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Orthohantaviruses are zoonotic viruses that are naturally maintained by persistent

infection in specific reservoir species. Although these viruses mainly circulate among

rodents worldwide, spill-over infection to humans occurs. Orthohantavirus infection

in humans can result in two distinct clinical outcomes: hemorrhagic fever with

renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). While

both syndromes develop following respiratory transmission and are associated with

multi-organ failure and high mortality rates, little is known about the mechanisms that

result in these distinct clinical outcomes. Therefore, it is important to identify which

cell types and tissues play a role in the differential development of pathogenesis in

humans. Here, we review current knowledge on cell tropism and its role in pathogenesis

during orthohantavirus infection in humans and reservoir rodents. Orthohantaviruses

predominantly infect microvascular endothelial cells (ECs) of a variety of organs (lungs,

heart, kidney, liver, and spleen) in humans. However, in this review we demonstrate that

other cell types (e.g., macrophages, dendritic cells, and tubular epithelium) are infected as

well and may play a role in the early steps in pathogenesis. A key driver for pathogenesis

is increased vascular permeability, which can be direct effect of viral infection in ECs or

result of an imbalanced immune response in an attempt to clear the virus. Future studies

should focus on the role of identifying how infection of organ-specific endothelial cells as

well as other cell types contribute to pathogenesis.

Keywords: orthohantavirus, hantavirus, hemorrhagic fever with renal syndrome, hantavirus cardiopulmonary

syndrome, tropism, endothelium, pathogenesis

INTRODUCTION

The genus of orthohantaviruses in the family of Hantaviridae comprises emerging zoonotic
negative-sense RNA viruses belonging to the recently reclassified order of Bunyavirales
(Abudurexiti et al., 2019). Orthohantavirus strains are closely associated with specific rodent species
or insectivores, as their natural reservoir hosts (Plyusnin and Morzunov, 2001; Zhang, 2014).
Orthohantaviruses generally cause asymptomatic persistent infections in their reservoirs, and
transmission between reservoir species primarily occurs via aerosolized urine, although wounding
may also play a role in rodent-to-rodent transmission due to the presence of infectious virus
in saliva (Glass et al., 1988; Kariwa et al., 1998). Some orthohantaviruses are capable of causing
disease in humans following inhalation of aerosolized excreta from infected rodents (Lee and
Johnson, 1982). Humans are considered dead-end hosts as they generally do not spread infectious
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virus efficiently. Although limited person-to-person transmission
has been reported for Andes orthohantavirus (ANDV) (Padula
et al., 1998; Martinez-Valdebenito et al., 2014). According to
estimations, more than 20,000 annual cases of orthohantavirus-
related disease occur worldwide with case fatality rates up to
40% (Schmaljohn and Hjelle, 1997; Alonso et al., 2019). To
date, no United States Food and Drug Administration (FDA)–
or European Medicines Agency (EMA)—approved specific
treatments or vaccination strategies exist.

Orthohantaviruses can be divided into Old- and New World
viruses due to the geographic distribution of their reservoir
species with the exception of the worldwide presence of an
Old World rodent: the wild rat. Currently, over 50 species of
orthohantaviruses are known of which at least 24 are able to cause
disease in humans (Jonsson et al., 2010; Reusken and Heyman,
2013; de Oliveira et al., 2014; Jiang et al., 2017). Clinical outcomes
and disease severity in human cases largely depend on the virus
species. Following respiratory transmission, orthohantaviruses
can cause two distinct clinical outcomes, depending on the
virus strain: hemorrhagic fever with renal syndrome (HFRS)
or hantavirus cardiopulmonary syndrome (HCPS) (Hjelle and
Torres-Perez, 2010; Jonsson et al., 2010).

Orthohantavirus pathogenesis is complex and the exact
pathological mechanisms remain unknown. In general,
pathogenesis seems to be associated with dysregulation of
hemostasis, immune responses, and vascular permeability
during infection due to infection of endothelial cells (ECs)
lining the walls of blood vessels (Jonsson et al., 2010; Mackow
et al., 2014). Immunopathology likely plays an important role
in the development of disease (Rasmuson et al., 2016). In
rodent reservoir hosts pro-inflammatory and antiviral immune
responses are locally suppressed (e.g., by regulatory T cell
responses) to establish viral persistence, without developing
disease (Easterbrook et al., 2007; Schountz et al., 2007;
Easterbrook and Klein, 2008a), suggesting that a lack of
such regulation in humans may result in disease.

Studies into the pathogenesis of orthohantaviruses in humans
have been hampered by the limited availability of clinical
samples. Patient samples from the acute phase are frequently
unavailable as incubation periods can take up several weeks
before patients display clinical symptoms and orthohantavirus
infection is often underdiagnosed (Goeijenbier et al., 2014; Sane
et al., 2014). Therefore, animal models to study experimental
infections are crucial in understanding the early steps in the
pathogenesis of HFRS and HCPS. Unfortunately, development
of laboratory animal models which recapitulate the clinical
presentation of human infections has proven to be challenging.
There are a very limited number of animal models to study
orthohantavirus-induced disease, as reviewed in Golden et al.
(2015). To date, the best characterized experimental infection
model of nephropathia epidemica (NE; a mild form of HFRS)
is Puumala orthohantavirus (PUUV) infection in non-human
primates (NHP) exhibiting renal symptoms including transient
proteinuria and microhematuria together with viral antigen
distribution similar to that seen in human cases (Groen et al.,
1995), while experimental in vivo models for HFRS remain
largely unsuccessful in recapitulating the disease seen in humans

(Golden et al., 2015). The best characterized HCPS disease
models are ANDV infection in Syrian hamsters, and ANDV and
Sin Nombre orthohantavirus (SNV) infection in NHP, which all
recapitulate human disease (Hooper et al., 2001; Wahl-Jensen
et al., 2007; Safronetz et al., 2011).

Multiple factors can determine outcome of orthohantavirus
infection, such as the ability of pathogenic (i.e., associated
with clinical symptoms in humans) orthohantaviruses to inhibit
antiviral responses whereas non-pathogenic viruses elicit innate
responses that limit viral replication in humans (Geimonen
et al., 2002; Kraus et al., 2004). Additionally, differences in
receptor usage are believed to be one of the crucial determinants
of pathogenicity (Gavrilovskaya et al., 2002). Specific integrins
(αvβ3) are widely reported as receptors through which both
HFRS and HCPS orthohantaviruses can enter host cells in vitro
(Gavrilovskaya et al., 1998, 1999; Larson et al., 2005; Bondu et al.,
2017). Recently, additional proteins like protocadherin-1 (Jangra
et al., 2018), decay-accelerating factor/CD55 (Krautkramer and
Zeier, 2008), and the receptor for the globular head domain of
complement C1q/p32/p33 (Choi et al., 2008) have been described
as (co-)receptors for cell entry in vitro. However, their cell and
tissue distribution does not explain the differences in clinical
outcome between HFRS and HCPS viruses (Avraamides et al.,
2008; Gavrilovskaya et al., 2010; Teoh et al., 2016).

The aim of this review is to provide an updated overview
of the cell and tissue tropism of pathogenic orthohantaviruses
and discuss how infection of these cell types could lead to
pathogenesis based on in vivo data and supplemented with
in vitro data. In addition to the role of endothelium in
pathogenesis, we also focus on other cells potentially targeted
in five key organ systems that are most frequently studied in
the context of orthohantavirus infection and pathogenesis, e.g.,
lung, heart, kidney, liver, and spleen. We hypothesize that cells
other than ECs play an important role in the pathogenesis
of orthohantaviruses and the development of distinct clinical
syndromes.We review differences in cell tropism between viruses
with different clinical outcomes (HFRS and HCPS), as well
as differences between human and reservoir hosts to provide
novel hypotheses on virus and host-specific pathways involved in
disease in humans. This is crucial for identifying novel potential
therapeutic targets.

DISTINCT CLINICAL OUTCOMES OF
ORTHOHANTAVIRUS INFECTION

HFRS is typically characterized by fever, thrombocytopenia,
and acute kidney injury. In severe cases internal hemorrhaging
caused by increased vascular permeability can even occur
(Schmaljohn and Hjelle, 1997; Jonsson et al., 2010; Vaheri et al.,
2013). Hantaan (HTNV), Seoul (SEOV), and Dobrava-Belgrade
(DOBV) orthohantaviruses are mainly associated with severe
presentation of HFRS with mortality rates of 5–15% (Papa,
2012; Hepojoki et al., 2014). PUUV is the most prevalent
orthohantavirus circulating in Europe and Russia causing NE
with thousands of cases each year and a mortality rate of <0.1%
(Krautkramer et al., 2013; Tkachenko et al., 2019). NE patients
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suffer from less severe kidney complications and less often
hypotension, thrombocytopenia, and hematuria compared to
HFRS cases (Jonsson et al., 2010). Tula (TULV) orthohantavirus
infections have only been described in patients with severe
comorbidities often related to immune suppression (Zelena et al.,
2013). HCPS is a severe acute disease which mainly affects the
lungs. Early non-specific flu-like symptoms rapidly develop to
pulmonary edema, hypotension, and shock (Hallin et al., 1996;
Khan et al., 1996; Macneil et al., 2011). ANDV and SNV are
responsible for causing the majority of HCPS cases with fatality
case rates up to 40% (Jonsson et al., 2010). More recently,
it is becoming increasingly clear that the clinical differences
between HFRS and HCPS are less distinct, with more frequent
detections of respiratory disease in HFRS patients (Clement
et al., 1994, 2014; Schutt et al., 2004; Gizzi et al., 2013) and
kidney involvement in HCPS patients (Passaro et al., 2001; Peters
and Khan, 2002). Thrombocytopenia (Connolly-Andersen et al.,
2015; Latus et al., 2015) and vascular leakage (Gorbunova et al.,
2010; Connolly-Andersen et al., 2015) are direct indicators for
disease severity in both HFRS and HCPS.

PATHOLOGICAL OUTCOMES FOLLOWING
ENDOTHELIUM INFECTION

Infection of Human Endothelium
ECs are highly specialized cells which line the interior wall of
blood and lymphatic vessels. ECs vary in phenotypical features
and function, between different organs, including differences
in expression of adhesion molecules and secretion products.
ECs play an important role in vascular permeability, platelet
activation, coagulation, and immune responses (Figure 1).
Following entry via the respiratory tract through a yet
unknown mechanism, orthohantaviruses infect ECs (primarily
microvascular ECs) and subsequently spread to infect EC in
almost all major organs in humans. Infection of ECs generally
does not cause a cytopathic effect, but instead can lead
to extensive impairment of EC functions, including barrier

integrity, adhesion factors, and fluid clearance from tissues by
lymphatic vessels and capillary tone regulation (Dalrymple and
Mackow, 2014; Mackow et al., 2014). As a result, infection
of microvascular EC barrier functions can lead to capillary
leakage, a key mechanism of pathogenesis during HFRS/NE
and HCPS (Yanagihara and Silverman, 1990; Duchin et al.,
1994; Zaki et al., 1995; Geimonen et al., 2002). Interestingly,
while orthohantaviruses infect ECs in most major organs, organ
dysfunction is only reported in specific organs and depends
on the causative virus. HFRS viruses generally infect the
microvasculature of the kidneys, specifically targeting glomerular
and tubular ECs (Hung et al., 1992; Kim et al., 1993; Groen
et al., 1996; Krautkramer et al., 2011, 2013). Pulmonary and
splenic microvascular beds have also been reported as targets for
infection (Hautala et al., 2002; Rasmuson et al., 2011; Clement
et al., 2014; Sironen et al., 2017). HCPS viruses mainly target
the pulmonary microvasculature (Zaki et al., 1995; Green et al.,
1998; Toro et al., 1998). Additionally, these viruses can infect
microvessels in the heart, kidneys, liver, and spleen (Nolte
et al., 1995; Zaki et al., 1995; Green et al., 1998; Toro et al.,
1998; Saggioro et al., 2007). The mechanisms of distinct organ-
specific dysfunction during HFRS and HCPS remain largely
unknown. ECs from different large and microvascular vessels
from different organs are considered phenotypically distinct with
correspondingly characteristic gene expression profiles (Swerlick
and Lawley, 1993; Chi et al., 2003). Furthermore, the microvessel
wall has a more intimate association with the extracellular matrix
compared to larger blood vessels, which might facilitate viral
spread to other tissues.

Pathogenesis
Increased vascular permeability by infected microvasculature is
a central feature of pathogenesis leading to HCPS and HFRS.
For instance, during HCPS (and to a lesser extent HFRS)
increased permeability can lead to pulmonary edema, which
causes severe problems such as oxygenation and ventilation
problems. Oxygenation problems, leading to hypoxia, modulates

FIGURE 1 | Pathogenic mechanisms in vascular endothelium during initial orthohantavirus infection. (A) Healthy vascular ECs contain a tightly regulated barrier, mainly

based on adherens junction molecules such as VE-cadherin. (B) Important soluble factors that maintain this barrier function are bradykinin and VEGF. As response to

infection, ECs produce and secrete VEGF. (C) Local VEGF binds to endothelial receptors and disengages adherens junctions by increased nitric oxide production and

internalization of VE-cadherin. (D) Under hypoxic conditions (for instance due to pulmonary edema), these effects are even expanded as VEGF production is

increased, causing increased vascular permeability. (E) In addition, orthohantavirus particles present on the endothelial cell surface recruit quiescent platelets to

endothelial cell surfaces. This increased consumption of blood platelets may contribute in part to thrombocytopenia. Both the permeabilizing effects of secreted VEGF

and the recruitment of platelets lead to internalization of VE-cadherin (i.e., loss of endothelial barrier function).
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actin cytoskeleton, and contractile proteins leading to further
increased permeability (An et al., 2005). Hypoxic conditions also
result in elevated vascular endothelial growth factor (VEGF)
levels in pulmonary edema fluids (Figure 1) (Gavrilovskaya
et al., 2012, 2013). Secreted VEGF binds to receptors (e.g.,
vascular endothelial growth factor receptor 2; VEGFR2) on
ECs, acting locally to disassemble adherens junctions and
induce elevated endothelial cell permeability (Dvorak, 2010;
Gavard, 2014). The in vitro identified orthohantavirus entry
receptor integrin αvβ3 is vital for regulating VEGF by forming
complexes with VEGFR2, which are important for multiple
cellular activities such as migration, survival, and angiogenesis
(Robinson et al., 2004; Gavrilovskaya et al., 2008; Somanath
et al., 2009; Dvorak, 2010). During initial orthohantavirus
infection (Figure 1) localized increases of VEGF contribute
to pathogenesis through enhanced endothelial permeability by
causing higher production of nitric oxide (NO), internalization
of VE-cadherin, and possibly redistribution of zonula occludens-
1 (ZO-1) in renal cells (Groeneveld et al., 1995; Klingstrom et al.,
2002; Gorbunova et al., 2011; Krautkramer et al., 2011; Dalrymple
and Mackow, 2014). Sustained systemic elevations of VEGF
may contribute to endothelial repair and convalescence later in
infection. Different inhibitors involved in VEGF signaling are
able to decrease orthohantavirus-induced permeability increases
both in vitro and in vivo (Gorbunova et al., 2011; Bird et al., 2016).
In addition to VEGF, bradykinin is an important mediator of
vascular permeability (Liu et al., 2008; Kottke andWalters, 2016).
Limited evidence suggests a role of bradykinin in orthohantavirus
pathogenesis (Antonen et al., 2013; Taylor et al., 2013).

A second pathological event during early phase of infection
is that orthohantavirus infection can result in coagulation
abnormalities. Orthohantavirus particles cluster on the surface
of ECs (e.g., pulmonary microvascular beds) (Goldsmith
et al., 1995; Gavrilovskaya et al., 2010) and this accumulation
recruits quiescent platelets to ECs (Figure 1) (Gavrilovskaya
et al., 2010). This β3 integrin-dependent platelet consumption
may play a role in development of the observed acute
thrombocytopenia, since it would result in wasting or loss of
platelets adhered to infected ECs (Gavrilovskaya et al., 2010;
Goeijenbier et al., 2015). This can also cause an increase of
VEGFR2 phosphorylation and internalization of VE-cadherin
from adherens junctions contributing to barrier function
impairment and edema (Gavrilovskaya et al., 2002, 2010; Dehler
et al., 2006; Bates, 2010; Gorbunova et al., 2011; Dalrymple
and Mackow, 2014). In addition, disseminated intravascular
coagulation without signs of hemorrhaging, major thrombosis
or damage to the vascular ECs can be observed during the
terminal stage of patients infected with SNV (Nolte et al., 1995;
Zaki et al., 1995). These could also result in major decreases of
clotting factors and platelet levels, promoting vascular leakage
and hemorrhaging.

A third aspect of pathogenesis is not only described
as virus-induced EC dysfunction but rather the result of
immune-modulated effects (Temonen et al., 1996; Mori
et al., 1999; Khaiboullina et al., 2017). There are two local
immunopathological mechanisms that could contribute to the
pathogenesis observed during HFRS and HCPS (Terajima and

Ennis, 2011). First, early antiviral and inflammatory responses
aid in eliminating virus, thereby concurrently impairing EC
function by secreting large amounts of cytokines, such as
tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6)
(Mori et al., 1999; Maes et al., 2006). Second, if these responses
are insufficient and virus clearance is delayed, prolonged
inflammation can alter EC function and cause disruption of fluid
barriers (Gavrilovskaya et al., 2008; Hammerbeck and Hooper,
2011).

Finally, damaged or detached ECs can be replaced by
migration of adjacent ECs or mobilization of circulating
endothelial progenitor cells (Sabatier et al., 2009). Recovery
of symptoms due to orthohantavirus infection has been
linked to appearance of high levels circulating endothelial
progenitor cells (Krautkramer et al., 2014). However, whether
circulating endothelial progenitor cells initiate disease recovery
or are involved in the spread and pathogenesis requires
further investigation.

Distinct Immune Responses to Infection in
Non-diseased Reservoir
In reservoir rodents, orthohantaviruses are also primarily
endotheliotropic (Netski et al., 1999; Maas et al., 2019). However,
very little is known about the effect of orthohantavirus infection
on the function and host responses by these cells. Instead,
most studies have focused on the differential immunological
responses that occur in reservoir rodents preventing them
from developing disease. Studies on SEOV demonstrate that
infection causes increases of immunoregulatory factors (e.g.,
expression of Foxp3 and Tgf β) in pulmonary ECs and alveolar
macrophages, respectively (Li and Klein, 2012). This contributes
to a shift in CD4+T cell differentiation toward a more
regulatory T cell phenotype during infection (Easterbrook and
Klein, 2008a; Li and Klein, 2012). These data suggest that
this local immunological shift may prevent complete viral
clearance, hence causing persistence, as reviewed in Easterbrook
and Klein (2008a). In addition, these data suggest that the
pathogenesis of orthohantaviruses is at least in part the result
of immunopathological responses that are controlled in reservoir
species but not in humans.

HFRS/NE IN HUMANS AND DISEASE
MODELS

Conducting Airways
While ECs are an important target for orthohantavirus infection,
other cells likely play a role in entry and pathogenesis. Since cells
of the conducting airways are the first to come into contact with
orthohantavirus particles upon inhalation, identifying which cells
are initially infected is of particular interest. To date, no data are
available on the ability of HFRS-associated orthohantaviruses to
target respiratory epithelial cells of the conducting airways.

Lungs
Nevertheless, pulmonary involvement during HFRS has been
reported in PUUV-infected patients with NE, in which virus-
infected cells can be detected in bronchoalveolar lavage fluids

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 August 2020 | Volume 10 | Article 399

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Noack et al. Cell Tropism in Orthohantavirus Infection

(Rasmuson et al., 2016). Although pulmonary involvement
during HFRS/NE is not considered a common clinical sign, post-
mortem findings in severe NE cases have demonstrated extensive
interstitial edema and mononuclear cell infiltrations with PUUV
antigen presence in capillary vascular ECs and mononuclear cells
in the lung (Rasmuson et al., 2011; Clement et al., 2014).

Heart
Cardiovascular disorders are identified as the leading cause
of death during or shortly after PUUV infection (Connolly-
Andersen et al., 2013). Although PUUV infection has a relatively
low case fatality rate, cardiopulmonary complications can
have implications on the recovery of a majority of patients
(Rasmuson et al., 2013). Implications may consist of increased
left ventricular stroke volume and myocardial contraction
causing delayed functional hemodynamical recovery. During
active NE, sinus bradycardia, T-wave inversion, and ST segment
changes are described as common electrocardiographic (ECG)
findings (Puljiz et al., 2005; Kitterer et al., 2016). However,
these ECG abnormalities were transient in almost all of the
patients and were not associated with negative cardiovascular
outcome. Unfortunately, none of these studies specified viral
antigen presence in cardiac cells. However, another case report
specifically mentioned that heart tissue samples were negative for
PUUV antigen (Hautala et al., 2002). Since there is no evidence
of infection in the heart tissue, increased myocardial energy
demand seems to be result of permeability increases of peripheral
blood vessels.

Kidneys
While the exact mechanism of extrapulmonary spread remains
unknown, once the virus reaches the vasculature there is a
potential for rapid systemic dissemination. Following entry via
the respiratory tract, the kidneys are considered the primary
target for HFRS viruses. Renal function is dependent on
the integrity of tubular epithelium and the glomeruli, which
predominantly consist of fenestrated ECs, podocytes, and
basement membrane. The disease severity of HFRS (including
NE) ranges from reversible mild to severe acute kidney injury
(Jonsson et al., 2010; Mustonen et al., 2017). In severe cases,
oliguria, severe interstitial edema and hemorrhages are common
clinical manifestations and hemodialysis may be required (Kim
et al., 1993; Suh et al., 1995; Hautala et al., 2002; Jonsson
et al., 2010). Patients can typically display acute interstitial
inflammation, tubulointerstitial nephritis with focal interstitial
hemorrhages (Collan et al., 1991; Kim et al., 1993; Groen
et al., 1996; Temonen et al., 1996; Sironen et al., 2008; Meier
et al., 2018). In addition to tubular and glomerular capillary
ECs, HTNV and PUUV antigens have been detected in the
tubular epithelial cells of HFRS patients (Hung et al., 1992;
Kim et al., 1993; Groen et al., 1996; Krautkramer et al., 2011,
2013). Acute necrosis of antigen-positive tubular epithelium
and the presence of tubular epithelial cells in urine (Kim
et al., 1993; Hautala et al., 2002) suggest that–in addition to
EC dysfunction–tubular damage contributes to kidney function
impairment in HFRS (Hung et al., 1992). In vitro studies
have demonstrated that orthohantavirus-induced interstitial

nephritis can be distinguished from non-orthohantavirus-
induced interstitial nephritis due to signs of redistribution of
tight junction proteins (e.g., ZO-1) in glomerular and tubular
cells (Krautkramer et al., 2011). Decreased glomerular ZO-1
expression may also result in reduced function of the glomerulus
as a molecular filter by enhancing glomerular permeability
(Krautkramer et al., 2011). Finally, nucleocapsid (N) proteins of
HTNV and PUUV cause impairment of podocyte motility and
adhesion capacity (Hagele et al., 2018). Infection of podocytes
leads to virus-induced cytoskeletal rearrangements in vitro,
which could indicate a role for podocyte foot process effacement
in observed proteinuria in vivo (Boehlke et al., 2014; Hagele et al.,
2019). These rearrangements are more prominent for HTNV
compared to PUUV, which corresponds with more pronounced
proteinuria and kidney injury as observed during HFRS (Hagele
et al., 2019).

Liver
Involvement of the liver has mostly been reported in SEOV cases
(Kim et al., 1995; Zhang et al., 2011), where it results in acute
viral hepatitis-like manifestations with lobular necrosis without
viral inclusions, atypical cells, vasculitis, or fibrosis, a painful
enlarged liver and distinct elevation of liver enzymes (Kim et al.,
1995; Nielsen et al., 2010; Swanink et al., 2018). In addition, focal
midzonal necrosis associated with mild mononuclear infiltrates
can be observed in the liver during HTNV infection (Elisaf et al.,
1993). However, detection of viral antigen in liver tissues has not
been specifically reported in HFRS cases. Therefore, elevated liver
enzymes seem to be a consequence of inflammatory events rather
than direct infection.

Spleen
The spleen contains approximately one third of the body’s
platelets content illustrating its role in controlling the balance of
available blood platelets and hence preventing thrombocytopenia
(Bassenge, 1996). Data from a limited number of severe NE
patients demonstrates venous congestion, splenomegaly,
and variable amounts of antigen-positive ECs in the spleen,
presumably sinusoidal lining cells (Hautala et al., 2002;
Koskela et al., 2014; Sironen et al., 2017). However, to date,
there is no association between enhanced sequestration
of blood platelets in the spleen and the pathogenesis of
thrombocytopenia during HFRS/NE (Koskela et al., 2014). The
most likely explanation of the pathogenesis of thrombocytopenia
during HFRS/NE, seems to be peripheral consumption
(adherence to ECs), since several bone marrow studies showed
a normal morphogenesis of platelets (Lee, 1987; Lutteke et al.,
2010).

HCPS IN HUMANS AND DISEASE MODELS

Conducting Airways
In comparison to HFRS, orthohantavirus spread has been
described in a wider range of organs for HCPS (Figure 2).
Similar to HFRS, SNV RNA was found at low abundance in
tracheal aspirate in a small number of HCPS patients (Xiao et al.,
2006). Unlike other orthohantaviruses, ANDV is associated with
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FIGURE 2 | Overview of cell tropism during HFRS and HCPS based on human and experimental disease models. After a human host is infected by inhalation of virus

containing aerosolized excreta of an infected rodent, orthohantavirus is able to reach multiple organs and infect different cell types. Potentially infected cell types

during HFRS and HCPS are compared for major organs in which viral antigens have been detected in human tissues or experimental disease models; lungs, heart,

kidneys, liver, and spleen. X = absence of viral antigen; ? = viral antigen presence not specified.

human-to-human transmission. Efficient infection of the upper
respiratory tract favors host-to-host transmission, as has been
shown for other respiratory viruses, like influenza (van Riel et al.,
2010), suggesting a potential role for respiratory cell infection.
This is in line with data from an experimental ANDV infection
model in Syrian hamsters in which viral antigen was detected in
tracheal tissues following intranasal challenge (Safronetz et al.,
2011). This antigen staining was only focal with limited spread

to neighboring cells, and no observed histological abnormalities
(Safronetz et al., 2011). In vitro, ANDV infects non-ciliated cells
(e.g., club and goblet cells) resulting in bidirectional virus release,
which could facilitate direct access to infect adjacent respiratory
epithelium or systemic spread by infection of respiratory ECs
(Rowe and Pekosz, 2006). The exact role of infected non-ciliated
cells during initial stages of disease in humans remains to
be determined.
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Lungs
Since (exudative) thoracic effusions and pulmonary edema
are classical hallmarks of HCPS (Duchin et al., 1994; Hallin
et al., 1996), pulmonary involvement has been studied to
a great extent. Severe SNV infection in HCPS patients
causes interstitial pneumonitis with variable mononuclear cell
infiltrates, pulmonary edema, and focal hyalinemembranes (Zaki
et al., 1995). SNV infection leads to an increase of plasminogen
activator inhibitor type 1 (PAI-1) in plasma samples of terminal
stage patients (Bondu et al., 2018). Upregulation of this
fibrinolysis inhibitor may lead to excessive fibrin accumulation,
explaining the observed focal hyaline membranes in lungs of
HCPS patients (Zaki et al., 1995). In contrast to other respiratory
viral infections–like influenza (Kuiken and Taubenberger, 2008)–
there is no cellular debris of respiratory epithelial cells and/or
type II pneumocyte hyperplasia. This suggests that viral spread
to the circulation does not rely on disrupted epithelial layers.
Based on samples from end stages of disease, antigens from
HCPS causing viruses are predominantly detected in the ECs
of small vessels in the lungs and macrophages with almost no
cells that remain unaffected (Nolte et al., 1995; Zaki et al.,
1995; Green et al., 1998; Toro et al., 1998). Viral antigen was
typically not detected in the ECs of large blood vessels in humans
(Zaki et al., 1995). Furthermore, high viral load in lung tissue is
usually negatively correlated to survival of patients (Zaki et al.,
1995). Cell types that may play a role during the early stages of
pathogenesis remain unknown due to the lack of early samples
from the lungs.

Heart
Cardiac involvement varies in HCPS patients, ranging from
mild forward failure with stable blood flow to fulminant shock
and rapid death (Bustamante et al., 1997). Severe cases initially
display signs of increased vascular permeability leading to
non-cardiogenic pulmonary edema which later develops into
cardiac complications (Hallin et al., 1996; Peters et al., 1999).
In contrast to HFRS viruses, viral antigen is detected in ECs
and macrophages in the myocardium and sporadically the
endocardium of SNV-infected patients (Nolte et al., 1995; Zaki
et al., 1995; Green et al., 1998; Saggioro et al., 2007). It is
believed that direct infection of cardiac tissue (combined with
existing pulmonary edema) can lead to cardiac remodeling
(flabby wall and mild biventricular dilatation), scattered foci of
myofiber necrosis and a mild to moderate interstitial edema
with mono-nuclear infiltrate (Saggioro et al., 2007). This likely
causes an atypical form of cardiogenic shock by myocardial
dysfunction associated to myocarditis (Saggioro et al., 2007),
which can lead to decreased tissue perfusion, metabolic acidosis,
and malignant arrhythmias (Hjelle, 2002). Clinical studies have
identified impaired myocardial function instead of hypoxic
injury as a leading cause of death in HCPS (Duchin et al., 1994;
Hallin et al., 1996).

Liver
Clinical and post-mortem data from HCPS patients suggest
that liver contribution to pathogenesis is limited. Still, viral
antigen (predominantly SNV) can sporadically be detected in

hepatocytes, sinusoidal ECs, and Kupffer cells (Zaki et al., 1995;
Green et al., 1998; Toro et al., 1998). In addition, infiltration of
mononuclear inflammatory cells is observed (Nolte et al., 1995;
Zaki et al., 1995), like in other organs (e.g., lungs and heart)
without histopathology (Zaki et al., 1995).

Kidneys
The lungs are the primary target organ during HCPS, and the
majority of HCPS reports actually do not study renal effects.
Although a case report showed predominantly renal staining for
SNV antigen, suggesting that renal tropism may overrule general
pulmonary involvement in SNV infection (Passaro et al., 2001).
Additionally, renal symptoms such as polyuria and proteinuria
are common findings among a minority of HCPS patients
(Jonsson et al., 2010; Clement et al., 2014). A frequent cause for
these symptoms is increased glomerular capillary permeability
to protein. Accordingly, widespread presence of SNV antigen
in glomerular capillary ECs can be detected (Zaki et al., 1995;
Green et al., 1998). It is plausible that infection of glomerular ECs
during HCPS does not lead to clinical signs as more prominent
pulmonary symptoms might arise earlier. Alternatively, tubular
reabsorption could also compensate for decreased glomerular
filter function, as tubular epithelium is negative for infection by
HCPS-causing viruses (Zaki et al., 1995; Green et al., 1998).

Spleen
Mild splenomegaly with atypical mononuclear cells in red pulp
and periarteriolar sheaths of the white pulp are common findings
in later stages of HCPS (Nolte et al., 1995; Zaki et al., 1995). The
white and red pulp of the spleen house a great variety of cell
types, such as monocytes, lymphocytes, and dendritic cells. Viral
antigen varies from negative to widespread and can be detected
in multiple cell types, such as vascular ECs, lymphoid follicles,
and splenic dendritic cells (Zaki et al., 1995; Green et al., 1998;
Hooper et al., 2001). These data suggest that in addition to splenic
ECs, immune cells can be infected during HCPS (e.g., SNV
infection). As an essential location of mononuclear phagocyte
system activity, viral replication in immune cells might provide
an essential route for viral dissemination throughout the body.
Altogether, these data suggest that the role of the spleen during
HCPS might be more prominent than previously considered.

HFRS/NE-ASSOCIATED VIRUSES IN
RESERVOIR RODENTS

Respiratory Tract
Similar to transmission to humans, animal-to-animal
transmission in the reservoir host is assumed to occur primarily
via the respiratory route. However, unlike in humans, infection
in reservoir species results in persistent infection without clinical
signs. To our knowledge, no studies have focused on the presence
of virus in the conducting airways of orthohantavirus reservoir
rodents. So, it remains unclear which cells from the upper
respiratory tract can be infected by HFRS viruses in reservoir
rodents. Nevertheless, lung tissues are frequently screened for
surveillance of orthohantaviruses in reservoir species as highest
antigen concentrations can be found here (Lee et al., 1982).
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Since the Norway rat (Rattus norvegicus) is a model organism for
different diseases with many reagents available, SEOV infection
in reservoir rodents has been studied more extensively compared
to other HFRS viruses (Easterbrook and Klein, 2008a). The
lungs are considered the primary site of viral replication during
persistent and experimental infection of SEOV in Norway
rats (Easterbrook and Klein, 2008b). Following intraperitoneal
inoculation of SEOV, viral antigen was mainly detected in
pulmonary ECs and alveolar macrophages during persistence
(i.e., defined as ≥30 days post-infection) (Easterbrook and
Klein, 2008b). Although this entry route is distinct from what
is expected during natural infection, pulmonary cells are also
considered a target early in natural infection. In naturally
infected rats, SEOV antigen is indeed primarily detected in
interstitial ECs of alveolar septal capillaries, and rarely in ECs of
larger blood vessels such as pulmonary veins, similar to human
infection (Maas et al., 2019).

Heart
In addition to the lungs, in one study, DOBV and TULV could
be detected by polymerase chain reaction (PCR) in hearts of
naturally infected animal reservoirs (Michalski et al., 2014).
Unfortunately, this study did not identify the infected cell types.
Analogous to human data, PUUV is generally absent in cardiac
cells of naturally infected reservoir voles (Michalski et al., 2014;
Dervovic and Hukic, 2016). Consequently, virus presence in
cardiac cells could depend on the specific causative virus.

Kidneys
As the kidneys are the main target organ during HFRS in
humans, it is important to identify which (immunological)
mechanisms prevent this renal pathology in the reservoir and
thus which renal cell types are infected in healthy reservoir
animals (Easterbrook and Klein, 2008a). Almost 40 years ago,
the first HFRS orthohantaviral antigens were reported in kidneys
of wild rodents (Lee et al., 1982; LeDuc et al., 1984). To our
knowledge, the infected renal cell types have not been specified in
reservoir rodents, other than SEOV in microvascular ECs (Maas
et al., 2019). However, HFRS/NE-associated orthohantaviruses
are commonly detected in urine of reservoir hosts (Lee et al.,
1981; Gavrilovskaya et al., 1983; Yanagihara et al., 1985; Klein
et al., 2001; Hardestam et al., 2008; Voutilainen et al., 2015).
Orthohantaviruses are much larger than the size of filterable
macromolecules. This indicates that viruria is a consequence of
viral particles release from the apical membranes of infected renal
cells or disruption of glomerular filter function.

Liver
PUUV antigen can be detected in the liver of a minority (4%)
of naturally infected wild rodent reservoir hosts (Gavrilovskaya
et al., 1983). Intramuscular infections of PUUV in bank voles
results in viral antigen in liver ECs and Kupffer cells (Yanagihara
et al., 1985). Interestingly, natural SEOV infection in rats
primarily targets the microvasculature in the liver and results
in a mild hepatitis, characterized by an increase in the number
of polymorphonuclear cells within the hepatic parenchyma and

sinusoids (Maas et al., 2019). This suggests that SEOV infects
hepatic ECs in both reservoir and diseased host.

Spleen
The spleen is a peripheral immune organ that supports merely
low levels of virus replication in reservoir rodents (Lee et al., 1982;
Gavrilovskaya et al., 1983; LeDuc et al., 1984; Yanagihara et al.,
1985; Compton et al., 2004; Michalski et al., 2014). Although
evidence is conflicting and cell types are not consistently
specified, splenic endothelium and macrophages seem to be
the main target cells (Yanagihara et al., 1985; Maas et al.,
2019). During both acute and persistent SEOV infection in
spleen tissues, proinflammatory (e.g., IL-1β, IL-6, and TNF-α)
and antiviral responses (e.g., IFN-γ) are elevated to stimulate
viral clearance, while regulatory responses (e.g., TGF-β) seem
unaltered (Easterbrook and Klein, 2008b). These data differ from
local immune reactions in the lungs, where regulatory responses
are elevated (Easterbrook et al., 2007; Easterbrook and Klein,
2008b). Altogether, these data suggest that local shifts in the
immunological balance might be crucial for controlling virus
replication, hence preventing pathogenesis.

HCPS-ASSOCIATED VIRUSES IN
RESERVOIR RODENTS

Respiratory Tract
In naturally infected deer mice, the reservoir rodents of SNV,
the highest levels of virus can be detected in the lungs (Netski
et al., 1999). Mild lung pathology is observed in the majority
of wild rodents infected by SNV, as characterized by alveolar
septal edema with various levels of SNV antigen in the alveolar
and capillary walls (Netski et al., 1999). A transmission study in
reservoir rodents naturally infected with ANDV demonstrated
viral antigen inmost of the epithelium lining the alveoli and some
of the capillary ECs (Padula et al., 2004). These observations differ
from end stage human infections, during which microvascular
ECs are primarily infected (Zaki et al., 1995; Green et al., 1998;
Toro et al., 1998). Differences in viral spread could depend on the
host’s specific ability to clear the virus, differential distribution of
the viral entry receptors and the stage of infection, since most
data on cell tropism from human cases is based on the end stage
of disease (Billings et al., 2010).

Heart
In cardiac tissues of SNV-infected deer mice, only few antigen
positive cells can be detected (Green et al., 1998; Botten et al.,
2002). Therefore, prominent infection of cardiac tissue with
consequent disease manifestations seems specific for human
infections, at least for SNV infection (Nolte et al., 1995; Zaki et al.,
1995; Green et al., 1998; Saggioro et al., 2007).

Liver
SNV infection results in immune infiltrates in the hepatic portal
zones of reservoir hosts (Netski et al., 1999). These immune
infiltrations in infected liver tissue are the second most observed
pathological finding after alveolar septal edema in wild deer mice
(Netski et al., 1999). These data again imply that SNV is able
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to cause pathology within reservoir hosts. However, it remains
to be confirmed whether infiltration of immune cells leads to
liver function impairment in wild deer mice. As SNV antigen can
be found in infiltrating mononuclear cells, Kupffer cells in liver
sinuses and hepatocytes (Netski et al., 1999), liver infection by
other HCPS orthohantaviruses in their reservoir species should
be monitored to exclude the possibility that these observations
are specific for persistent SNV infection.

Kidneys
In deer mice, naturally infected with SNV, no gross kidney
pathology is observed. Furthermore, focal to no viral antigen can
be detected in kidneys (specifically in glomerular tissue) (Green
et al., 1998; Netski et al., 1999). It has been described that the

highest levels of virus in urine are shed during earlier stages of
infection (Netski et al., 1999).

Spleen
SNV antigen can be detected in mononuclear cells within
both red and white pulp of the spleen of wild deer mice in
one study (Netski et al., 1999), but not in another (Green
et al., 1998). Contradictions between these studies may likely
be explained by the unknown timing of natural infection. It
remains to be determined whether infection of (immune) cells
in the spleen plays an important role in viral dissemination and
which local mechanisms aid to persistent infection as opposed to
pathogenesis in humans.

TABLE 1 | Organ-specific cell types contributing to orthohantavirus disease in vivo summarized for five major organs.

Affected

organ

Infected cell type HFRS HCPS Hypothesis on pathology References

Human Reservoir Human Reservoir

Lungs Pulmonary

microvascular

endothelium

+ + + + Extensive infection leads to immune cell

infiltrations and endothelial cell activation,

which causes local inflammation and

pulmonary edema

Brummer-Korvenkontio et al., 1980; Lee

et al., 1981, 1982; Gavrilovskaya et al.,

1983; LeDuc et al., 1984; Yanagihara

et al., 1985; Nolte et al., 1995; Zaki et al.,

1995; Green et al., 1998; Toro et al., 1998;

Netski et al., 1999; Padula et al., 2004;

Easterbrook and Klein, 2008b; Rasmuson

et al., 2011; Clement et al., 2014

Heart Myocardial

endothelium

– ? + + Infection leads to immune cell infiltrations

and endothelial cell activation, causing

interstitial edema that contributes to

myocardial dysfunction and cardiogenic

shock

Nolte et al., 1995; Zaki et al., 1995; Green

et al., 1998; Botten et al., 2002; Hautala

et al., 2002; Saggioro et al., 2007;

Michalski et al., 2014; Dervovic and Hukic,

2016

Kidneys Tubular epithelium + +
* – ? Infection of endothelium leads to immune

cell infiltrations (tubulointerstitial nephritis)

with redistribution of tight junction proteins,

along with direct tubular necrosis (with

possible interstitial hemorrhages) causing

functional impairment of tubuli leading to

proteinuria, microscopic hematuria

Hung et al., 1992; Kim et al., 1993; Groen

et al., 1996; Green et al., 1998; Botten

et al., 2002; Hautala et al., 2002;

Krautkramer et al., 2011

Glomerular

endothelium

+ +
*

+ + Infection of glomeruli causes decrease in

glomerular ZO-1 expression relating to

reduced function of the glomerulus as

molecular filter by enhancing glomerular

permeability, leading to proteinuria and

microscopic hematuria

Zaki et al., 1995; Groen et al., 1996; Green

et al., 1998; Netski et al., 1999; Botten

et al., 2002; Krautkramer et al., 2013

Liver Hepatic sinusoidal

endothelium

? + + + Infection of endothelium leads to immune

cell infiltrations (antigen-positive Kupffer

cells) and increased vascular permeability,

which probably do not lead to significant

liver dysfunction as hepatic sinusoidal

microvasculature is already relatively

permeable

Gavrilovskaya et al., 1983; Yanagihara

et al., 1985; Zaki et al., 1995; Green et al.,

1998; Toro et al., 1998; Netski et al., 1999

Spleen Splenic sinusoidal

endothelium

+ + + +
* Infection of immune cells in the spleen

may cause over-activation of immature

lymphocytes elsewhere and facilitate

prolonged virus dissemination throughout

the body

Lee et al., 1982; Gavrilovskaya et al.,

1983; LeDuc et al., 1984; Yanagihara

et al., 1985; Zaki et al., 1995; Green et al.,

1998; Netski et al., 1999; Hautala et al.,

2002; Klingstrom et al., 2002; Compton

et al., 2004; Padula et al., 2004; Sironen

et al., 2008, 2017; Michalski et al., 2014

Viral antigen presence in mononuclear immune cells are not included in table. + = viral antigen present of at least one causative virus species, ? = conflicting data/not tested, – = viral

antigen absent of all tested causative virus species, and *
= studies did not specify infected cell type within organ.
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CONCLUSION AND FUTURE
PERSPECTIVE

While human orthohantaviruses enter the host via the respiratory
tract, it remains unknown which cells in the human respiratory
tract are the first infected. It has been described that
orthohantaviruses are endotheliotropic viruses, however this
review demonstrates that additional cell types are infected, which
may play a role in the pathogenesis of these viruses (Table 1).

Although the initial target cells are unknown, ECs are
an important target later during infection. Interestingly,
orthohantavirus infection of ECs does not result in overt
cell damage, and infected ECs can be found in most organs.
However, orthohantavirus induced pathology is only observed
in specific organs, believed to play a key role in pathogenesis,
including, lung (HCPS), and kidneys (HFRS). Unlike in humans,
orthohantavirus infection in the reservoir host causes a persistent
infection with limited pathological changes and no apparent
clinical signs. Unraveling the pathogenesis of orthohantaviruses
(or any emerging virus) through patient-based research is
extremely difficult. Additionally, our understanding of the
differential pathogenesis of orthohantaviruses in humans has
been hampered by the lack of relevant animal models that
allow the comparison of HFRS- and HCPS-causing viruses, the
limited availability of in vivo and in vitromodels of the reservoir
host, and the requirement of high containment facilities for
orthohantaviruses pathogenic to humans.

As reviewed above, ECs of the microvasculature in multiple
organs are the main targets for orthohantaviruses both in the
reservoir hosts and humans. Here we provide an overview of
additional cells targeted by orthohantaviruses in the respiratory
tract, heart, kidneys, liver, and spleen and the potential role
they play in pathogenesis. These organ systems were chosen as
multiple studies have demonstrated viral presence in these organs
in human cases. While there are a variety of studies discussing
orthohantavirus infection in other organs, such as intestines
(Zaki et al., 1995; Green et al., 1998; Latus et al., 2014), endocrine
system (Zaki et al., 1995; Green et al., 1998; Bhoelan et al., 2019),
and brain (Zaki et al., 1995) in humans, but also brown adipose
tissue (Botten et al., 2002) in reservoir rodents, these were not
included due to lack of mechanistic studies. Of note, transmission
via saliva is suggested to be even more relevant than urine among
naturally infected hosts as SEOV and ANDV have been detected
more often in either saliva (and salivary glands) compared to
urine samples (Padula et al., 2004; Maas et al., 2019).

So far, it remains unknown how viral dissemination occurs in
an infected host post-inhalation. Potential mechanisms include

initial infection of respiratory epithelium and either basolateral
release or cell-to-cell spread to ECs to reach the circulation,
as shown for other respiratory viruses, like measles (Singh
et al., 2016). Alternatively, infection of immune cells in the
respiratory tract could facilitate systemic spread via the vascular
and lymphatic system, as described for another hemorrhagic
fever virus; Ebola virus (Bray and Geisbert, 2005).

Interestingly, distinct orthohantavirus species seem to cause
different degrees of pathology in various organs. While the use
of αvβ3 integrins and other (co-)receptors do correlate with
pathogenicity in humans, distribution of these viral receptors
on human cells does not correspond with the susceptibility and
organ tropism of orthohantavirus infection in vivo. Therefore,
the exploration of additional host cell (co-)receptors that
facilitate orthohantavirus entry and/or attachment in vivo should
continue. In addition, it remains interesting that during HCPS
and HFRS ECs of almost all major organs are affected, and
yet the clinical signs per organ generally seem to differ per
causative virus species, although exceptions have been reported.
Therefore, effects of infection by various orthohantaviruses on
organ-specific microvascular ECs should be explored. Moreover,
the pathogenic mechanisms occurring in other cell types that are
infected during HFRS and not HCPS (and vice versa) could also
be at the base of understanding why HFRS and HCPS mainly
lead to, respectively kidney and lung complications, for instance
the potential role of tubular epithelium in kidney disease. In
a broader sense, the conclusion that orthohantaviruses cause
disease in humans and generally not in their reservoir hosts, while
targeting similar cells and organs provides a unique opportunity
to identify key host factors that play a role the in the observed
host-specific pathogenesis. Altogether, addressing these research
questions will aid in our understanding of orthohantavirus
pathogenesis and will be instrumental in identifying potential
therapeutic and prophylactic strategies.
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