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The 3′ untranslated region (3′ UTR) of positive-sense single-stranded RNA [ssRNA(+)]

viruses is highly structured. Multiple elements in the region interact with other nucleotides

and proteins of viral and cellular origin to regulate various aspects of the virus life cycle

such as replication, translation, and the host-cell response. This review attempts to

summarize the primary and higher order structures identified in the 3′UTR of ssRNA(+)

viruses and their functional roles.
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INTRODUCTION

Positive-sense single-stranded RNA [ssRNA(+)] viruses consist of 56 families according to the
current ICTV (International Committee on Taxonomy of Viruses) Report on Virus Taxonomy
(International Committee on Taxonomy of Viruses, 2019). The genomic RNAs of all ssRNA(+)
viruses function as mRNAs and are directly translated to produce one or more polyproteins. A
typical ssRNA(+) virus genomic RNA is comprised of a 5′ untranslated region (5′ UTR), one or
more open reading frames (ORFs) and a 3′ UTR. For most ssRNA(+) viruses, the 5′-terminus of
the genomic RNA is covalently linked to a small VPg protein or a protein equivalent to VPg or a cap
structure, and the 3′-terminus is polyadenylated or the 3′ UTR contains poly(A/U) regions, similar
to the polyadenylation signal (Figure 1).

Once a ssRNA(+) virus invaded a host cell, its RNA will first attach to the host ribosome
and be translated to produce one or more polyproteins, which will be rapidly cleaved by viral
and/or cellular enzymes to generate several structural and non-structural proteins that participate
in assembling complete virus particles. RNA-dependent RNA polymerase (RdRP), a virus encoded
non-structural protein, synthesizes negative-strand RNAs using viral positive-strand RNAs as
templates. Subsequently, more positive-stranded RNAs will be synthesized by RdRP using negative-
strand RNAs as templates. However, for viruses of the order Nidovirales, both the synthesis of
positive-stranded genomic RNAs and the transcription of subgenomic mRNA (sg mRNA) are
required for viral replication. The sg mRNA contains same 5′ and 3′-termini and will be translated
to produce different structural proteins (Pasternak et al., 2006; Cao et al., 2012, 2013, 2016; Sun
et al., 2016, 2017; Ou et al., 2017, 2018; Lai et al., 2019; Wen et al., 2019).
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FIGURE 1 | Schematic representation of the organization of the ssRNA(+) virus genome. A typical ssRNA(+) virus genomic RNA is comprised of a 5′ UTR, ORF(s),

and a 3′ UTR. (A) Viral genome with one open reading frame (ORF), using the example of WNV in the Flaviviridae family [reviewed in Suthar et al. (2013)]. (B) Viral

genome with three ORFs, using the example of norovirus (NV) in the Caliciviridae family [reviewed in Thorne and Goodfellow (2014)]. The diagrams do not represent

the true genomic length and structure.

Both the synthesis of negative-strand RNA and the translation
of viral polyproteins use positive-strand RNA as a template.
How to reasonably convert these two processes is a problem
encountered by all ssRNA(+) viruses. Taking poliovirus as an
example, poly(rC)-binding protein 2 (PCBP2) is required for
both IRES-dependent translation and RNA replication. When
performing IRES-dependent translation, PCBP2 interacts with
the IRES element and recruits ribosomes to viral RNA, then
the ribosomes that move from 5′ to 3′ block RdRP 3D that
synthesizes negative stranded RNA from 3′ to 5′. As the viral
protease 3C/3CD accumulates, PCBP2 is cleaved by 3C/3CD,
which blocks the recruitment of ribosomes to the IRES element.
At this time, RdRP 3D can successfully pass through the RNA and
synthesize negative-strand RNA from 3′ to 5′ (Perera et al., 2007).

Similar to the 3′ UTR of the mature eukaryotic mRNA,
the 3′ UTR of the ssRNA(+) virus genomic RNA possess
multiple functional primary and higher order structures. These
structures have been predicted through bioinformatics analyses
and validated experimentally. Although the nucleotide sequences
of the 3′ UTR from viruses of same species differ between strains,
their higher order structures are generally conserved. Nucleotides
and proteins from the virus and host directly or indirectly interact
with structural elements in 3′ UTRs, participating in regulating
the cyclization, replication, and translation of viral genomic RNA
(Tables 1, 2); studies of the structure and function of the 3′ UTRs
of ssRNA(+) viruses are important for clarifying the detailed
mechanism of the viral life cycle and anti-viral research.

PRIMARY STRUCTURES AND FUNCTIONS

Primary structures, or nucleotide sequences, are the basis for
the formation of specific higher-order structures. For ssRNA(+)
viruses, their genomic RNAs contain several functional
sequences, which directly participate in viral genome cyclization,
replication, and translation and have important functions in the
viral life cycle.

Cyclization Sequences and Genome
Cyclization of Flaviviruses
For members of the Flavivirus genus in the Flaviviridae family,
replication of genomic RNAs includes the cyclization process. A
long-range RNA-RNA interaction occurs when a short sequence
of the 3′ UTR complements with another short sequence of
the 5′ UTR and the 5′ UTR’ s contiguous upstream, which
cyclizes the genomic RNA [reviewed in Nicholson and White
(2014)]. Genome cyclization has been observed with atomic force
microscopy (AFM) (Figures 2C,D).

The 3′ UTR in the flavivirus genome possess a stem-loop
termed the 3′ SL containing conserved sequence 1 (CS1) in
which an 8 nt-long 3′ cyclization sequence (3′ CYC) is located
(Hahn et al., 1987). The 3′ CYC complementarily binds to a
5′ CYC located in the capsid protein coding region (Figure 3).
Research into dengue virus (DENV), West Nile virus (WNV)
and tick-borne encephalitis virus (TBEV) has shown that the
interaction between the 3′ CYC and 5′ CYC and several base
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TABLE 1 | Cellular proteins that interact with the 3′ UTRs of ssRNA(+) viruses.

Host protein Virus Binding site Function in viral replication References

PABP DENV-2 (+)3′ DB Required for viral RNA circularization,

replication, and translation

Polacek et al. (2009b)

PV, NV (+)3′ poly(A) tail Herold and Andino (2001),

Gutiérrez-Escolano et al. (2003)

TGEV (+)3′ UTR Galán et al. (2009)

PCBP1, PCBP2 MNV (+)3′ p(Y) Involved in viral replication and virulence Bailey et al. (2010)

HCV (+)3′ UTR Tingting et al. (2006)

PTB MHV nt 53 to 149 of

(-)c3′ UTR

Induces viral RNA conformation changes and

enhances virus replication and translatin

Huang and Lai (1999)

HCV (+)3′ X Ito and Lai (1999), Luo (1999), Chang

and Luo (2006)

DENV-4, NV,

SHFV

(+)3′ SL Herold and Andino (2001), De

Nova-Ocampo et al. (2002),

Gutiérrez-Escolano et al. (2003),

Maines et al. (2005)

JEV (-)3′ SL Kim and Jeong (2006)

MNV (+)3′ p(Y) Bailey et al. (2010)

HAstV-8, CVB3 (+)3′ UTR Verma et al. (2010),

Espinosa-Hernandez et al. (2014)

FBA-A SHFV (+)3′ SL Plays roles in viral replication and virulence Maines et al. (2005)

DDX1 HCV (+)3′ UTR Unknown Tingting et al. (2006)

DDX5 JEV (+)3′ UTR Enhances virus replication Li et al. (2013)

DDX6 DENV-2 (+)3′ DB Required for infectious virus production Ward et al. (2011)

eEF1A WNV, DENV-4 (+)3′ SL Enhances virus replication Blackwell and Brinton (1997), De

Nova-Ocampo et al. (2002), Davis

et al. (2007)

La JEV, NV (+)3′ SL Required for viral RNA replication and

translation

Herold and Andino (2001),

Gutiérrez-Escolano et al. (2003),

Vashist et al. (2009, 2011)

HCV (+)3′ UTR Protects viral RNA from degradation and

enhances viral RNA replication

Spangberg et al. (2001), Kumar et al.

(2013)

DENV-4 (+)3′ SL, (-)c3′

UTR

Required for viral RNA replication De Nova-Ocampo et al. (2002),

Yocupicio-Monroy et al. (2003, 2007),

Garcia-Montalvo et al. (2004)

LSm1 DENV-2 (+)3′ UTR Enhances viral RNA translation and replication Dong et al. (2015)

HCV (+)5′ UTR, (+)3′

UTR

Scheller et al. (2009)

L22 HCV (+)3′ X Enhances viral RNA translation Wood et al. (2001)

NF90, NF110,

NF45, RHA

DENV-2 (+)3′ SL Required for viral RNA cyclization, replication,

and translation

Gomila et al. (2011)

BVDV (+)3′ V Isken et al. (2003, 2004)

HCV (+)3′ UTR Isken et al. (2007)

p100(NFKB2) DENV-2 (+)3′ SL Required for viral RNA replication Lei et al. (2011)

TIAR, TIA-1 WNV, DENV-2 (-)c3′ SL Required for viral RNA replication Li et al. (2002), Emara and Brinton

(2007), Emara et al. (2008)

G3BP1, TIA1,

HUR

EV-D68 (+)3′ UTR Inhibits viral replication by chelating the viral

RNA

Cheng et al. (2020)

HuR HCV (+)3′ UTR, (-)3′

UTR

Protects the viral RNA from degradation Spångberg et al. (2000)

CSFV (+)3′ ARE Unknown Nadar et al. (2011)

Nucleolin FCV, NV (+)3′ UTR Required for virus replication Cancio-Lonches et al. (2011)

PV (+)3′ UTR Required for infectious virus production Waggoner and Sarnow (1998)

AUF1 CVB3 (+)3′ UTR Enhances viral genome stability Wong et al. (2013)

40S ribosomal

subunit

HCV (+)3′ UTR Regulates viral RNA translation Bai et al. (2013)

(Continued)
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TABLE 1 | Continued

Host protein Virus Binding site Function in viral replication References

hnRNPA1 MHV (+)3′ UTR Mediates potential 5′-3′-end cross-talk Huang and Lai (2001)

hnRNPA2 JEV (-)c3′ UTR Required for viral RNA replication Katoh et al. (2011)

hnRNPC HCV (+)3′ UTR, (-)3′

UTR

Protects the viral RNA from degradation Spångberg et al. (2000)

hnRNPE2 HCV (+)3′ UTR Unknown Tingting et al. (2006)

hnRNPQ TGEV (+)3′ UTR Enhances viral RNA replication Galán et al. (2009)

EPRS TGEV (+)3′ UTR Enhances viral RNA replication Galán et al. (2009)

Mov34 JEV (+)3′ SL May play roles in viral RNA replication Ta and Vrati (2000)

m-aconitase MHV (+)3′ UTR Unknown Nanda and Leibowitz (2001), Nanda

et al. (2004)

FBP1 JEV (+)3′ UTR Inhibits the translation of viral RNAs Chien et al. (2011)

G3BP1, G3BP2,

CAPRIN1

DENV-2 (+)3′ VR Relevant to virus replication and pathogenesis Bidet et al. (2014)

HCV (+)3′ UTR Regulates virus replication Tingting et al. (2006)

GAPDH TGEV (+)3′ UTR Inhibits viral RNA replication Galán et al. (2009)

YBX1 DENV-2 (+)3′ SL Inhibits viral RNA translation Paranjape and Harris (2007)

MCPIP1 DENV-2, JEV (+)3′ UTR Degrades viral RNAs Lin et al. (2013)

PABP, Poly(A)-binding protein; DENV-2, Dengue virus type 2; DB, Dumbbell; PV, Poliovirus; NV, Norovirus; TGEV, Transmissible gastroenteritis coronavirus; UTR, Untranslated region;

PCBP, Poly(C)-binding protein; MNV,Murine norovirus; p(Y), Polypyrimidine tract; HCV, Hepatitis C virus; PTB, Polypyrimidine tract-binding protein; 3′ X, 3′ X-region; MHV,Mouse hepatitis

virus; DENV-4, Dengue virus type 4; SHFV, Simian hemorrhagic fever virus; SL, Stem loop; JEV, Japanese encephalitis virus; HAstV-8, Human astrovirus type 8; CVB3, Coxsackievirus

B3; BVDV, Bovine viral diarrhea virus; CSFV, Classical swine fever virus; FCV, Feline calicivirus; FBA-A, Fructose bisphosphate aldolase A; DDX, DEAD (D-E-A-D: Asp-Glu-Ala-Asp)-box;

eEF1A, Eukaryotic elongation factor 1A; NF, Nuclear factor; RHA, RNA helicase A; NFKB, NF-kappa B; 3′ V, 3′ variable region; TIAR, T-cell intracellular antigen-related protein; TIA-1,

T-cell intracellular antigen-1; HuR, Hu antigen R; AUF1, Adenosine-uridine-rich element RNA binding factor 1; hnRNP, Heterogeneous nuclear ribonucleoprotein; EPRS, Glutamyl-prolyl-

tRNA synthetase; FBP1, FUSE (far upstream element) binding protein 1; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; YBX1, Y box-binding protein-1; MCPIP1, Monocyte

chemoattractant protein 1-induced protein 1.

TABLE 2 | Viral proteins that interact with the 3′ UTRs of ssRNA(+) viruses.

Virus protein Virus Binding site Function in viral replication References

CP HCV (+)3′ SL Unknown Yu et al. (2009)

3D EMCV (+)3′ UTR Initiates viral RNA synthesis Cui et al. (1993)

NS5A, NS5B CSFV (+)3′ SL1, (+)3′ SL2, (-)3′ UTR Regulates viral RNA replication Sheng et al. (2007, 2012), Chen et al.

(2012)

NS5A HCV polyU/UC Inhibits viral RNA translation Hoffman et al. (2015)

Nucleocapsid IBV (+)3′ UTR Unknown Collisson et al. (2001)

NS2A KUNV (+)3′ UTR Unknown Mackenzie et al. (1998)

DENV-2 pk3, pk4, and 3′SL of (+)3′ UTR The signal to recruit viral RNA to the virion assembly site Xie et al. (2019)

CP, Core protein; EMCV, Encephalomyocarditis virus; NS5A, Non-structural proteins 5A; NS5B, Non-structural proteins 5B; KUNV, Kunjin virus.

sites among them are required for viral RNA replication, and
the precise and specific sequences determine the function of
the CYC, but not the secondary structure and complementary
relationship between base sites (Kofler et al., 2006; Suzuki et al.,
2008; Basu and Brinton, 2011; Manzano et al., 2011). However,
the 5′ CYC-3′ CYC interaction of DENV does not participate in
viral translation (Holden et al., 2006). In addition to the 5′ CYC/3′

CYC, the upstream AUG region (UAR) and downstream AUG
region (DAR) also function as cyclization sequences involved
in viral RNA cyclization. The 5′ UAR is located in immediately
upstream of the start codon AUG, while the 3′ UAR is located
at the bottom of the 3′ SL (Figure 3). The 5′ UAR-3′ UAR
complementary relationship, which is stabilized by the 5′ CYC-
3′ CYC interaction (Polacek et al., 2009a), is necessary for viral

replication. Similarly, the 5′ UAR/3′ UAR interaction rarely
affects viral translation (Zhang et al., 2008). The 5′ DAR is located
immediately downstream of the start codon AUG, and the 3′

DAR is located at the bottom of the hairpin stem-loop termed
HP-3′ SL (Figure 3). The interaction between the 5′ DAR and 3′

DAR is involved in viral RdRP reactivity and RNA replication
efficiency (Friebe et al., 2011), but further studies are needed to
determine whether they are also irrelevant to translation.

The 5′ CYC/3′ CYC, 5′ UAR/3′ UAR, and 5′ DAR/3′ DAR
form several base pairs within the flavivirus genome that enable
the linear genomic RNA to transform to a cyclized form.
According to a phylogenetic analysis, the cyclization sequences
are highly conserved among mosquito-borne flavivirus genomes
(Zhang et al., 2008), indicating that the long-range RNA-RNA
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FIGURE 2 | Circularization of the DENV genome. (A) The linear form of the DENV genomic RNA. When the interactions between the 3′ and 5′cyclization sequences

are not considered, the DENV genome appears in a linear form (Villordo and Gamarnik, 2009). (B) The circularized form of the DENV genomic RNA. 5′ CYC/3′ CYC,

5′ UAR/3′ UAR, and 5′ DAR/3′ DAR bind complementarily and cyclize the DENV genome, reducing the distance between the 5′ and 3′ ends and exposing the

3′-terminal nucleotides, which are indispensable for RdRP to recognize the 3′-terminus and initiate negative-strand synthesis [reviewed in Nicholson and White

(2014)]. (C) Visualization of the model RNA molecules using AFM. A single RNA molecule is shown in a linear conformation. The double-stranded RNA region is

flanked by single-stranded regions corresponding to the 5′ UTR and 3′ UTR of dengue virus. (D) Image of individual RNA molecules in the circular conformation.

Contacts between the 5′ and 3′ single-stranded regions of the molecules are observed. The images shown in (C) and (D) were excerpted from a previous study

(Alvarez et al., 2005) after obtaining the authors’ permission. Figures have been approved by the original author and obtained the licenses through Rights Licensing

Expert (www.copyright.com), the license numbers were, respectively 4045761041172 (for A,B) 4040580733464 (for C,D).

interactions between the 5′ UTR and 3′ UTR are very likely
the common mechanism of flavivirus genome cyclization. In
addition, DENV RdRP binds a stem-loop SLA in the 5′ UTR
of the genome and facilitates viral replication by forming
interactions between the cyclization sequences of 5′ UTR and
3′ UTR (Filomatori et al., 2006; Dong et al., 2007). Thus,

the binding of RdRP to SLA, and the complementary pairing
between cyclization sequences may have some connection in the
replication of DENV RNA. A relatively complete and rational
model was established to explain the balance between circular
and linear forms of the DENV genome and the initiation
of RNA synthesis by RdRP (Villordo and Gamarnik, 2009)
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(Figures 2A,B). In this model, 5′ CYC/3′ CYC, 5′ UAR/3′ UAR,
and 5′ DAR/3′ DAR complement and cyclize the DENV genome,
shortening the distance between 5′ and 3′ ends and exposing the
3′-terminal nucleotides. Once RdRP binds to SLA, its position
will be near the 3′-terminus, which allows the RdRP to recognize
the 3′-terminus and initiate negative-strand synthesis. Moreover,
theWNV 3′ UAR could alternate between pairing with 5′ UAR or
with the local 3′ end (Zhang et al., 2008) and RdRP binds to the 5′

DAR (Dong et al., 2008), which may be also involved in cyclizing
the viral genome. The flaviviral genome cyclization mechanism
and the initiation of the negative-strand synthesis have been
extensively studied; however, the synthesis of positive-strand
RNAs from negative-strand RNAs is still poorly understood and
more information is needed to elucidate the completemechanism
of cyclization and synthesis of the flavivirus genome.

Other Specific Sequences With Important
Functions
A conserved 5′-CACAG-3′ pentanucleotide (PN) located in
the 3′ SL of the flavivirus 3′ UTR (Figure 3) is required for
viral replication, but not translation (Khromykh et al., 2003;
Elghonemy et al., 2005; Tilgner et al., 2005). However, only the
G in the 5′-CACAG-3′ sequence is required for yellow fever
virus (YFV) replication (Silva et al., 2007). In addition to this
PN, a conserved 5′-ACAGUGC-3′ sequence in the flavivirus
3′ SL may be involved in formation of the viral replication
complex and plays a role in viral replication (Khromykh et al.,
2003; Elghonemy et al., 2005). The specific 5′-CACAG-3′ and 5′-
ACAGUGC-3′ nucleotides may interact with other sequences or
proteins of the virus to regulate viral replication, but additional
in-depth studies are required.

Research examining the Japanese encephalitis virus (JEV),
Kunjin virus (KUNV), WNV, DENV, and YFV has revealed
multiple conserved sequences in the flaviviral 3′ UTR, including
conserved sequence 1 (CS1), CS2, CS3 and repeat conserved
sequence 2 (RCS2), RCS3 (Figure 3); these sequences are
required for efficient viral replication and translation (Hahn et al.,
1987; Khromykh and Westaway, 1997; Wei et al., 2009).

HIGH-ORDER STRUCTURES AND
FUNCTIONS

Stem-Loop Structures
Stem-loop structures consist of stem regions and loop regions
and are widely present in the secondary structures of single-
stranded RNA. The stem is the double-stranded region formed by
base pairings between the reverse complementary sequence, and
the loop is the single-stranded region formed by unpaired bases.
By interacting with viral and host proteins, stem-loop structures
regulate viral replication and translation and are multifunctional
and important for adjusting the life activities of the virus and
host, as shown in Table 1. Here, the widely studied stem-loop
structures and the corresponding functions are discussed with
their interacting proteins.

The La protein binds to the 3′ UTRs of most members of
the Flaviviridae family (Herold and Andino, 2001; Spangberg

et al., 2001; De Nova-Ocampo et al., 2002; Garcia-Montalvo
et al., 2004; Vashist et al., 2009). The binding site for La in the
DENV-4 3′ UTR are located in the area between CS1 and 3′ SL
(De Nova-Ocampo et al., 2002). Additionally, La binds to the
DENV-encoded non-structural proteins NS3 and NS5 (Garcia-
Montalvo et al., 2004), which possess protease and RdRP activity,
respectively. Interestingly, the binding of the La protein from
mosquito cells to 3′ UTRs of the positive- and negative-strand
of DENV-4 inhibits the synthesis of the positive- and negative-
strand of the genome (Yocupicio-Monroy et al., 2007). This
may be related to the adaptability of the host. La proteins from
human and mosquitoe may have different ability to regulate viral
replication. La protein from mosquitoe may control the viral
load in its body, making it better as a vector to infect human.
Moreover, the binding of La to HCV 3′ UTR protects the 3′ UTR
from degradation by the cytoplasmic RNase and mediates the
circularization of HCV genome and viral replication, which are
enhanced by the interaction between HuR and La (Spangberg
et al., 2001; Shwetha et al., 2015). La also binds to a 5′-GCAC-
3′ sequence in the HCV 5′ UTR, and mutation of 5′-GCAC-3′

influences the binding of La to viral RdRP NS5B and inhibits
viral replication, but translation is not affected (Kumar et al.,
2013). Thus, a model was proposed to explain the functions of La
and the 5′-GCAC-3′ sequence in HCV replication (Kumar et al.,
2013). NS5 and 3′ UTR form a virus replication complex, and
La binding with NS5 and 5′-GCAC-3′ brings the 5′ UTR closer
to the 3′ UTR (Figure 4). Interestingly, a cyclized conformation
of the HCV genome is observed in this model, which resembles
the genome cyclization strategy used by poliovirus (PV). The
PV RdRP containing the precursor protein 3CD and the cellular
factor PCBP bind to the 5′ UTR cloverleaf, and the cellular
factor poly(A)-binding protein (PABP) binds to the 3′ UTR.
Interactions between 3D, PCBP, and PABP hold the 5′ and the 3′

ends of the PV RNA in a non-covalent juxtaposition that leads
to the circularization of the genomic RNA. These interactions
bring the viral RdRP (3D protein) in close proximity to the 3′

poly(A) tail and enable the initiation of negative-strand RNA
synthesis (Herold and Andino, 2001) (Figure 5). Furthermore,
transcription factor NF90 also participates in cyclizing the HCV
and bovine viral diarrhea virus (BVDV) genome (Isken et al.,
2003). Thus, in addition to long-range RNA-RNA interactions,
protein-protein and protein-RNA interactions are also relevant
to viral genome cyclization.

The genomic 3′ UTR of ssRNA(+) virus usually contains
one or more polyadenylated regions, which have been widely
reported to interact with the cellular polypyrimidine tract-
binding protein (PTB). PTB binds to 3′ SL of HCV (Ito and
Lai, 1999; Luo, 1999; Chang and Luo, 2006), DENV4 (De Nova-
Ocampo et al., 2002), simian hemorrhagic fever virus (SHFV)
(Maines et al., 2005) and mouse hepatitis virus (MHV) (Huang
and Lai, 1999), to the NV (Gutiérrez-Escolano et al., 2003)
positive-strand RNA and to the 3′ SL of the JEV (Kim and Jeong,
2006) negative-strand RNA. Mutation of the PTB binding site in
the CVB3 3′ UTR reduces viral translation, indicating that PTB is
involved in CVB3 translation (Verma et al., 2010). According to
a similar study, the binding of PTB to the HCV 3′ X region in the
3′ UTR may stimulate viral replication and translation (Brocard
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FIGURE 3 | Structure of the WNV genomic RNA. The arrows represent WNV circularization sequences and other conserved sequences, italics indicate higher order

structures of the WNV RNA, and proteins that bind to WNV 3′ UTR are shown in ovals with different colors [reviewed in Bidet and Garcia-Blanco (2014)]. SL,

Stem-loop; UAR, Upstream AUG region; DAR, Downstream AUG region; CYC, Cyclization sequence; cHP, Capsid hairpin; sHP, Small hairpin structure; RCS, Repeat

conserved sequence; PK, Pseudoknot; DB, Dumbbell; PN, 5′-CACAG-3′ pentanucleotide; eEF1A, Eukaryotic elongation factor 1A; YBX1, Y box-binding protein-1;

PABP, Poly(A)-binding protein; PTB, Polypyrimidine tract-binding protein.

FIGURE 4 | Model of the initiation of HCV replication. La interacts with the

GCAC motif within the HCV IRES, and the replication complex interacts with

the 3′ UTR. The interaction between La and the replication complex cyclizes

the HCV genome and promotes 5′ to 3′ communication in favor of viral

negative-strand synthesis (Kumar et al., 2013).

et al., 2007), which is associated with the competition between
HuR and PTB for the 3′ UTR (Shwetha et al., 2015). However, the
binding of PTB to the MHV 3′ SL does not affect viral translation
(Choi et al., 2002). Similar to the PTB, the cellular factors PABP
and PCBP also bind to the 3′ UTR of HCV, NV, and DENV, and
regulate viral replication and translation (Herold and Andino,
2001; Tingting et al., 2006; Polacek et al., 2009b; Bailey et al., 2010;
Ogram et al., 2010), but the mechanism remains to be studied.

Eukaryotic elongation factor 1A (eEF1A) binds to the stem
region close to CS1 in the 3′ UTRs ofWNV andDENV (Blackwell
and Brinton, 1997; De Nova-Ocampo et al., 2002). The binding of
eEF1A to the 3′ UTR is required forWNV and BVDV replication,
as confirmed by the co-localization of eEF1A with the WNV
and BVDV replication complexes (Johnson et al., 2001; Davis
et al., 2007). Notably, eEF1A facilitates WNV replication by
enhancing the interaction between the 3′ UTR and the replication
complex of WNV (Davis et al., 2007). Nevertheless, eEF1A binds
to HCV NS4A and decreases the viral translation efficiency (Kou
et al., 2006), suggesting that eEF1A has multiple functions during
the replication of members of the Flaviviridae family. On the
other hand, eEF1A binds to and activate cellular sphingosine
kinase 1 (SphK1) (Leclercq et al., 2008), which is involved in
inflammatory response and immunomodulation [reviewed in
Carr et al. (2013b), Bezgovsek et al. (2018)] and its activity is
affected by the DENV-2 3′ UTR (Carr et al., 2013a). Thus, the
DENV-2 3′ UTR is postulated to compete with SphK1 for binding
to eEF1A and inhibits SphK1 activation, which may be relevant
to DENV pathogenicity.

The cellular factors T-cell intracellular antigen-1 (TIA-1) and
T-cell intracellular antigen-related protein (TIAR) are important
components of stress particles (SGs), which respond to cellular
stress responses such as viral infections. TIAR/TIA-1 can be
utilized by viruses and localized in viral replication complexes.
TIA-1 and TIAR bind to two short sequences consisting of
AU in the stem-loop of the negative strand of WNV 3′ UTR
and are involved in WNV replication (Li et al., 2002; Mazan-
Mamczarz et al., 2006; Emara and Brinton, 2007). Furthermore,
TIA-1/TIAR together with the WNV 3′ UTR facilitate the
subsequent asymmetric amplification of the viral RNA genome
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FIGURE 5 | Circularization of the PV genome and initiation of negative-strand RNA synthesis. PV polypeptide and cellular factor poly(C)-binding protein (PCBP) bind

to the 5′ UTR cloverleaf, and cellular factor poly(A)-binding protein (PABP) binds to the 3′ UTR. 3CD, PCBP, and PABP interact with each other and lead to the

cyclization of the genomic RNA, which brings the viral RdRP (3D protein) in close proximity to the 3′ poly(A) tail and facilitates the initiation of negative-strand RNA

synthesis (Herold and Andino, 2001).

from the minus-strand template, but have little effect on the
viral translation efficiency (Emara et al., 2008). Meanwhile, TIA-
1/TIAR bind to the TBEV RNA and inhibit viral replication and
early viral translation, and this regulation likely determines the
amount of RNA available for viral replication and/or assembly
(Albornoz et al., 2014). Because both WNV and TBEV are
arboviruses, the discrepancy in these results may be attributed
to the regulation of viral replication cycle by TIAR/TIA-1.
TIAR/TIA-1 is localized in the viral replication complex and may
regulates the conversion of virus from low-level symmetric plus-
and minus-strand RNA synthesis to asymmetric amplification
of plus-strand viral RNA synthesis, thus the role of TIAR/TIA-
1 in these two stages may be different (Cleaves et al., 1981;
Chambers et al., 1990; Emara et al., 2008). Further experiments
are needed to explore the effect of TIAR/TIA-1 on viral
replication and translation. In addition, similar findings have
also been reported for picornaviruses. For instance, the 3′ UTR
of human enterovirus D68 (EV-D68) also interacts with TIA1
(Cheng et al., 2020).

In addition to cellular factors, virus-encoded proteins also
interact with viral 3′ stem-loops. Classical swine fever virus
(CSFV) encodes the protease NS5A and polymerase NS5B that
both bind to the 3′ UTR, which contains two stem-loops, SL-1
and SL-2, and NS5A exhibits higher affinity for binding to the 3′

UTR than the NS5B protein. NS5A binds to SL-1 and SL-2, and
the binding of NS5A to SL-1 is more effective than the binding
to SL-2; however, NS5B only binds to SL-1 (Sheng et al., 2012).
NS5A facilitates viral RNA synthesis at a low concentration, but
RNA synthesis is inhibited by a higher concentration of NS5A
(Sheng et al., 2010, 2012; Chen et al., 2012). Therefore, it can
be hypothesized that a low concentration of NS5A binds to SL-1
along with NS5B and promotes viral RNA replication. However,
in the presence of a high concentration of NS5A, the NS5A
protein binds SL-2 and SL-1. The binding of NS5A to SL-2 might
inhibit viral synthesis by NS5B using the same 3′ UTR as a
template. In feline calicivirus (FCV), the nucleolin protein and
3′ UTR bind to and co-localize with viral protease-polymerase
NS6 and NS7 proteins in the cytoplasm, and participate in FCV
replication (Cancio-Lonches et al., 2011). In addition, the RdRP
proteins from encephalomyocarditis virus (EMCV) and duck
hepatitis A virus type 1 (DHAV-1) directly bind to the 3′ UTR
(Cui et al., 1993; Yu et al., 2017). These results are consistent with

the common mechanism used by RdRP from ssRNA(+) viruses
to bind to the genomic 3′ UTR and initiate the synthesis of the
negative-strand RNA genome (Kok and McMinn, 2009; Lescar
and Canard, 2009; Modrow et al., 2013; Paul and Bartenschlager,
2013).

Pseudoknot Structures
Pseudoknots (PKs) are common RNA tertiary structures formed
by the complementary pairing of single loops of different stem-
loops and are divided into five types, including the hairpin loop
and kissing loop (Brierley et al., 2007) (Figure 6). For ssRNA(+)
viruses, researches associated with PKs are more common for
plant viruses, and PKs used to be called tRNA-1ike structures
(TLS) in the early stage since their structural features are similar
to tRNAs (Osman and Buck, 2003; Matsuda and Dreher, 2004;
Zeenko and Gallie, 2005). Known PKs are widely located in the
5′ UTRs of viral genomes and enhance viral translation (Moes
and Wirth, 2007; Easton et al., 2009; Lavender et al., 2010).
Nevertheless, PKs in the 3′ UTRs are also indispensable for viral
replication and translation.

The DENV 3′ UTR contains two dumbbell structures (DB),
which complements with two terminal loops (TLs) sequences of
5 nucleotides, respectively and forms PKs of the hairpin loop type
(Olsthoorn and Bol, 2001; Romero et al., 2006) (Figure 3). The
base pairing formed by TL2 and PK1, as well as several bases close
to TL2, is important for replication and translation (Manzano
et al., 2011). The PK sequence is conserved among mosquito-
borne flaviviruses. Mutation of PK1 restrains the interaction
between the DENV 5′ UTR and 3′ UTR, and mutation of
PK2 blocks the complementary interaction of TL2/PK1 (Sztuba-
Solinska et al., 2013), suggesting that DENV PK1 and PK2 are
functionally interrelated. In addition, the last 285 nucleotides of
the 3′ UTR of DENV-2 serve as a “packaging signal,” recruiting
NS2A proteins to interact with its PK3, PK4, and 3′ SL to allow
the nascent RNA to be recruited from the replication complex to
the virion assembly site (Xie et al., 2019).

The HCV NS5B coding region retains several stem-loops
containing a 5BSL3.2, which was necessary for HCV replication
(Friebe et al., 2005; Diviney et al., 2008; You and Rice,
2008). 5BSL3.2 complements with SL2 in the 3′ UTR and
forms a kissing-loop PK, and correct nucleotides pairing in
the complementarity region are necessary for efficient HCV
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FIGURE 6 | Different types of RNA PK structures. Base pairing between a

hairpin loop and a single-stranded region forms a H-type PK, while base

paring between a multibranched loop and a single-stranded region forms an

M-type PK. A bulge or interior loop together with a multibranched loop can

form a B-type or I-type PK. Additionally, two hairpin loops form an H-H-type

PK. Adapted from Brierley et al. (2007). This figure has been approved by the

original author and obtained the licenses through Rights Licensing Expert

(www.copyright.com), the license number was 4045340264208.

replication (Friebe et al., 2005; Diviney et al., 2008). In
addition, a 55 nt-long sequence in the X region of the HCV
3′ UTR is completely conserved among all HCV strains, and
dimerizes and forms a kissing loop PK in the presence of
the virus-encoded core protein (Ivanyi-Nagy et al., 2006).
On the other hand, the HCV core protein was reported
to bind to the X region (Yu et al., 2009), and mutation
analyses showed that dimerization or the PK were relevant
to viral replication (Shetty et al., 2010). A logical hypothesis
is that the HCV core protein binds to a PK formed by
sequences in the 3′ UTR X region and participates in
viral replication.

The stem-loop structure of 3′ UTR of some viruses [such as
porcine reproductive and respiratory syndrome virus (PRRSV)
and equine arteritis virus (EAV)] and viral nucleocapsid protein
coding region forms a PK. A highly conserved 34 nt-long
sequence of the PRRSV nucleocapsid protein coding region was
predicted to fold into a stem-loop and was required for viral RNA
replication. Furthermore, 7 nucleotides in the loop region of this
stem-loop bind complementarily with a loop in a 3′ UTR stem-
loop and form a hairpin loop PK that is necessary for the efficient
synthesis of the viral RNA (Verheije et al., 2002). For EAV, the
stem-loop structure SL5 of 3′ UTR, together with the stem-loop
SL4 of the nucleocapsid protein coding region, form a hairpin
loop PK, which is comparatively conserved among arteritis
viruses and is relevant to the regulation of viral RNA synthesis
(Beerens and Snijder, 2007).

Other High-Order Structures
The DENV 3′ UTR can fold into two dumbbell structures termed
DB1 and DB2 (Figure 3). DENV replication requires the binding
of the cellular protein DEAD-box RNA helicase DDX6 to DB1
and DB2 (Ward et al., 2011). Mutations of CS2 and RCS2, which
are located in DB1 and DB2, reduce the efficiency of DENV2
translation (Wei et al., 2009). The two dumbbell structures and
two terminal loops (TLs) form two PKs, which are important
for DENV replication and translation (Olsthoorn and Bol, 2001;
Romero et al., 2006; Manzano et al., 2011; Sztuba-Solinska et al.,
2013). Moreover, the circularization of the flavivirus genome
folds the 5′ UTR and 3′ UTR into a panhandle structure
(Villordo and Gamarnik, 2009; Lloyd, 2015), which ensures the
efficient initiation of the synthesis of the negative-strand RNA
genome. Ochsenreiter et al. (2019), inferred the existence of
novel conserved elements in insect-specific flaviviruses (ISFVs)
3′ UTR through covariance models, which may be related to
functional importance.

OTHER FUNCTIONS OF THE 3′ UTR

As shown in Tables 1, 2, most research associated with the
ssRNA(+) virus 3′ UTR has focused on viral replication and
translation, but the role of the 3′ UTR is by no means limited
to these processes. Although numerous studies are not directly
based on a certain primary or high-order structure, they have
highlighted the important roles of 3′ UTRs in life events of the
virus and host.

Interacting With miRNAs
miRNAs, which are transcribed by the host or virus, are a type of
small single-stranded RNAs with the length of ∼19–25 nt. They
post-transcriptionally regulate the expression level of the target
mRNA by forming the RNA-induced silencing complex (RISC).
The ssRNA(+) virus genome is directly used as an mRNA to
translate viral proteins, which creates conditions for the miRNA
to regulate its expression. miRNAs bind to the 5′ UTR, 3′ UTR or
coding regions of the viral genome, which is very important for
the viral life cycle.

The 3′ UTR of the ssRNA(+) viruses contain miRNA binding
sites that interact with the host miRNAs or viral miRNAs to
modulate a series of activities in its viral cycle. miR-17 expressed
in MDBK cells interacts with the 3′ UTR of bovine viral diarrhea
virus (BVDV), enhancing its replication, translation, and RNA
stability (Scheel et al., 2016). miR-133a expressed in Vero cells
targets the 3′ UTR of the DENV and PTB mRNA in cells. In the
early stage of DENV infection, the 3′ UTR of the virus inhibits
miR-133a and increases the expression of the PTB protein,
which is required for viral replication and translation (Castillo
et al., 2016). The 3′ UTR of chikungunya virus (CHIKV) binds
to miR-2944b-5p and miR-2b of Ae. aegypti cells, but miR-
2944b-5p significantly increases viral infection (Dubey et al.,
2019). On the other hand, miRNAs have also been reported
to suppress viral replication. The 3′ UTR of Eastern equine
encephalitis virus (EEEV) contains four miRNA binding sites,
namely, three canonical and one non-canonical miR-142-3p sites
(Trobaugh et al., 2014). miR-142-3p interacts with the 3′ UTR of
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EEEV, preventing its replication and translation in myeloid cells
(Trobaugh et al., 2014). Mutations at these sites enhance EEEV
replication, resulting in higher levels of IFNα/β production,
which attenuate viral virulence and prolong the survival of
mice (Trobaugh et al., 2019). Interestingly, mosquitoes do not
express miR-142-3p, but mutations in the miR-142-3p binding
site on the EEEV 3′UTR inhibit virus replication in mosquito
cells (Trobaugh et al., 2019). It is speculated other miRNAs in
mosquito cells may interact with these binding sites.

Involvement in sfRNA Formation
In eukaryotic cells, mRNA avoids degradation by endo- and
exoribonucleases in the cell through a 5′ cap structure and a 3′

poly(A) tail. However, flaviviruses contain a cap structure at the
5′-end genomic RNA, but do not have poly(A)-tail and terminate
with a stem loop structure (3′SL). This 3′SL can protect viral
RNA from 3′ to 5′ exoribonucleases, so 5′ to 3′ degradation by
exoribonuclease Xrn-1 are likely to be the predominant pathways
(Ford and Wilusz, 1999; Narayanan and Makino, 2013).

The genomic RNA of both mosquito- and tick-borne
flaviviruses can be digested incompletely by the host’s Xrn1 that
halts at the Xrn1-resistant RNA (xrRNA) structures within the 3′

UTR and produces a short subgenomic flavivirus RNA (sfRNA).
xrRNA appear to be ubiquitously present in many flaviviruses
and xrRNA halts diverse exoribonucleases, in addition to Xrn1
(MacFadden et al., 2018; Ochsenreiter et al., 2019). sfRNA
has multiple functions, participating in viral cytopathicity and
pathogenicity, immune and anti-viral responses of the host and
dysregulating endogenous mRNA turnover (Pijlman et al., 2008;
Jones et al., 2012; Schnettler et al., 2012, 2014; Chang et al., 2013;
Manokaran et al., 2015; Pompon et al., 2017). In addition, sfRNAs
have recently been shown to interact with various RNA-binding
proteins in cells to regulate RNA decay and splicing (Michalski
et al., 2019).

The RNA structure at the 3′ UTR is necessary for sfRNA
formation (Figure 7). SL-II, SL-IV, DB1, and DB2 in WNV 3′

UTR are required for production of sfRNAs 1–4, respectively
(Pijlman et al., 2008; Funk et al., 2010). Recent research shows
that RCS3, CS3, RCS2, and CS2 inWNV 3′ UTR are also involved
in the production of their corresponding upstream sfRNAs.
Among these sequences, RCS3 increases the binding affinity of
xrRNA and Xrn1 and stabilizes the three-dimensional structure
of the xrRNA (Zhang et al., 2020). Furthermore, the PK is critical
for xrRNA function. PK1, PK2, and PK3 blocks degradation
of WNV genomic RNA (gRNA), resulting in accumulation of
sfRNA (Funk et al., 2010). A similar situation also exists in other
flaviviruses. The YFV 3′ UTR was predicted to contain three
potential PKs, and researchers have confirmed that pseudoknot 3
(PSK3) serves as the molecular signal to stall Xrn1 and ultimately
produce the YFV sfRNA (Silva et al., 2010). Interestingly, Xrn1
knockdown results in a change in the overall ZIKV sfRNA
pattern (Akiyama et al., 2016). However, ZIKV sfRNAs inhibit
the activity of Xrn1 and disrupt the production of the host mRNA
(Michalski et al., 2019). The inhibitory effect of sfRNA on Xrn1
has also been reported in DENV and KUNV (Moon et al., 2012).
The production of sfRNAmay be a dynamically balanced process,
that is to say, once the amount of sfRNA accumulates to a certain

level, the activity of Xrn1 will be inhibited and the sfRNAs will
exert their regulatory effects.

Role in Virulence
The effect of the 3′ UTR on virus virulence has been reported.
Changes in a certain sequence or structure of the 3′ UTR
exert a significant effect on viral virulence. The 3′ UTR poly-
pyrimidine sequence affects the virulence of MNV (Bailey et al.,
2010). In addition, the 10577T mutation in the WNV 3′ UTR
significantly attenuates its virulence (Zhang et al., 2020). The
3′ UTR variable region is the main factor that determines the
differential virulence of two strains of TBEV (Sakai et al., 2014),
and partial deletion of the secondary structure elements in the
3′ UTR obviously enhanced the virulence, indicating that TBEV
virulence is modulated by the secondary structures in the 3′ UTR
variable region (Sakai et al., 2015). Similarly, the miR-142-3p
binding site on the 3′ UTR of EEEV plays an important role
in its virulence (Trobaugh et al., 2019). The impact of the 3′

UTR on virulence has great prospects for the development of live
attenuated vaccines.

Role in Virus Evolution
A small hairpin structure (sHP) (Figure 3) is required for
DENV replication in mosquito cells, but not in mammalian
cells (Villordo and Gamarnik, 2013); furthermore, DENV RNA
structures are relevant to host specialization (Villordo et al.,
2015). Similar results have also been reported for Chikungunya
virus (CHIKV) and Sindbis virus (SINV), as the 3′ UTRs of
these two viruses function as an evolutionary force to adapt
to mosquito cells, but not mammalian cells (Chen et al., 2013;
Garcia-Moreno et al., 2016). In addition, the sfRNA produced by
the flavivirus 3′ UTR participates in regulating host adaptation.
DENV generates different patterns of sfRNAs in mosquito
or human cells and these patterns rapidly change upon host
switching (Filomatori et al., 2017). Similarly, ZIKV infects
different cell types to produce different sfRNA patterns (Akiyama
et al., 2016). Based on these findings, the sequence and structure
of the 3′ UTRmust play significant roles in the host adaption and
evolution of the ssRNA(+) virus, but the existing data are still
very poor and more extensive research is needed.

Role in the Immune and Anti-viral
Responses of the Host
The FMDV 3′ UTR functions as a pathogen-associated molecular
pattern (PAMP) and participates in reorganizing and activating
the synthesis of the alpha/beta interferon (INF-α/β) mRNA,
and the 3′ UTR secondary structure was an important factor
contributing to the synthesis of these cytokine (Rodríguez-Pulido
et al., 2011). Similarly, the poly-U/UC tract of HCV functions
as the PAMP substrate of retinoic acid inducible gene I (RIG-I),
since RIG-I was shown to recognize and bind to this region (Saito
et al., 2008; Schnell et al., 2012). The infection of DENV2 strain
with high epidemiological fitness or the chimeric virus with high
epidemiological strain 3′UTR inhibited gene expression for the
Toll-pathway component Rel1a and CecG in mosquito salivary
glands (Pompon et al., 2017). Moreover, the deletion of the
four miR-142-3p binding sites in the 3′ UTR of EEEV result in
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FIGURE 7 | The biogenesis of sfRNA in WNV-infected cells. The primary sequences (RCS3, CS3, RCS2, CS2) and higher order structures (SL-II, SL-IV, DB1, DB2,

PK1, PK2, PK3) of the WNV 3′ UTR are required for production of sfRNAs (Pijlman et al., 2008; Funk et al., 2010; Zhang et al., 2020).

higher levels of cytokine and chemokine transcription than wild
type EEEV (Trobaugh et al., 2019). Thus, specific sequences and
structural elements of the ssRNA(+) virus 3′ UTR can mediate
the innate immune and anti-viral responses of the host.

In addition, sfRNA produced by 3′UTR has also been
reported in antiviral responses. The predominant antiviral innate
immune strategy relies on RNA interference (RNAi) pathway in
invertebrates (Olson and Blair, 2015). To evade RNAi response,
WNV sfRNA efficiently suppressed siRNA- and miRNA-induced
RNAi pathways in insect cells (Schnettler et al., 2012). However,
when the host becomes a vertebrate, sfRNA can inhibit the
production of type 1 interferon. Replication of sfRNA-deficient
WNV was rescued in MEFs lacking interferon regulatory factor
3 (IRF-3) and IRF-7 and in mice lacking the type I alpha/beta
interferon receptor (IFNAR) (Schuessler et al., 2012). Similarly,
IFN antagonist activity of ZIKV, DENV, and JEV sfRNA was also
confirmed (Chang et al., 2013; Manokaran et al., 2015; Donald
et al., 2016). These results indicate that the study of sfRNA
is important for further understanding the pathogenesis and
virus-host interaction.

PERSPECTIVES

A certain function is determined by a specific structure, and thus
a functional study base on structure is more generally convincing.
Here, we describe the primary and higher order structures of the
ssRNA(+) virus 3′ UTR, and the function of 3′ UTR for viral
replication, translation, virulence, evolution, and the immune
response. Therefore, studies of the 3′ UTR are necessary to
identify the common mechanisms regulating the life events of all
ssRNA(+) viruses.

Life events of the virus and host can be modulated by the
interaction between viral 3′ UTR and viral/cellular proteins. On
the other hand, the proteins interacting with the 3′ UTR may
interact with each other, forming protein-protein interactions,
which complement the RNA-protein interactions. These protein-
protein and RNA-protein interactions form a large network
participating in the regulation of viruses and hosts. However,

little is known about these protein-protein interactions, and
thus more studies are needed, which will be promising to
investigate the complete regulatory network of the ssRNA(+)
virus 3′ UTR.

The ssRNA (+) viruses use its genome as mRNA to directly
translate viral proteins, which can attract miRNAs transcribed
by the host or virus to interact with their genome and
regulate the viral life cycle. Given the importance of 3′ UTR
to viral replication and translation, the design of an artificial
miRNA (amiRNA) targeting the sequence of the 3′ UTR of
the ssRNA(+) virus or the insertion of a targeting sequence
for the miRNA that inhibits viral replication at the 3′ UTR
will provide a new strategy for the treatment of infections with
ssRNA(+) viruses. In addition, deleting or mutating certain
base sequences in the 3′ UTR disrupts the circularization of
the genome, which also provides ideas for the development of
new vaccines.
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