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The association of microbiome imbalance with cancer development is being one of the
research hotspots. Persistent HPV infection is a causal event in cervical cancer initiation,
but, little is known about the microbiome composition and function in HPV infection.
Here we identified the compositional and functional alterations on vaginal samples from
27 HPV16 positive women and 25 age-matched HPV negative controls using shotgun
metagenomic sequencing, to provide a comprehensive investigation describing the
microbial abundances and enriched metabolic functions in cervicovaginal metagenomes.
We further employed gPCR assays to evaluate two selected gene markers of HPV16
infection in an independent validation cohort consisting of 88 HPV16 positive women
and 81 controls, and six selected species markers in a subset of validation cohort
of 45 HPV16 positive women and 53 controls. We found that the relative abundance
of dominant Firmicutes was lower, Actinobacteria, Fusobacteria and viruses phyla
were significantly higher in the HPV16-positive group; 77 genera including Gardnerella,
Peptostreptococcus, and Prevotella were higher, and 20 genera including Lactobacillus
and Aerococcus were lower in the HPV16-positive women. Abundance of 12 genes,
17 genera, and 7 species biomarkers showed an excellent predictive power for the
HPV16-positive individuals, with 0.861, 0.819, and 0.918, respectively, of the area under
the receiver-operating characteristic curve (AUC). We further characterized the microbial
function, and revealed that HPV16-positive women were enriched in metabolism
and membrane transport, and depleted by glycan biosynthesis and metabolism, and
replication and repair. Quantitative PCR measurements validated that one gene marker
and three species were significantly enriched in HPV16-positive women. These results
highlight a fundamental fact that there are altered composition and function of the
vaginal microbiome in HPV16-positive women, suggesting that vaginal dysbiosis may
be associated with HPV infection in the female genital tract.
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INTRODUCTION

Persistent high-risk human papillomavirus (HPV) infection is the
central causal agent of cervical intraepithelial neoplasia (CIN)
and cervical carcinoma (Walboomers et al., 1999). HPV16 is the
most common type in cases (Bruni et al., 2010; Sanjose et al.,
2010). However, only a few women with HPV infection progress
to cervical cancer, and more than 90% of viruses are cleared
within 6-18 months. Although lifetime risk of acquiring any
type of HPV infection exceeds 80%, HPV persistent infection
occurs in nearly 10% of infected women (Stanley, 2010). The
reasons for high-risk HPV persistent infection in some women
but not others are still unknown. Some researches point out
that individual differences in immune function (Shannon et al.,
2017) or genetic susceptibility (Zou et al., 2016) may play a role,
but the determining factor may also lie in the cervicovaginal
microenvironment where the cervix is located.

The microenvironment in the female reproductive tract
is composed of anatomical structure, endocrine system, local
immunity, and vaginal microbiota. Rapidly emerging evidences
reveal that healthy vaginal microbiota is an essential component
of a multifaceted defense system that operates to protect women
against disease (Gajer et al., 2012; Gopinath and Iwasaki, 2015;
Anahtar et al, 2018; Kroon et al.,, 2018). As an indispensable
defense system in cervicovaginal microenvironment, the vaginal
microbiome has recently drawn considerable attention for its
potential role in the female genital diseases, such as reproductive
tract infection (RTI), spontaneous preterm delivery (Freitas et al.,
2018; Elovitz et al., 2019), and preterm fetal membrane rupture
(Brown et al., 2018), although a causal relationship has yet to
be established.

High-risk HPV, as a foreign pathogen, may interact with
the cervicovaginal microbiome inevitably once infection occurs,
causing microbiome dysbiosis. Or vice versa, maybe the dysbiosis
predisposes individuals to HPV infection. Nevertheless, the
microbiome dysbiosis could be more suitable for HPV infection,
even persistent infection. Previous studies using 16S rRNA gene
sequencing have revealed that individuals with HPV infection
have higher microbial diversity with a lower proportion of
Lactobacillus spp. (Lee et al., 2013; Shannon et al., 2017), and
Sneathia spp. may act as a possible microbiological marker
associated with HPV infection. However, 16S rRNA gene
amplification ignores microbes that lack a gene to match the
universal primers, like eukaryotes, viruses, and archaea that are
not accounted for (Ranjan et al, 2016). Thus, explanation of
results generated by 16S rRNA gene sequencing may be confined
by its low taxonomical and functional resolution. The use of
shotgun metagenomic sequencing allows to identify bacterial
taxa to species level (Shah et al., 2018) and to analyze vaginal
microbiota functions without reliance on prediction. Hence,
whole genomic DNA-based sequencing is more suitable than
16S rRNA gene-based methods for exploration of the association
between the vaginal microbiome and HPV infection.

In the present study, we used shotgun metagenomics profiling
of HPV16-positive and HPV-negative vaginal microbiota to
screen potential microbiological biomarkers in cohorts, and
independently validated them using an affordable technology

that can translate to clinical practice. The study aims to explore
the association between vaginal dysbiosis and HPV infection in
the female genital tract.

MATERIALS AND METHODS
Study Population and Sampling

All samples derived from 2251 non-pregnant, reproductive-age
women who went to colposcopy clinic after cervical cancer
screening using HPV testing and cytology during 2017.2-
2018.11. All women aged 25-50, had regular menses and sexual
activities without using hormonal contraception. Those women
were excluded if they met any of the following criteria: (1)
use of antibiotics or vaginal antimicrobials (oral pills or by
topical application in vulvar/vaginal area) in the past month, and
vaginal intercourse or vaginal lavage within the last 3 days; (2)
history of BV, candidiasis, urinary tract infections, or active sexual
transmitted diseases (STD, specifically chlamydia, gonorrhea,
syphilis, genital herpes, trichomoniasis) within the previous
2 months; (3) history of hysterectomy, cervical cold knife
conization (CKC) or loop electrosurgical excision procedure
(LEEP); (4) history of systemic diseases such as diabetes,
autoimmune disease, and malignant tumors.

After completing a clinical and sexual behavior questionnaire,
vaginal secretion of women was obtained before cervical
exfoliated cell sampling for further investigation. Four sterile
swab samples were taken from near the vaginal fornix and
cervix, placed into a sterile tube, stored in liquid nitrogen
immediately, and archived at —80°C until further analysis.
Women with abnormal cytology and/or positive HPV testing
underwent colposcopy with or without biopsy, and those HPV-
positive samples were genotyped, and only those with HPV16
positive and confirmed histologically to be normal were, as
HPV16-positive group, included in the study. Women with HPV
negative and normal cytology were included as controls. The
study flowchart is illustrated in Figure 1.

All participants provided written informed consent and the
study was approved by the Ethics Committee of the Hospital.

HPV Test and Genotyping

All HPV positive samples were genotyped using HybriBio’s
proprietary flow-through hybridization technique with Hybribio
Rapid GenoArray test kit (GA), which can identify 6 low-risk
types (6, 11, 42, 43, 44, and CP8304) and 15 high-risk types (16,
18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 66, and 53). All the
tests were performed according to the manufacturer’s protocols.
Only HPV 16 single positive samples were selected for the study,
including 31 in exploratory cohorts and 88 in validation cohorts.
Totally 116 individuals with two consistent HPV negative results
were selected as controls, including 35 in exploratory cohorts and
81 in validation cohorts.

DNA Extraction and Metagenomic
Sequencing

Qiagen QIAmp DNA Microbiome Kit (Qiagen) was used for
DNA extraction according to the manufacturers’ instructions.
DNA concentration was measured by Qubit®2.0 (Invitrogen,
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FIGURE 1 | Flowchart of the study.
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U.S.) and its integrity and molecular size were estimated by
1% agarose gel electrophoresis containing 0.5 mg/ml ethidium
bromide. NEBNext® Ultra™ DNA Library Prep Kit for
Ilumina® was used for library construction. The quality of
the library was evaluated using Agilent 2100 (Agilent, U.S). All
samples constructed the libraries were pooled and sequenced on
the Hiseq X-ten platform (Illumina, San Diego, CA). The raw
reads were cleaned by removing low-quality sequences (reads
with unknown bases “N”), reads with more than 20% low-quality
bases and <60% high-quality bases. Then, clean reads were
aligned against all known microbial genomes, as downloaded
from the National Center for Biotechnology Information
GenBank with SOAPaligner (version 2.21) (Li et al., 2008) and
the reads that mapped to the host genome were abandoned. The
subsequent reads were selected for further analysis.

Taxonomic and Gene Profiling

Clean reads were aligned with the NCBI database for the
detection of known bacteria, fungi, viruses, and archaea. Then,
the aligned reads were classified as Kingdom, Phylum, Class,
Order, Family, Genus, Species to count classification and
abundance. The taxonomy profile was constructed at different
levels. Preprocessed reads were assembled by SOAPdenovo
(Version 1.05) (Luo et al., 2012) to acquire the high-quality
reads from each sample into contigs. Software MetaGeneMark
(Noguchi et al., 2006) was used to predict genes in the assembled
scaffolds with default parameters. The predicted open reading
frames (ORFs) were compared against the NCBI non-redundant
sequence database using BLAST. To obtain a non-redundant
gene catalog, pairwise comparison of predicted ORFs were
carried out with coverage >90% and identity >95%. Clean
paired reads were aligned with the genes in the non-redundant
catalog. The calculation formula of gene abundance used was
from the study by Qin et al. (2014). Functional annotations were
performed by blast against the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2004). The assembled genes
were also clustered according to function on different levels.

Data Analysis

The non-parametric Wilcox rank-sum test (wilcox.test in R)
was employed to analyze the statistical significance of the
different taxonomic (phylum, genus, species) levels, gene and KO
(KEGG orthologs) between HPV16-positive women and healthy
controls. The Benjamini-Hochberg method (false discovery rate,
FDR) was used for correction in multiple testing in which a
P < 0.05 was considered significant. Enriched features with an
adjusted P < 0.05 were identified, and the enrichment group
was then determined according to a higher mean rank-sum
value. To determine the features (organisms, KOs) most likely
to explain the differences between the HPV16-positive women
and healthy controls, we applied Linear discriminant analysis
(LDA) effect size (LEfSe) analysis (Segata et al., 2011) with an
LDA score cut-off of 2.0 and the Metastats software (White et al.,
2009), respectively.

Validation of Microbial Markers by qPCR

TagMan quantitative PCR was chosen to estimate the abundances
of selected gene and species markers in vaginal samples.
Primer sequences were designed manually and identified
using agarose gel electrophoresis after PCR amplification for
determination of product size and possible secondary structures
(Supplementary Table 5). Quantitative PCR was performed on
an ABI2720 Real-Time PCR System using SYBR Green qPCR
Master Mix (TaKaRa DRR041A). Universal 16S rRNA gene was
used as internal control and abundance of gene and species
markers were expressed as relative levels to 16S rRNA gene.

RESULTS

Cohort Demographics

Totally 52 women, including 27 HPV16 positive women and
25 HPV negative controls, were enrolled in the study. The
demographic characteristics of both groups were summarized in
Table 1. There were no differences in demographics between the
two groups, including age, BMI, menarche age and days since
last menstrual period, nor were there differences in contraceptive
methods, age at first sexual intercourse, sexual frequency, number
of sexual partners and contraceptive methods. In order to validate
the findings of sequencing, a validation cohort was recruited,
including 88 HPV16 positive and 81 HPV negative women
(Figure 1 and Supplementary Table 1). Also, there were no
significant differences in demographics between the two groups
in the validation cohort, except for the number of sexual partners
(p=0.007, Pearson Chi-Square test).

Phylogenetic and Gene Profiles of Vaginal
Microbiota in HPV-16 Positive Women and

Controls

In 52 exploratory subjects, 389 million 150 bp paired-end
high-quality reads free of adaptor, low quality, and human
DNA contaminants were obtained after quality control, with an
average of 7.49 million clean reads per sample for microbial
taxonomic classification (Supplementary Table 2). Rarefaction
analysis showed curves reaching the plateau, suggesting that the
sequencing depth covered most prevalent microbial genes in
samples (Supplementary Figure 1A).

In terms of alpha diversity, the Shannon-wiener and
the Simpson indexes did not show a significant difference
(Supplementary Figure 1B). Comparing the taxonomy between
HPV16-positive women and controls, we found that 905 genera
were shared in two groups, but 169 were only in HPV16-positive
women and 140 genera were only in controls. Similar results were
observed at species level. Totally 3591 species were shared in
both groups, whereas 773 species were only in HPV16-positive
women and 653 only in controls (Supplementary Figure 1C).
We performed a principal component analysis (PCA) based on
gene profiles, but did not find a significant difference between
HPV16-positive women and controls (p = 0.092, r = 0.035,
Adonis test) (Supplementary Figure 1D).
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TABLE 1 | Socio-demographic of subjects in exploratory cohort.

Characteristics NC group HPV16+ group P-value?
(n =25) (n=27)

Age (mean + SD, range) 36.9 +4.9 345+ 45 0.075
(27-42) (25-41)

BMI (mean + SD, range)® 2171+ 25 21327 0.561

(17.8-28.0) (16.8-28.0)

Smoker(s) 0 2/27 0.491

Passive smokers 10/25 11/27 0.956

Menarche age 145+15 144 +1.2 0.789
(11-18) (12-16)

Time since last menstrual 15.7 £ 5.7 16.7£7.1 0.568

period (mean + SD)

Contraceptive method for 0.638

nearly 1 year

Condom 13 15

lupe 4 2

Tubal ligation 4 3

No contraception 4 7

Hepatitis B surface 2 2

antigen-positive

Age of first sexual life 21.6+2.0 212+26 0.483
(18-25) (17-29)

Sexual frequency (weekly) 0.440

<1 time/week 14 17

2-3 times/week 8 6

>4 times/week 0 2

Unknown 3 2

Lifetime number of sexual 0.272

partners

1 17 12

2 4 5

3-4 3 9

Unknown 1 1

aStudent’s t-test, Pearson Chi-Square test and Fisher’s exact test adapted to the variable
distribution. *BMI, body mass index. ¢IUD, intrauterine device.

Taxonomic Alterations of Vaginal

Microbiota in HPV16 Positive Women

To illustrate the phylogenetic profiles in vaginal microbes, we
aligned the clean reads with the NCBI database. We herein
found that bacteria were the major organism identified in the
vaginal microbes, with few fungal organisms at low relative
abundance (Supplementary Table 2). Although the composition
of individual species varies, we still observed similarities within
groups. The genus Lactobacillus, followed by Gardnerella, was
overwhelmingly dominated in the vaginal flora at the genus
level, in both HPV16-positive and control groups. Besides,
Atopobium, Megasphaera, Mycobacterium, and Veillonellaceae
were found relatively more often (Figure2A). Similarly, at
species level, Lactobacillus crispatus, Lactobacillus iners, and
Gardnerella vaginalis were the top three species in both groups,
followed by Alpha pillomavirus 9, Atopobium vaginae, etc.
Alpha papillomavirus 9 enriched in HPV16-positive group was

expected, because HPV16 belongs to Alpha papillomavirus 9
(Figure 2B).

Further, all 52 subjects were divided into two types: lactobacilli
accounted for at least 50% of the species (community type
L) and lactobacilli accounted for <50% of the species present
(community type O) (Nené et al., 2019). We found that 15/27
(55.6%) in HPV16-positive women and 20/25 (80%) in controls
were type L, 12/27 (44.4%) in HPV16-positive and 5/25 (20%)
in controls were type O (p = 0.060, Pearson Chi-square test,
data not shown). The results suggest that a lower proportion of
lactobacilli is more common in HPV16 positive women.

To identify microbial taxa contributing to the dysbiosis,
we examined taxonomic differences between controls and
HPV16-positive group, and found that the abundance
of phyla Actinobacteria (p = 0.00803, Wilcoxon rank-
sum test), Fusobacteria (p = 0.010), and viruses (p =
0.0006) were significantly higher, while Firmicutes was
significantly lower in the HPV16-positive group (Figure2C
and Supplementary Table 3). Consistent with the phylum level
analysis, genus Gardnerella, belongs to Actinobacteria, was
also increased, while Lactobacillus, belonging to Firmicutes,
was decreased in HPV16-positive women (Figure 2D). Also,
genus, like Peptostreptococcus and Prevotella, were enriched in
HPV16-positive group. However, such differences at phylum
and genus levels did not appear in dominant species, such
as L. crispatus and L. iners, while mainly appeared in non-
dominant species, for instance, Gardnerella vaginalis (p =
0.0172), Gardnerellasp_304 (p = 0.0022), and Gardnerella
sp_2612 (p = 0.0011) were enriched in HPV16-positive women.
And some opportunistic pathogens like Mobiluncus curtisii
(p = 0.0106), Coriobacteriales bacterium DNF00809 (p =
0.0050), Peptostreptococcus anaerobius (p = 0.0067), Veillonella
montpellierensis (p = 0.0019), and Megasphaera sp UPII_135E (p
= 0.0352) were significantly enriched in HPV16-positive women
(Figure 2E and Supplementary Table 3). Our results suggest
that the differences between the two groups may depend on
not only classical dominant species, but also the opportunistic
pathogens or non-dominant species.

HPV16 Infection Biomarker Discovery

To define potential metagenomic biomarkers that could be more
likely to explain the differences between the HPV16-positive
and control groups, we performed Linear Discriminant Analysis
(LDA) Effect Size (LEfSe) analysis. To exclude the influences
of HPV bringing to differences, here we only presented the
results using bacteria taxonomy. Forty-four species biomarkers
were enriched in HPV16-positive women while only one
was enriched in controls (Figure3). Meanwhile, analysis
of fold change against mean abundance showed increased
and decreased HPV16-specific LEfSe biomarkers intuitively
(Figure 3A). In agreement with previous studies (Brotman
et al, 2014; Di Paola et al., 2017; Chen et al., 2019), we
found significant altered opportunistic pathogens in HPV16-
positive women, including increased Gardnerella vaginalis,
Gardnerella_sp_304, and Gardnerella_sp_2612 (Gardnerella
genus), Peptostreptococcus anaerobius, Mobiluncus curtisii,
Prevotella disiens, Prevotella bivia, Prevotella amnii, Prevotella
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FIGURE 2 | Phylogenetic profiles in vaginal microbes between HPV16-positive women and controls. Composition of vaginal microbiota in two groups at the genus
level (A) and species level (B). Comparison of differentially abundant phylotypes identified by the Wilcoxon rank-sum test, at phyla (C), genera (D), and species (E)
level, respectively. Only the top 2 phyla, top 10 genera and top 20 species are shown. The phylotypes enriched in the control group are colored with red. The relative
abundances are shown by boxplot. Boxes represent the interquartile ranges, lines inside the boxes denote medians, and “+” denotes means.
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corporis (Prevotella genus), Fusobacterium nucleatum and
decreased Enterococcus sp_1140_ESPC (Figure 3B).

To illustrate the presence of non-bacterial taxa and markers,
we performed LEfSe analysis between the two groups in archaea,
eukaryote and viruses taxa within the vaginal microbiome
(Figure4) and identified several non-bacterial biomarkers
such as Methanobrevibacter oralis (archaea), Candida albicans
(eukaryote), and Alpha papillomavirus 9 (virus) were enriched
in HPV16-positive women, suggesting that non-bacterial taxa
can also be associated with HPV16 infection which cannot
be ignored.

Then we constructed a random forest ensemble learning
method to distinguish HPV16-positive women from controls
using three types of biomarkers: 12 genes (Figure 5A), 17 genera
(Figure 5B) and 7 species (Figure 5C). All three of the classifiers
based on vaginal microbiome were highly predictive of HPV16-
positive status, with the predictive power of 0.861, 0.819, and
0.918, respectively, in ROC analysis, respectively (Figure 5).

Vaginal Microbial Genes Associated With
HPV16 Infection

A metagenome-wide association study (MGWAS) was
performed to identify genes that contributing to the altered
gene composition in HPV16-positive women. We annotated the
identified genes using the KEGG functional database (V.59) to

investigate the certain functional difference between the HPV16-
positive and control microbiome. At the level in 1&2 KEGG
classification, the HPV16-positive and control metagenome
showed a comparable functional configuration. Not surprisingly,
carbohydrate metabolism, amino acid metabolism, translation,
and membrane transport took up the most number of genes
(Figure 6A). We identified 378 KEGG (Kyoto Encyclopedia
of Genes and Genomes database) orthologs (KOs) that are
involved in 88 pathways were significantly different between
the HPV16-positive and controls using Metastats analysis (p <
0.05, Supplementary Table 4). KO is a classification system of
KEGG proteins or enzymes. The proteins with highly similar
sequences and similar functions on the same pathway are
grouped. Particularly, a total of 22 KOs were identified with
significantly different abundances in the vaginal microbiome
between the HPV16-positive and control group (FDR, P <
0.05; Figure 6B). Then we annotated the statistically different
KOs to the corresponding metabolic pathways, and found
that the most prevalent pathways among the HPV16-positive
women were those involved in carbonhydrate metabolism,
global and overview maps, amino acid metabolism, energy
metabolism, membrane transport, and signal transduction.
A minority of those were elevated in controls such as
glycan biosynthesis and metabolism, and replication and
repair (Figure 6C).
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Evaluating HPV16 Infection Biomarkers
Using Targeted qPCR

To verify whether gene abundances identified by metagenomics
sequencing and qPCR are comparable, we randomly selected
two HPV16-positive enriched gene markers and measured their
abundances in a subset of exploratory cohort (10 controls and
23 cases). Quantification by qPCR and metagenomic sequencing
showed strong correlations (Pearson r = 0.72, 0.86, respectively)

(Supplementary Figure 2), suggesting that both methods are
reliable. Then, we measured the abundance of these gene and
microbial markers using qPCR in the independent validation
cohort (169 vaginal samples; 88 cases and 81 controls). Two
gene markers enriched in HPV16-positive women (GI_0004362,
C69 family dipeptidase from Gardnerella vaginalis; GI_0014455,
GBSil, group II intron, maturase from multispecies) were also
enriched in cases of validation cohort (Wilcoxon rank-sum test,
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p = 0.08112 and 0.01186), respectively (Figures 7A,B). We also
measured six species enriched in the HPV16-positive group using
a subset of validation cohort (98 vaginal samples; 53 cases and
45 controls). Three species were significantly abundant in the
HPV16-positive group, including Atopobium vaginae (p = 2.66E-
08, Wilcoxon-rank sum test), Peptostreptococcus anaerobius (p
= 2.79E-08, Wilcoxon-rank sum test) and Candida albicans
(P = 2.54E-06, Wilcoxon-rank sum test) (Figures 7C-E). But,
the differences of the other three species enriched in HPV16
positive women did not reach statistical significance, including

Gardnerella vaginalis (p = 0.054, Wilcoxon-rank sum test),
Lactobacillus iners (p = 0.13, Wilcoxon-rank sum test), and
Chlamydia trachomatis (p = 0.11, Wilcoxon-rank sum test)
(Supplementary Table 6 and Figures 7F-H).

DISCUSSION

As an important part of the female lower genital tract local
environment, the vaginal microbiome has been paid increasing
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attention for its potential role in female reproductive health
(Chen et al, 2017; Smith and Ravel, 2017; van de Wijgert,
2017; Anahtar et al., 2018). Due to the technical limitation,
researches in vaginal microbiota have long been restricted to
a very small number of culturable bacteria. Hence, the huge
amount of fastidious and uncultivable bacteria, viruses, and
fungi in the vagina has been ignored. The application of
sequencing technology has completely changed this situation
(Quince et al., 2017).

In this study, we utilized shotgun metagenomic sequencing
to describe the profiling of vaginal microbiota associated
with HPV16 infection. On this basis, taxonomic analysis
found that, at the phylum level, Firmicutes was dominant
in both groups, but the abundance in the HPV16-positive
women was much lower than that in the controls, and other
phyla therefore proliferated, suggesting that some bacteria
(e.g., Actinobacteria and Fusobacterium) that are originally
suppressed by the dominant bacteria were grown in HPV16-
positive women. Accordingly, the abundance of Lactobacillus
(Firmicutes) was lower in HPV16-positive women than that
in controls. It has been revealed that Lactobacillus adheres
to the surface of vaginal epithelial cells, thereby preventing
the adhesion of other pathogenic bacteria or viruses; further,
Lactobacillus produces lactic acid by decomposing glycogen
on vaginal epithelial cells, maintains a low pH environment
in the vagina, and produces antimicrobial compounds such
as bacteriocin, hydrogen peroxide to inhibit the growth of
other microorganisms, thereby maintaining normal vaginal
microecology (Boris and Barbés, 2000; Tachedjian et al., 2017).
Along with the reduction of Lactobacillus, a large number
of opportunistic pathogens and pathogenic bacteria were
increased in HPV16-positive women, including Gardnerella
vaginalis, Mobiluncus curtisii, Peptostreptococcus anaerobius,
Fusobacterium nucleatum, Prevotella, and oral pathogens-
Parvimonas micra. It has been known that virulence factors
such as adhesion, cytotoxin (vaginolysin) (Randis et al., 2013;
Nowak et al, 2018), and sialidases (Lewis et al, 2013)
produced by Gardnerella participate in the dysbiosis. A study
found that the sialidase-encoding gene was enriched in HPV-
positive patients (Di Paola et al., 2017). Gardnerella may
utilize sialidase activity and vaginolysin to degrade mucus to
assist HPV viruses to enter easily into the host’s cells, but
further study is needed. Prevotella sp. is another bacteria
producing sialidase (Briselden et al., 1992). Mobiluncus curtisii
is usually identified as a BV-related bacteria, a recent study
found its association with increased risk of spontaneous
preterm delivery (Elovitz et al., 2019). Peptostreptococcus
anaerobius and Fusobacterium nucleatum have been reported
to promote tumorigenesis in colorectal cancers (Kostic et al.,
2013; Tsoi et al, 2017; Long et al., 2019). In addition, we
identified the over-representation of oral pathogen-Parvimonas
micra in the vaginal fluid from HPVI16-positive group,
suggesting there may be a route of HPV16 infection by
oral-vagina dissemination. Thus, our findings suggest that
HPV infection is usually accompanied by mixed infections
of various pathogens, and the maintenance of stable vaginal
microecology may be a potential pathway to prevent or eliminate
HPYV infection.

Further, we analyzed the metabolic pathways of the KOs with
significant differences between the HPV16-positive women and
controls, and found that most of the metabolic pathways were
enriched in the HPV16-positive women, such as carbohydrate
metabolism, amino acid metabolism, membrane transport, and
signal transduction. Active metabolism of the vaginal microbiota
may provide a favorable microenvironment for HPV and
other pathogen survival. In addition, a minority of microbial
metabolic pathways such as glycan biosynthesis and metabolism,
replication, and repair were found to be enriched in controls. The
best-understood cell-cell interaction in which glycan participate
is immunoregulatory activity (Schnaar, 2016). Nowhere is the
importance of glycan recognition better understood than in
infection and immunity (Raman et al., 2016), and knowledge in
this area has already led to glycan mimetic anti-infective and anti-
inflammatory drugs (Li et al., 2018). Thus, our results suggest
that a stronger glycan biosynthesis and metabolism ability in the
normal vaginal microbiome may be one of the mechanisms to
resist dysbacteriosis and HPV infection.

We also successfully constructed a random forest model that
may be used for distinguishing HPV16 infection and not by
generating three types of biomarkers: 12 genes, 17 genera, and 7
species, and found the predictive powers 0f 0.861, 0.819 and 0.918
in ROC analysis, respectively, suggesting that vaginal microbial
targeted biomarkers might be a concomitant signature of HPV
infection. However, the identification of the random forest model
using a validation cohort is needed.

There were some limitations in the study. Firstly, the diversity
in each sample varied drastically due to various factors such as
host characteristics (i.e., immune and genetic factors), personal
hygiene and sexual behaviors, and hormonal cycling, which
might influence the results as confounding factors. Secondly,
we couldn’t clarify the detailed roles of the vaginal microbiota
in the high-risk HPV infection from this cross-sectional study.
Longitudinal studies focus on the dynamic fluctuations of vaginal
microbiota among high-risk HPV-infected women will provide
clues to evaluate which condition precedes the other.

Taken our results together, we found an altered composition
of vaginal microbiome in HPV16-positive women, such as
decreased Lactobacillus and increased Gardnerella, including
other opportunistic pathogens, with an active metabolism,
suggesting that vaginal microbiota dysbiosis that accompanies
HPYV infection may contribute to HPV persistent infection, even
lesion progression.
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