AUTHOR=Zhang Xiaofan , Gong Wenci , Cao Shengkui , Yin Jianhai , Zhang Jing , Cao Jianping , Shen Yujuan TITLE=Comprehensive Analysis of Non-coding RNA Profiles of Exosome-Like Vesicles From the Protoscoleces and Hydatid Cyst Fluid of Echinococcus granulosus JOURNAL=Frontiers in Cellular and Infection Microbiology VOLUME=Volume 10 - 2020 YEAR=2020 URL=https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2020.00316 DOI=10.3389/fcimb.2020.00316 ISSN=2235-2988 ABSTRACT=Cystic echinococcosis is a worldwide chronic zoonotic disease that threatens human health and animal husbandry. Exosome-like vesicles (ELVs) have emerged recently as mediators in the parasite-parasite inter-communication and parasite-host interactions. ELVs from parasites can transfer non-coding RNAs (ncRNAs) into host cells to regulate their gene expression; however, the ncRNAs profiles of the ELVs from E. granulosus remain unknown. Here, we isolated protoscolece (PSC)-ELVs and hydatid fluid (HF)-ELVs from the culture medium for E. granulosus PSCs in vitro and the HF of fertile sheep cysts, respectively. The ncRNAs profiles of the two types of ELVs were analyzed using high throughput sequencing, and their functions were predicted using GO enrichment and KEGG pathway analysis. In PSC-ELVs and HF-ELVs, 118 and 58 miRNAs were identified, respectively, among which 53 miRNAs were present in both ELVs, while 65 and 5 miRNAs were unique to PSC-ELVs and HF-ELVs, respectively; 2 361 and 1 254 lncRNAs were identified in PSC-ELVs and HF-ELVs, respectively, among which 1 004 lncRNAs were present in both ELVs, while 1 357 and 250 lncRNAs were unique to PSC-ELVs and HF-ELVs, respectively. Intriguingly the spilled PSCs from cysts excrete ELVs with higher numbers of and expression levels of miRNAs and circRNAs than HF-ELVs. The miRNA sequencing data was validated by quantitative reverse transcription-PCR. Furthermore, the target lncRNAs and mRNAs regulated by the 20 most abundant miRNAs were screened and a ceRNA regulatory network containing 5 miRNAs, 41 lncRNAs, and 23 mRNAs was constructed, which provided new ideas and the molecular basis for further clarification of the function and mechanism of E. granulosus ELVs ncRNAs in the parasite-host interaction. Egr-miR-125-5p and egr-miR-10a-5p, sharing identical seed sites with host miRNAs, were predicted to mediate inflammatory response, collagen catabolic process and MAPK cascade during parasite infections. In conclusion, for the first time, we identified the ncRNAs profiles in PSC ELVs and HF-ELVs that might be involved in host immunity and pathogenesis, and enriched the ncRNAs data of E. granulosus. These results provided valuable resources for further analysis of the regulatory potential of ncRNAs, especially miRNAs, in both types of ELVs at the parasite-host interface.