersin.org/people/877399/overview


Bertelli et al. Gal-8 During Trypanosoma cruzi Infection

antigen (Tribulatti et al., 2012). Gal-8 induces firm but reversible
adhesion of peripheral neutrophils to endothelial cells (Nishi
et al., 2003). Together with platelet activation (Romaniuk et al.,
2010), these processes suggest a potential pro-inflammatory
role for Gal-8. Other authors emphasize that Gal-8 exhibits
anti-inflammatory effects on autoimmune diseases such as
rheumatoid arthritis (Eshkar Sebban et al., 2007), experimental
models of uveitis (Sampson et al., 2015), and encephalomyelitis
(Pardo et al., 2017). With the use of an in vitro approach, Gal-8
was found to be involved in preaparesis induction, a cell removal
mechanism that prevents local inflammation and systemic
immune response activation. Cells undergoing preaparesis or
apoptosis is signaled by expose phosphatidylserine (PS) as signals
for phagocytosis, but preaparesis only removes viable neutrophils
(Stowell et al., 2008).

These controversies on Gal-8 role in inflammatory processes
led us to analyze its impact in a chronic inflammatory infectious
disease, employing the Trypanosoma cruzi protozoan infection in
a murine model.

Host–parasite interaction induces alterations that lead to the
development of chronic megaviscera and/or cardiomyopathy
in ∼30% of infected patients, with the latter being the most
frequent and severe. Chronic Chagas cardiomyopathy is a
consequence of cardiac inflammation and fibrosis caused by
local parasite persistence. These alterations are reproduced in
mice, thus providing a suitable experimental model for Chagas
disease cardiomyopathy. It is currently accepted that tissue
parasite burden triggers the inflammatory response underlying
the cardiac disorders that generate cardiomyopathy (Garcia
et al., 2005; Marin-Neto et al., 2007; Weaver et al., 2019). The
mechanisms involved, however, are not completely understood.
After infection, T. cruzi invades endothelial cells, macrophages,
fibroblasts, and dendritic cells but presents a particular tropism
to cardiac cells. Cardiomyocyte infection triggers a complex
process that leads to cardiac damage and hypertrophy, loss of
network communication, proliferation of cardiac fibroblasts, and
intense extracellular matrix (ECM) remodeling ending in cardiac
insufficiency and death (Rassi et al., 2010). On its way to the
target cells, the trypomastigote (infective stage) must leave the
bloodstream and interact with the ECM (fibronectin, laminin,
and galectins), which involves adhesion and migration events.
Gal-8 may also be involved in these processes, as it is expressed
in several tissues. Considering that the binding of recombinant
human Gal-8 to trypomastigotes favors cellular adhesion (Pineda
et al., 2014) and the parasite surface is covered by a heavily O-
glycosylated mucin coat (Mucci et al., 2017), this galectin could
also be involved in this interplay.

Using Gal-8-deficient mice, we observed that Gal-8 exerts an
anti-inflammatory role during T. cruzi chronic infection.We also
provide evidence that Gal-8 could induce neutrophil preaparesis
in vivo.

METHODS

Ethics Statement
The study was carried out in accordance with the Basel
Declaration. Protocol (No. 10/2017) was approved by the

Committee for Experimental Animal Care and Use of the
Universidad Nacional de San Martín (UNSAM), following the
recommendations of theGuide for the Care and Use of Laboratory
Animals of the National Institutes of Health (NIH).

Mice
Male C57BL/6J (B6) mice were from the colony established in
our facilities from breeder pairs obtained from The Jackson
Laboratory (Bar Harbor, ME, USA). Male mice deficient in Gal-
8 Lgals8 gene [B6; 129S5-Lgals8Gt (OST314218) Lex/Mmucd]
were obtained from Mutant Mouse Resource & Research
Centers (MMRRC; University of California, Davis, CA, USA)
as heterozygotes. After 12 in-house backcrosses to B6, a
homozygous Gal-8 knock-out colony with 95% of B6 genetic
background was established, as assessed at The Jackson
Laboratory Genotyping Resources. CF1 mice were bred from
a colony obtained from Charles River Company. Mice were
anesthetized with isoflurane before manipulation.

Parasites and Experimental Infection
Male mice 10 to 16 weeks old were infected with 50,000
Trypanosoma cruzi Ac strain blood-derived trypomastigotes
(DTU TcI) (Risso et al., 2004). This strain is maintained by
serial passages in CF1 mice. Parasitemia values were recorded
by counting trypomastigotes in a hemocytometer. The analysis
of Gal-8 role in T. cruzi murine model was conducted at 4–
5 months post-infection (mpi). Age-matched, normal B6, and
Gal-8 knock-out mice were included as non-infected controls.

Histopathology Assays
The skeletal muscle, heart, and liver were obtained from T.
cruzi-infected mice and controls, fixed in 10% buffered formalin,
and embedded in paraffin. Five-micron-thick sections were
stained with hematoxylin and eosin and Masson’s trichrome.
A single blind microscopic evaluation of the tissue sections
was performed on pre-coded slides and examined using an
Olympus DP71 light microscope. Skeletal muscle and heart
inflammation was evaluated with respect to both distribution
(focal, confluent, or diffuse) and extent of inflammatory
cells as previously described (Tarleton et al., 1994; Martin
et al., 2007). Briefly, tissues were scored 1+ for a single
inflammatory focus; 2+ for multiple, non-confluent foci of
inflammatory cell infiltrates; 3+ for multifocal confluent
inflammation; and 4+ for diffuse inflammation extended
through the section. Mean values of two skeletal muscle
sections were used to obtain an inflammatory score. Heart
inflammation was evaluated separately in the left and right
atrial and ventricular walls and septum, and the mean of
the inflammation scores obtained in the different areas is
used to determine the inflammatory index. Liver involvement
was evaluated according to the distribution of inflammatory
cells in the tissue, as follows: 1+ for multiple, non-confluent
foci of inflammatory cells; 2+ for areas of focal and diffuse
inflammation; and 3 + for diffuse inflammation extended
throughout the section. Heart fibrosis was scored as 1+ for
focal, mild augmentation of the normal interstitial connective
tissue; 2+ for multiple areas of interstitial connective tissue
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augmentation surrounding groups or individual fibers; and 3+
for intramyocardial scars with loss of myocardial fibers. Groups
of aged-matched uninfected wild-type (WT) and Gal-8KO were
included as controls.

Cytokine Evaluation
Cytokine levels in cardiac lysates or plasma were quantified
by ELISA as we previously described (Sanmarco et al., 2016)
following manufacturer’s instructions (BioLegend). The total
protein concentration of heart samples was determined by the
Bradford method (Bio-Rad).

Cardiac-Infiltrating Cell Isolation and Flow
Cytometry
Cardiac leukocyte isolation was performed as previously
described (Eberhardt et al., 2019). Briefly, hearts were perfused
with phosphate-buffered saline (PBS) and disaggregated
mechanically and enzymatically with 0.2% trypsin solution
(Gibco). The digested tissue was pressed through a 70µm cell
strainer (BD Falcon), and cells were isolated by 35 and 70%
bilayer Percoll (GE Healthcare) density gradient centrifugation.
Viable cell numbers were determined by trypan blue dye
exclusion using a Neubauer chamber, and absolute cell number
was obtained corresponding to the whole heart. Cells were
stained with the following antibodies: anti-mouse fluorescein
isothiocyanate (FITC)-CD3, APC-Cy7-CD4, PE-Cy7-CD8,
PE-CD19, PerCP-Cy5.5-CD11b, FITC or APC-Cy7-CD11c,
PE-F4/80, PE-Cy7-CD206, APC-Ly6G, and APC-Cy7-Ly6C (all
from BioLegend). Stained samples were acquired using FACS
Canto I and II cytometers (Becton Dickinson), and the data
were analyzed using FlowJo software (Tree Star). Non-specific
fluorescence was determined using isotype controls.

Preaparesis Assays
Circulating leukocytes were obtained by treatment of blood with
lysis buffer (Gibco), stained with anti-mouse PE-CD11b and
APC-Ly6G, (BioLegend), and labeled with 5 µl of FITC-Annexin
V (BD Pharmingen) for 15min on ice. Before acquisition, the
cells were stained with 7-aminoactinomycin D (7-AAD) (BD
Biosciences) (Stowell et al., 2008).

Stained samples were acquired using a FACS Canto II
cytometer (Becton Dickinson), and data were analyzed using
FlowJo software (Tree Star). For all flow cytometric procedures,
an isotype control was included.

Propidium Iodide Staining
Peripheral blood samples (30 µl) obtained from infected mice
were stained with Alexa 647-Ly6G (BioLegend) and PerCP-
CD11b (BioLegend). Cells were fixed with 70% ethanol for
30min at 4◦C and stained with 200 µl of propidium iodide
(50µg/ml) (Sigma).

Tissue Trypanosoma cruzi Load
Quantification
Genomic DNA was purified from infected heart, liver,
and skeletal muscle using DNAzol reagent following the
manufacturer’s instructions. T. cruzi DNA-specific primers

TCZ-forward 5′-GCTCTTGCCCACAMGGGTGC-3′, where
M = A or C, and TCZ-reverse 5′-CCAAGCAGCGGATAG
TTCAGG-3′, which amplifies a 182-bp product and then
quantified by real-time PCR using SYBERGREEN (Applied
Biosystems). Separately, reactions containing 50 ng of genomic
DNA and 0.5µM of murine-specific tumor necrosis factor
(TNF) primers TNF-5241 5′-TCCCTCTCATCAGTTCTATG
GCCCA-3′ and TNF-5411 5′-CAGCAAGCATCTATGCACTT
AGACCCC-3′ were used as loading controls. Primer and probe
sequences were described by Cummings and Tarleton (2003).

RNA Isolation and RT-PCR
Total RNA was isolated from 50mg of heart samples by
mechanical homogenization and TRIzol (Invitrogen), as
recommended by the manufacturer. The RNA was resuspended
in 20 µl nuclease-free water (Epicenter) and quantified using a
spectrophotometer (Nanodrop spectrophotometer ND-1000).
cDNA was synthesized from 2 µg of total RNA with 0.5 µg of
oligodT primers and MMLV reverse transcriptase (Promega),
according to the manufacturer’s instructions.

Real-time reaction was performed using Kapa SYBR R© Fast
qPCR kit (KapaBiosystems) in a final volume of 20 µl in a Gene
Amp 7500 Sequence Detection System (Applied Biosystems).
Primers used in real-time PCR assays are as follows: Gal-8: Fwd
5′-GGGTGGTGGGTGGAACTG-3′, Rev 5′-GCCTTTGAGC
CCCCAATATC-3′; Gal-3: Fwd 5′-GACCACTGACGGTGC
CCTAT-3′, Rev 5′-GGGGTTAAAGTGGAAGGCAA-3′ CCL2
Fwd 5′-TGCCCTAAGGTCTTCAGCAC-3′, Rev 5′-AAGGC
ATCACAGTCCGAGTC-3′ GAPDH Fwd 5′-ACCCAGAAGA
CTGTGGATGG-3′, Rev 5′-ACACATTGGGGGTAGGAACA-3′;
and β-actin: Fwd 5′-CGTCATCCATGGCGAACTG-3′; Rev
5′-GCTTCTTTGCAGCTCCTTCGT-3′. Standard curves were
generated for each primer set, and each PCR was run using
serial dilutions of one known cDNA sample. SYBR Green data
were obtained using 7500 (Applied Biosystems). Samples were
analyzed by triplicate. β-Actin and GAPDH genes were used as
housekeeping controls.

Statistics
Statistical significance of comparisons of mean values was
assessed by a two-tailed Student’s t-test and two-way ANOVA
followed by Bonferroni’s post-hoc test and a Gehan–Breslow–
Wilcoxon test using GraphPad software.

RESULTS

Gal-8 Deficiency Favors Inflammation
During Trypanosoma cruzi Infection
To analyze the role of Gal-8 in the context of parasite infection,
we infected B6 (iWT) and Gal-8-deficient (iGal-8KO) mice with
the Trypanosoma cruzi Ac strain that leads to chronic infection
in this model (Risso et al., 2004). Parasitemia values were similar
between iWT and iGal-8KO, early during the infection (data
not shown). No differences in survival rate were found, and
parasitemia was undetectable in both infected groups at the
chronic stage (data not shown). This study was conducted at 4–5
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mpi, that is, once the acute phase of the infection is solved and
the chronic phase is already established.

To comparatively assess the inflammatory response induced
by T. cruzi infection, cardiac tissues from iWT, iGal-8KO, and
non-infected control mice were analyzed by histopathology. We
observed inflammatory cell infiltrates consisting of mononuclear
(lymphocytes, monocytes, macrophages, and plasmocytes) and
polymorphonuclear cells only in infected tissues. A higher
inflammation score was found in iGal-8KO cardiac tissue
compared with iWT mice (Figures 1A,B) (P = 0.0014). To
determine whether these findings were restricted to cardiac
tissue, skeletal muscle and liver samples were also analyzed.
Skeletal muscle and liver samples from iGal-8KO mice showed
higher inflammatory scores than their iWT counterparts
(Figures 1A,B) (P = 0.0150 and P = 0.0099, respectively). The
relationship between inflammation and T. cruzi burden was
further assessed by comparatively testing parasite load by real-
time PCR in different target tissues (Figure 2). Notably, both
infected groups displayed a similar parasite load in the heart,
liver, and skeletal muscle (Figure 2). Altogether, these findings
support that the increased inflammatory response observed in
infected Gal-8 KOmice by histopathology depends mostly on the
lack of a functional Lgals8 gene in the host.

Considering that fibrosis triggered by parasite infection is
a key component of cardiac remodeling, we evaluated fibrous
tissue in iWT and iGal-8KO heart sections stained with Masson’s
trichrome. Cardiac fibrosis was more extensive and severe in
iGal-8KO mice compared with the iWT mice (Figures 3A–C) (P
= 0.044). Furthermore, the expression of cardiac Gal-3 mRNA, a
molecular marker of fibrosis (Yu et al., 2013; Souza et al., 2017),
was significantly higher in iGal-8KO mice compared with iWT
and control mice (Figure 3D) (P= 0.0037). Taken together, these
results suggest that cardiac remodeling follows the pattern of
the inflammatory response induced by the parasite in a Gal-8-
deficient scenario.

Increased Number of Macrophages and
Neutrophils Infiltrate iGal-8KO Heart
Because inflammation is crucial for the development of T.
cruzi cardiomyopathy, we evaluated immune cell populations
infiltrating within cardiac tissues by flow cytometry. The
percentage of CD3+CD4+ and CD3+CD8+ T lymphocytes
and CD11b+Ly6C+Ly6G– monocytes in infected mice (iWT
and iGal-8KO) were significantly increased compared with that
of non-infected WT and Gal-8KO control mice (Figure 4;
Supplementary Figures 1, 2) (P = 0.0001, P = 0.0053,
and P = 0.0194, respectively). There were no significant
differences in the frequency of CD19+ B lymphocytes,
CD4+ and CD8+ T lymphocytes, CD11b+Ly6C+Ly6G–
monocytes, and CD11c+F4/80– denditric cells between iWT
and iGal-8KO hearts (Figure 4; Supplementary Figures 1, 2).
In contrast, the percentage and absolute number of cardiac
CD11b+Ly6G+Ly6C+ neutrophils were significantly increased
in iGal-8KO compared with iWT and non-infected Gal-8KO
mice (Figure 5) (P = 0.0104 and P = 0.0001, respectively).
No differences were detected between naive WT and Gal-8KO

mice (Figures 5B,C). The percentage and absolute number
of cardiac CD11b+F4/80+ macrophages in iGal-8KO mice
was also significantly higher compared with that in iWT
and non-infected Gal-8KO (Figures 6A–C) (P = 0.0013
and P = 0.0003, respectively). As expected, considering
the higher inflammatory rates and repair levels observed
in iGal-8KO hearts, in these tissues, macrophages with
M2 phenotype (F4/80+CD206+CD11c–) was predominant
over M1 profile, whereas macrophages with M1 phenotype
(F4/80+CD11c+CD206–) predominated overM2 profile in iWT
hearts (Figures 6D,E) (P = 0.0225).

In accordance with these results, the expression of cardiac
CCL2 levels were significantly higher in iGal-8KO than in iWT
counterpart when both mRNA (P = 0.0166) and protein level
were analyzed (Figures 7A,B) (P= 0.0038). Although the cardiac
production of IFN-γ was also increased in the iGal-8KO group
compared with iWT (Figure 7C) (P = 0.0006), there were no
changes in other cytokines (IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12,
and IL-17; data not shown). Cytokine levels were similar between
non-infected Gal-8KO and WT mice (data not shown).

Analysis of Neutrophil Increment in
iGal-8KO Hearts
The increased number of neutrophils in chronic infected hearts
can be a consequence of increased recruitment to the target tissue
or to longer neutrophil persistence in the heart. To explore this
finding, we next analyzed CXCL1 and CXCL2 chemokine levels,
and we found similar values in heart and plasma samples from
both iGal-8KO and iWT mice (Figures 8A,B).

Considering that Gal-8 was proposed to be involved in
preaparesis (Stowell et al., 2008), we then decided to evaluate
it in our experimental model. The frequency of circulating
CD11b+Ly6G+ neutrophils was significantly higher in both
infected group mice compared with non-infected controls (P
= 0.0001), with no significant differences between iGal-8KO
and iWT mice (Figures 9A,B). There were no differences in
the apoptotic rate of CD11b+Ly6G+ cells (hypodiploid cells
stained with propidium iodide) between iWT and iGal-8KOmice
(Figure 9C). However, the analysis of Annexin-V expression
(surface PS detection) and 7-AAD exclusion staining by viable
cells showed higher frequencies of Annexin-V+/7-AAD− cells
(preaparesis-induced circulating neutrophils) in iWT than in
iGal-8KO mice (Figure 9D) (P = 0.0001). Moreover, Gal-8
expression was increased in hearts from chronically infected WT
mice (Figure 10). These results support the involvement of Gal-
8 in preaparesis induction. Therefore, it is plausible to think
that neutrophil accumulation can be caused by the inability of
phagocytes to remove them due to the lack of an “eat-me” signal
such as PS on the surface of Gal-8-deficient neutrophils.

DISCUSSION

The effect of the regulatory role of Gals on both innate and
adaptive immunity has grown significantly recently (Blidner
et al., 2015; Brinchmann et al., 2018). They are currently
viewed as potential therapeutic tools for chronic inflammatory
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FIGURE 1 | Scoring of tissue inflammation by histopathology. (A) Representative photomicrographs of H&E-stained sections of the heart, skeletal muscle, and liver

from Trypanosoma cruzi-infected Gal-8KO, and wild-type (WT) mice and non-infected controls at 4–5 mpi. (B) Scoring of tissue inflammation was estimated as

described in Methods section. Data are expressed as mean ± SEM of at least three independent experiments (5 animals/group). *P < 0.05; **P < 0.01.
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FIGURE 2 | Tissue parasite burden in Trypanosoma cruzi-infected Gal-8KO and wild-type (WT) mice. Parasite load was determined by real-time PCR normalized to

host tumor necrosis factor (TNF) in mouse tissues at 4–5 mpi. Results are expressed as mean ± SEM of parasite DNA equivalents of at least three independent

experiments (5 animals/group).

FIGURE 3 | Analysis of cardiac fibrosis. Representative photomicrographs of Masson’s trichrome-stained heart sections of Trypanosoma cruzi-infected Gal-8KO and

wild-type (WT) mice at 4–5 mpi. Fibrosis severity was evaluated following the criteria described in methods section; collagenous fibers are stained blue. Note the

milder fibrosis in iWT mice (A) and severe loss of cardiac myocytes and dense fibrous tissue surrounding individual myocardial fibers in iGal-8KO mice (B). (C)

Graphical representation of heart fibrosis scoring. (D) Quantification of Gal-3 mRNA expression in T. cruzi-infected mice heart samples by real-time PCR, normalized to

host GAPDH expression. Results are expressed as mean ± SEM of at least three independent experiments (5 animals/group). *P < 0.05; **P < 0.01.

processes such as autoimmune or infectious diseases (Rabinovich
and Toscano, 2009). Gal-8 has been related to the induction
of platelets and cellular activation (Romaniuk et al., 2010;
Cattaneo et al., 2014), co-stimulation (Tribulatti et al., 2009),

and proliferation (Tribulatti et al., 2012). However, several
studies have also suggested an immunosuppressor function. For
instance, a pro-apoptotic role on Jurkat T-cells (Norambuena
et al., 2009) and in CD4+CD8+ thymocytes has been described
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FIGURE 4 | Phenotype of immune cells infiltrating chronic infected hearts. Immune cells were recovered from iWT and iGal-8KO mice heart tissues at 4–5 mpi and

analyzed by flow cytometry. (A) Percentage of CD19+ B lymphocytes, (B) percentage of CD4+ T lymphocytes and (C) CD8+ T lymphocytes, and (D) percentage of

CD11b+Ly6C+Ly6G– monocytes. (E) Percentage of CD11c+F4/80– dendritic cells. Results are expressed as mean ± SEM cells obtained in at least three

independent experiments (5 animals/group). *P < 0.05; ***P < 0.001; ****P < 0.0001.

(Tribulatti et al., 2019). Also, the resolution of experimental
autoimmune uveitis lesions is associated with Gal-8-induced
T regulatory differentiation and Th17 cell exclusion (Sampson
et al., 2015). It was recently reported that mice lacking Gal-
8 develop autoimmune encephalomyelitis earlier and show a
more severe chronic phase with increased brain inflammation
(Pardo et al., 2017). Taking into consideration these precedents,
we set to analyze the role of Gal-8 in an inflammatory context
induced by a protozoan parasite infection. To this aim, we
used the Trypanosoma cruzi infection, as this parasite triggers
inflammatory response in different target tissues, even though
it has preferential tropism for cardiac and skeletal muscles. The
host’s inability to eliminate the tissue parasites leads to the
development of a fibrosing cardiac inflammation that alters the
heart histoarchitecture and function, allowing the analysis of the
role of Gal-8 along this process. Results obtained concur with the
view of Gal-8 as an anti-inflammatory mediator, as its absence
favors a generalized inflammatory response in different tissues
(the liver, skeletal muscle, and heart) in the setting of chronic T.
cruzi infection, with increase of neutrophils and macrophages in
the heart.

In line with our findings, mice lacking Gal-1 (a well-
known anti-inflammatory Gal) subjected to experimental
acute myocardium infarction develop a prominent cardiac
inflammatory process (Seropian et al., 2013). It was shown that
during T. cruzi infection, Gal-1-deficient mice show increased
skeletal muscle inflammation than do infected WT mice

(Benatar et al., 2015). Conversely, cardiac inflammatory cells are
significantly decreased in mice lacking pro-inflammatory Gal-3
under T. cruzi infection (Pineda et al., 2015). These reports,
together with our results, let us propose that Gal-8, Gal-3,
and Gal-1 are jointly involved in the modulation of cardiac
inflammatory response. Intense cardiac fibrosis, evaluated by
histopathology and Gal-3 mRNA expression (Ferrer et al.,
2014), accompanies the inflammation level observed in both
infected groups, being higher in iGal-8KO. Therefore, our
findings show, for the first time, increased cardiac fibrosis in
absence of Gal-8, as expected for this infection. In contrast, in T.
cruzi-infected mice lacking Gal-3 expression (either neutralized
or knocked out), fibrosis induction is highly diminished, type I
collagen deposition is downregulated, and cellular proliferation
is decreased (Pineda et al., 2015; Souza et al., 2017). In this sense,
Gal-3 is considered a major regulator of fibrosis development
(De Boer et al., 2010). Furthermore, analysis of the inflammatory
infiltrate showed that the absence of Gal-8 induced a significant
increase in neutrophils and macrophages in the chronic phase
of the infection. In accordance with these results, levels of both
monocyte chemoattractant (CCL-2) and IFN-γ inflammatory
cytokine were increased. This increased production of CCL-
2 by neutrophils in iGal-8KO mice hearts may be related
to monocyte/macrophage population recruitment. In this
sense, it has been reported that cardiac neutrophils regulate
monocyte recruitment and activation in inflamed post-cardiac
arrest hearts (Frangogiannis, 2018). The study of macrophage
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FIGURE 5 | Heart-infiltrating neutrophils in infected Gal-8KO and WT mice. (A) Flow cytometry gating strategy for heart-infiltrating neutrophils. (B) Percentage of

CD11b+Ly6G+Ly6C+ neutrophils. (C) Absolute number of cardiac neutrophils. Results are expressed as mean ± SEM cells of at least three independent

experiments (5 animals/group). *P < 0.05; **P < 0.01; ***P < 0.001.

FIGURE 6 | Heart-infiltrating macrophages in infected Gal-8KO and wild-type (WT) mice. (A) Flow cytometry gating strategy for heart-infiltrating macrophages. (B)

Percentage of CD11b+F4/80+ macrophages. (C) Absolute number of cardiac macrophages. (D) Relative percentage of F4/80+CD11c+cd206– M1-type

macrophages and (E) relative percentage of F4/80+CD206+CD11c+ M2-type macrophages. Results are expressed as mean ± SEM cells of at least three

independent experiments (5 animals/group). *P < 0.05; **P < 0.01; ***P < 0.001.

subpopulations showed that iWT hearts are enriched in M1-like
population, whereas iGal-8KO hearts are predominant in the
M2-like population. This predominance during a chronic

inflammation and wound healing via fibrosis can be related
to M2 macrophages’ ability to synthesize ornithine, which is
involved in cell proliferation and collagen biosynthesis (Wynn
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FIGURE 7 | Cytokines and chemokines in hearts from infected wild-type (WT) and Gal-8KO mice. (A) CCL-2 mRNA quantification in infected cardiac tissues by

real-time PCR normalized to host β-actin expression. Cardiac CCL-2 (B) and interferon γ (C) levels quantified by ELISA and normalized to total cardiac protein

measured by the Bradford method. Results are expressed as mean ± SEM of at least three independent experiments (5 animals/group). *P < 0.05; **P < 0.01.

FIGURE 8 | CXCL1 and CXCL2 levels in infected wild-type (WT) and Gal-8KO mice. Neutrophil chemoattractants were measured in cardiac lysates (A) and serum

samples (B) by ELISA and normalized to total cardiac protein measured by the Bradford method (5 animals/group).

and Vannella, 2016). In addition, arginase activation favors T.
cruzi persistence by promoting replication and survival (Stempin
et al., 2002, 2004).

Neutrophils are known to be involved in the defense against
pathogens; however, their effector mechanisms can also cause
extensive damage in the surrounding tissue when uncontrolled.
The elimination of apoptotic neutrophils by macrophages

contributes to maintain the integrity of the affected tissue. The
external exposition of phospholipids (like PS) located on the
internal side of the plasmatic membrane flags the cell to be
detected and engulfed by phagocytes. This process is IL-10
dependent and is considered as an anti-inflammatory pathway
(Birge et al., 2016). Dr. Cummings’s lab described, through in
vitro assays, that several Gals, including Gal-8, participate in this
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FIGURE 9 | Analysis of preaparesis in peripheral blood neutrophils from Trypanosoma cruzi-infected Gal-8KO and wild-type (WT) mice. (A) Flow cytometry gating

strategy for determining preaparesis in neutrophils. (B) Percentage of Ly6G+ neutrophils. (C) Measurement of hypodiploid cells. (D) Preaparesis was analyzed by

using Annexin-V and 7-aminoactinomycin D (7-AAD) staining on Ly6G+ neutrophils. Results are expressed as mean ± SEM of at least three independent experiments

(7 animals/group). **P < 0.01; ****P < 0.0001.

FIGURE 10 | Cardiac expression of Gal-8 mRNA in infected and non-infected

wild-type (WT) mice. Gal-8 mRNA was quantified by real-time PCR normalized

to host GAPDH expression. Results are expressed as mean ± SEM of at least

three independent experiments (5 animals/group). *P < 0.05.

clearing of neutrophils (Stowell et al., 2008). In this mechanism,
known as preaparesis, Gal-8 induces surface expression of
PS, although the cell has not entered apoptosis, and then

macrophages phagocytose it via PS recognition. Paradoxically,
in our model, the frequency of cardiac macrophages from iGal-
8KO mice was increased, as was the neutrophil population.
As similar levels of neutrophil chemoattractant were observed
in both infected groups, this apparent incongruence could be
interpreted as the host’s inability to pursue the preaparesis route
via Gal-8 to eliminate the neutrophils.

High levels of circulating viable neutrophils Annexin-
V+/7-AAD− were detected in the peripheral blood of iWT
mice, which suggests that Gal-8 presence favors preaparesis

induction. In contrast, neutrophils obtained from iGal-8KO
mice displayed values closely similar to those observed in

naive mice. Furthermore, Gal-8 expression was increased in
WT hearts during chronic infection. For the first time, our

findings support the development of preaparesis in vivo during
a chronic infectious process. Even though inflammation in T.
cruzi infection is related to parasite persistence, in our model,
parasite load was similar between both infected groups in all
studied tissues. Thus, parasite antigenic molecules induce an
inflammatory response, but its enhancement in iGal-8KO mice
can be associated with the absence of Gal-8 instead of to the
tissular parasite burden, which constitutes a remarkable finding.

Neutrophils have recently been linked to diverse homeostatic
or pathological events, modulating inflammation, adaptive
immunity, thrombosis, atherosclerosis, and so forth (Mócsai
et al., 2015). They can also adopt different phenotypes as pro-
resolving or pro-inflammatory post myocardial infarction (Ma
et al., 2016). In keeping with this, a study done on circulating
neutrophils and monocytes from chronic Chagas patients shows
a correlation between MMP-2 and IL-10 and a regulatory profile,
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whereas MMP-9 correlates with an inflammatory profile. Given
the relevance of these cell types in the development of the
cardiomyopathy, other authors have proposed them as targets for
new biomarker research (Medeiros et al., 2017).

Overall, the information currently available shows how
relevant this population is in the physiology of the various
aforementioned processes. In this work, we present evidence that
support in vivo neutrophil preaparesis mediated by Gal-8, as
another mechanism to regulate the persistence of this innate cell
type. Furthermore, this ability can be extended to other Gals that
have also been involved in preaparesis induction in vitro (Stowell
et al., 2008). Taken together, our findings show the relevance of
Gal-8 involvement as an anti-inflammatorymediator in a chronic
infectious disease.
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