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The human gastrointestinal tract harbors most of the microbial cells inhabiting the

body, collectively known as the microbiota. These microbes have several implications

for the maintenance of structural integrity of the gastrointestinal mucosal barrier,

immunomodulation, metabolism of nutrients, and protection against pathogens.

Dysfunctions in these mechanisms are linked to a range of conditions in the

gastrointestinal tract, including functional gastrointestinal disorders, ranging from irritable

bowel syndrome, to functional constipation and functional diarrhea. Irritable bowel

syndrome is characterized by chronic abdominal pain with changes in bowel habit in

the absence of morphological changes. Despite the high prevalence of irritable bowel

syndrome in the global population, the mechanisms responsible for this condition are

poorly understood. Although alterations in the gastrointestinal microbiota, low-grade

inflammation and immune activation have been implicated in the pathophysiology of

functional gastrointestinal disorders, there is inconsistency between studies and a

lack of consensus on what the exact role of the microbiota is, and how changes to

it relate to these conditions. The complex interplay between host factors, such as

microbial dysbiosis, immune activation, impaired epithelial barrier function and motility,

and environmental factors, including diet, will be considered in this narrative review of the

pathophysiology of functional gastrointestinal disorders.

Keywords: human microbiota, immunity, irritable bowel syndrome, functional gastrointestinal disorders, diet,

visceral pain, motility, host-microbe interactions

BACKGROUND

In the human body there are about 39 trillion microbial cells (Sender et al., 2016), the
majority of which inhabit the gastrointestinal (GI) tract, forming a dynamic ecological
environment collectively known as the microbiota (Schulberg and De Cruz, 2016). The
microbiota encompasses up to 500 transient and indigenous species, including bacteria,
viruses, fungi and protozoa, and comprises up to 20 million genes (Sender et al., 2016).
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The microbial ecosystem exists in a mutualistic relationship
with its host and plays a crucial role in the maintenance of
a healthy GI tract. The microbiota exerts important functions
for the human organism, such as the extraction of energy from
nutrients, metabolism of xenobiotics, modulation of motility and
improved integrity of the epithelial barrier (Fava and Danese,
2011; Kashyap et al., 2013).

Therefore, the GI microbiota contributes to the beneficial
effects of food beyond provision of nutrients (Louis et al.,
2007). It is now accepted that its composition and function
potentially contribute to the pathophysiology of functional
GI disorders (FGIDs) (Enck et al., 2016). These conditions
are classified by GI symptoms related to any combination
of motility disturbance, visceral hypersensitivity, alterations of
central nervous system processing, immunity and GI microbiota
(Schmulson and Drossman, 2017). Irritable bowel syndrome
(IBS) is the most common and best known of these disorders
(Choung and Locke, 2011), characterized by abdominal pain
associated with altered bowel movement and often bloating in the
absence of morphological changes (Enck et al., 2016). However,
the mechanisms responsible for FGIDs are poorly understood
and there is a lack of consensus on what the exact role of the
microbiota is, and how changes to it relate to these conditions.

The concept of the “brain in the gut” is not new (Alexander,
1934). The GI wall contains about 100 million nerve cells
and more than 70% of the total immune system (Vighi
et al., 2008). Microbial and dietary antigens interact with these
pathways, aiding in inducing andmaintaining homeostasis, while
preserving responsiveness to pathogenic stimuli (Tlaskalová-
Hogenová et al., 2011). This dynamic network, which involves
the neuroendocrine, immune and metabolic pathways, is defined
as the microbiota-gut-brain axis, and autonomously regulates
many GI physiological functions, including motility, secretion,
immunity and thereby inflammatory processes (Holzer et al.,
2001). This finding has been highlighted in germ-free mice,
which are characterized by a reduced surface area in the ileum
(Abrams et al., 1963), shallower villous crypts (Thompson and
Trexler, 1971), lower levels and activity of T and B cell subsets
(Imaoka et al., 1996) and limited lymphatic tissue (Tlaskalová-
Hogenová et al., 1983).

FGIDs represent a serious economic and social problem.
They are a common cause of primary and secondary
care consultations, are associated with increased rates of
gastroenterological and non-gastroenterological investigations
and treatments, and lead to significant morbidity and direct
healthcare costs (Canavan et al., 2014; Tack et al., 2019).
However, the indirect costs of education and work absenteeism
and presenteeism, reduced social interactions and time away

Abbreviations: BCFAs, branched-chain fatty acids; CgA, Chromogranin A;
FC, Functional Constipation; FD, Functional Diarrhea; FGIDs, Functional
Gastrointestinal Diseases; FODMAPs, Fermentable Oligosaccharides,
Disaccharides, Monosaccharides And Polyols; GI, Gastrointestinal; GPRs, G-
protein-coupled receptors; HDAC, histone deacetylases; IBS, Irritable Bowel
Syndrome; IBS-C, IBS-Constipation; IBS-D, IBS-Diarrhea; IBS-M, IBS-Mixed;
IBS-U, IBS-Unclassified; IFN, Interferon; IL, Interleukin; SCFAs, Short Chain
Fatty Acids; SRB, sulfate-reducing bacteria; TJs, Tight Junctions; TLR, Toll-like
Receptor; TNF, Tumor Necrosis Factor.

from usual activities are even greater (Zhang F. et al., 2016).
At present, the management of FGIDs relies on the palliation
of symptoms. The key to developing effective treatments is
a better understanding the etiology and pathophysiology of
these disorders.

Therefore, a complex interplay of several factors seem to
underlie the pathophysiology of IBS, but a growing body of
evidence supports the role of the GI microbiota and innate
immune system alterations (Ford and Talley, 2011). This
narrative review summarizes the current knowledge regarding
the microbial and immunological mechanisms underlying
the pathogenesis of IBS. A PubMed search of all available
English-language articles to date was conducted, using the
following search terms: “irritable bowel syndrome,” “functional
gastrointestinal disorders,” “microbiota” or “microbiome,”
“dysbiosis,” “low-grade inflammation,” “pathophysiology,”
“immunity, “diet,” “visceral pain,” “motility” and “host-microbe
interactions.” The search was extended by using the references
of selected recent articles and systematic reviews or meta-
analysis. Host factors, such as microbial dysbiosis, low-grade
inflammation, altered epithelial barrier function and motility, as
well as environmental factors, including diet, will be considered
to help shed light on the emerging pathophysiology of FGIDs.

IRRITABLE BOWEL SYNDROME AND
FUNCTIONAL GASTROINTESTINAL
DISORDERS

IBS is a multifactorial condition characterized by chronic
and relapsing abdominal pain and altered bowel habit. The
symptoms of IBS can overlap with those of other FGIDs and
it has been estimated that up to a third of patients with
FGIDs have features of more than one, suggesting a common
underlying etiology (Aziz et al., 2018). IBS has not been found
to have a single etiological cause, but is likely to be the result
of genetic, environmental and dietary factors. Diagnoses of
FGIDs rely on symptom-based criteria (Heizer et al., 2009),
including symptom severity and frequency (sporadic, daily)
and stool characteristics (Talley, 2008). These characteristics
allow for classification of patients with IBS into mutually-
exclusive categories according to Rome IV criteria, depending on
their predominant bowel habit: diarrhea-predominant (IBS-D),
constipation-predominant (IBS-C), mixed diarrhea/constipation
(IBS-M), and unclassified (IBS-U). Rome IV criteria provide
parameters for the diagnosis of IBS based on abdominal pain
and altered bowel habit in the absence of specific pathology
(Schmulson and Drossman, 2017). However, bloating, passage
of mucus and incomplete rectal evacuation, which are common
and troublesome symptoms in people with IBS, are not included
in the Rome criteria (Lacy and Patel, 2017). IBS subjects can
be further classified as sporadic (nonspecific), post-infectious
or inflammatory bowel disease-associated IBS. In contrast to
sporadic IBS, post-infectious IBS occurs after an episode of
infectious gastroenteritis (Sadeghi et al., 2019), and inflammatory
bowel disease-associated IBS indicates IBS-like symptoms in
patients with clinically quiescent inflammatory bowel diseases
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FIGURE 1 | Schematic representation of IBS pathophysiology. Psychological, physiological and neuro-gastroenterological factors are thought to be involved in the

generation of IBS symptoms, including bloating, abdominal pain and altered motility. Created with BioRender.com.

(Quigley, 2016). FGIDs also include functional constipation
(FC) and functional diarrhea (FD) where there is a significant
change in bowel habit but not abdominal pain, in the absence of
alternative pathology.

These heterogeneous conditions are also described as
“disorders of gut-brain interaction,” as they can be classified
as disorders that span both the GI and the neurological
systems (Figure 1). People with these FGIDs have high rates
of psychological comorbidity (Wu, 2012) and treatments aimed
at stress and anxiety [e.g., hypnotherapy (Simon et al., 2019),

cognitive behavioral therapy (Everitt et al., 2019), exercise (Zhou
et al., 2019), and antidepressants Kulak-Bejda et al., 2017] can be
effective treatments.

A number of proposed pathophysiological mechanisms for
FGIDs are based in altered neuro-gastroenterology, including
changes in GI motility and visceral afferent hypersensitivity.
Visceral hypersensitivity tends to be more strongly associated
with IBS than with FC or FD, although many subjects with FC
report abdominal pain (Wong et al., 2010), yet IBS-C patients
report a shorter colonic transit time (Ansari et al., 2010) andmore

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 September 2020 | Volume 10 | Article 468

https://BioRender.com
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Carco et al. Mechanisms Underlying Functional Gastrointestinal Disorders

severe symptoms of constipation compared to FC (Drossman,
2006). Furthermore, disorders of GI physiology, including
mucosal permeability, bloating associated with discomfort and
pain, immunity, and GI microbial dysbiosis, have also been
shown to impact on psychological health (Sundin et al., 2014;
Sinagra et al., 2020).

Since several conditions feature symptoms which may be
confused with IBS, a clinical overlap between IBS and other
IBS-like disorders has been proposed. In particular, the overlap
between IBS and functional dyspepsia and gastroesophageal
reflux disease, characterized by early satiety, postprandial
fullness, epigastric pain, heartburn and regurgitation, is often
associated with a more severe symptomatology (Jung et al., 2007;
von Wulffen et al., 2019). IBS is also commonly associated with
non-GI symptoms that are seen in other disorders, including
fibromyalgia, chronic fatigue and temporomandibular joint
disorder (Aaron et al., 2000). IBS was also observed in 33% of
individuals reporting sleep disturbance (Vege et al., 2004), and in
48% of individuals with bladder pain (Kennedy et al., 2006).

Although not fatal and uncommonly requiring
hospitalization, IBS is amongst the most frequent reasons
for presentation to primary care. This leads to increased
costs through consultations with health care practitioners,
investigations for GI and non-GI disorders and subsequent
treatments. Overall it is estimated that more than 40% of people
worldwide suffer from FGIDs (Sperber et al., 2020). IBS affects
11% of the global adult population (Lovell and Ford, 2012; Enck
et al., 2016), with a higher prevalence (60–75%) in women than
men, especially for IBS-C (Jones et al., 2014). Sex hormones
have been postulated to be responsible for this gender difference,
because of their involvement in the stress response, colonic
motility, epithelial barrier function, immune activation, and
several regulatory mechanisms of the gut-brain axis (Kim and
Kim, 2018). Sex hormones can also directly affect microbiota
metabolism and composition through the estrogen receptor β

(Menon et al., 2013). Alternatively, altered immune activation in
IBS has been observed and, like in autoimmune diseases, it may
account for a female predominance (Talley, 2020).

The severity of abdominal pain and the unpredictability of
bowel function are the major factors lowering the quality of life
of people with IBS, who report quality of life scores close to or
lower than individuals with rheumatoid arthritis and dialysis-
dependent kidney failure (Gralnek et al., 2000; Frank et al., 2002).
Despite being so common and having such a significant impact
on quality of life for so many, research into FGIDs such as IBS
has been relatively underfunded. There is a large unmet need
for people with FGIDs such as IBS. Understanding the etiology
and pathophysiology promises an opportunity to develop new,
effective and personalized treatments in addition to biomarkers
for diagnosis, determining severity and treatment response.

A MICROBIAL SIGNATURE OF IBS

In the GI tract, the most abundant phyla are Firmicutes
and Bacteroidetes, but Actinobacteria, Proteobacteria,
Verrucomicrobia and the less represented Fusobacteria,

Tenericutes, Spirochaetes and Cyanobacteria are also present
(Huse et al., 2008; Human Microbiome Project Consortium.,
2012). The microbial composition changes across the different
regions of the GI tract, with a predominance of Firmicutes in the
proximal colon and Bacteroidetes in the distal colon (Sekirov
et al., 2010).

The health-associated patterns of microbial colonization of
the GI tract are difficult to define, as everyone can harbor
functional and distinctive variants of microbial composition,
reflecting early-life events such as mode of delivery, type of
feeding and gender (Martin et al., 2016). Generally, a “healthy”
microbial signature is characterized by a prevalence of Firmicutes
and Bacteroidetes and a general lack of Proteobacteria (Hollister
et al., 2014).

Despite inconsistencies between studies, some differences
between a healthy and an IBS-related fecal microbiota have been
observed. At the phylum level, a higher (Tana et al., 2010; Rajilić–
Stojanović et al., 2011; Jeffery et al., 2012b; Tap et al., 2017)
or lower (Jalanka-Tuovinen et al., 2014; Pozuelo et al., 2015)
Firmicutes:Bacteroides ratio and differences in Actinobacteria
and Proteobacteria prevalence have been observed in IBS (Labus
et al., 2017).

At the genus level, IBS patients generally have increased
Ruminococcus (Malinen et al., 2005; Lyra et al., 2009; Rajilić–
Stojanović et al., 2011; Saulnier et al., 2011; Jeffery et al.,
2019), Clostridium, Coprococcus and Blautia and reduced
Faecalibacterium relative abundance (Rajilić–Stojanović et al.,
2011; Carroll et al., 2012). These bacteria are thought to have a
prominent role in carbohydrate metabolism in the colon.

Other alterations have been generally described in IBS,
including an increase in the relative abundances of pathobionts,
such as Veillonella (Malinen et al., 2005; Tana et al., 2010;
Rigsbee et al., 2012), and Enterobacteriaceae, Bacteroides or
a decrease in Prevotella (Rajilić–Stojanović et al., 2011) and
Desulfovibrionaceae (Gobert et al., 2016). Desulfovibrionaceae
include sulfur-reducing bacteria that compete with methanogens
for hydrogen disposal in the human colon (Strocchi et al.,
1994). Overall, differential relative abundance of taxa from the
Bacteroidetes phylum and Ruminococcaceae or Lachnospiraceae
families have been reported across studies (Rajilić–Stojanović
et al., 2011; Jeffery et al., 2012b, 2019; Tap et al., 2017).

Previous studies have shown that methanogen relative
abundance, exhaled methane level and symptom severity
are negatively correlated with microbial richness, suggesting
methane may contribute to slower GI motility and constipation
(Sahakian et al., 2010; Falony et al., 2016; Tap et al., 2017).
An increase in fecal Methanobrevibacter smithii and methane
in breath from IBS-C patients has been reported (Ghoshal
et al., 2016), as well as a positive association between
Methanobrevibacter and stool firmness (Vandeputte et al., 2016).
The elevated breath methane production in these individuals
could alternatively reflect the outgrowth of “slow-growing”
microbes, which are advantaged in conditions of slowed colonic
transit and are resistant to the lack of water that characterize
firmer stool (Quigley and Spiller, 2016). However, another
study did not observe an association between breath methane
production and constipation or colonic transit, although they
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FIGURE 2 | In subjects with post-infectious IBS, the infection by certain pathogens, such as Clostridium difficile (Wadhwa et al., 2016; Bassotti et al., 2018),

Salmonella (McKendrick and Read, 1994), Shigella (Gwee et al., 1999; Wang et al., 2004) or Escherichia coli (Marshall et al., 2006) compromises the integrity of the

epithelial barrier, triggers inflammation and decreases microbial diversity and beneficial bacteria, detrimentally affecting GI microbiota composition (Jalanka-Tuovinen

et al., 2014). The microbiota composition in post-infectious IBS subjects differs from both IBS subjects and healthy controls, featuring an increase in Bacteroidetes,

which are usually decreased in general IBS, and a decrease in Firmicutes, including Clostridium clusters III, IV and XIVa (Sundin et al., 2014). Created with

BioRender.com.

reported an association between breath methane production and
changes in fecal microbiota composition (Parthasarathy et al.,
2016).

Other findings linked decreased levels of methanogens in feces
to excess abdominal gas in IBS, suggesting that IBS patients
compared to healthy subjects may lack some functions for
hydrogen removal (Jalanka-Tuovinen et al., 2014; Pozuelo et al.,
2015). Hydrogen accumulation has been linked to bloating and
abdominal pain (Zhu et al., 2013). Hydrogen sulfide, deriving
from the activity of sulfur-reducing bacteria, has been shown
to modulate peripheral pain-related signals, as well as colonic
motility (Jimenez et al., 2017).

The association between an altered microbiota and IBS is also
supported by the fact that about 10% of the episodes of infectious
gastroenteritis lead to the onset of IBS (Barbara et al., 2019)
(Figure 2).

Several studies report discrepancies in fecal microbiota
profiles between the IBS subtypes. Some studies report no
differences in the composition of the microbial community
between IBS-C and IBS-D (Pittayanon et al., 2019), while other
studies associated different IBS subtypes with an individual
microbial signature (Table 1).

IBS-C usually features higher amounts of Firmicutes and a
reduction in some lactate-producing and utilizing bacteria, such
as Bifidobacterium and Eubacterium hallii/Anaerostipes caccae,
respectively (Chassard et al., 2012). IBS-D is characterized by
an overall reduction in microbial diversity, and an increase
in potentially detrimental bacteria, such as Proteobacteria and
lower numbers of Actinobacteria and Bacteroidetes, compared
to IBS-C (Malinen et al., 2005; Carroll et al., 2012). Decreased
relative abundances of Bifidobacterium in both fecal (Malinen
et al., 2005; Kerckhoffs et al., 2009; Rajilić–Stojanović et al.,
2011; Parkes et al., 2012) and mucosal samples (Kerckhoffs et al.,
2009; Parkes et al., 2012), and Lactobacillus (Malinen et al.,
2005) have been also described in IBS-D, although some studies
reported the opposite findings (Tana et al., 2010; Carroll et al.,
2011; Rigsbee et al., 2012; Labus et al., 2017). The reduction
of Bifidobacterium and Lactobacillus is noteworthy, because of
their capacity to exert bactericidal effects against pathogens
and promote immune-tolerance through the production of
metabolites, such as organic acids, including short-chain fatty
acids (SCFAs) (Ma et al., 2018). These metabolites, mostly
acetate, butyrate and propionate, represent the end-products of
fermentation of non-digestible polysaccharides by the ileal and

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 September 2020 | Volume 10 | Article 468

https://BioRender.com
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Carco et al. Mechanisms Underlying Functional Gastrointestinal Disorders

TABLE 1 | Main differences in fecal microbiota composition between IBS

subtypes.

IBS-C IBS-D IBS-M

Phylum ↑ Firmicutes

↑ Actinobacteria

↑ F/B ratio

↑ Proteobacteria

↓ Bacteroidetes

↓ Actinobacteria

↑ F/B ratio

Class ↑ Clostridia

Order ↑ Clostridiales

↑ Coriobacteriales

Family ↑ Incertae Sedis XIII

↑ Lachnospiraceae

↑ Ruminococcaceae

↑ Rhodospirillaceae

↑ Coriobacteriaceae

↓ Erysipelotrichaceae

↓ Ruminococcaceae

↓ Porphyromonadaceae

↓ Ruminococcaceae

↓ Unknown Clostridiales

↓Methanobacteriaceae

↓ Incertae sedis XIII

↓ Erysipelotrichaceae

↓ Ruminococcaceae

↓ Incertae sedis XIII

↓ Eubacteriaceae

Genus ↓ Roseburia

↓ Bifidobacterium

↓ Bifidobacterium

↓ Lactobacillus

Species ↓ Eubacterium rectale

↓ Eubacterium hallii

↓ Anaerostipes caccae

↑ Methanobrevibacter

smithii

F/B ratio, Firmicutes:Bacteroidetes ratio (Duan et al., 2019).

colonicmicrobiota (Havenaar, 2011). They are directly associated
with host-microbe interactions through nutritional, regulatory
and immunomodulatory functions.

Altered levels of SCFAs in feces appear to be associated
with a different distribution of Clostridiales in IBS-C and -D,
as well as with stool consistency (Gargari et al., 2018). The
relative abundance of SCFA-producers, such as the Clostridiales
order, the Bifidobacterium genus, and Ruminococccaceae and
Erysipelotrichaceae families has been reported to be overall
increased (Rajilić–Stojanović et al., 2011) or decreased (Pozuelo
et al., 2015) in a IBS-related microbiota. In vitro studies
previously demonstrated that SCFAs can lower the colonic pH
(Duncan et al., 2009). Members from the Firmicutes phylum,
particularly the Clostridium cluster XIVa, have been shown to
more resistant to lower pH values compared to the Bacteroidetes.

Discrepancies on the relative abundance at lower taxonomic
levels of beneficial bacteria and SCFA-producers may be
explained by several factors, including differences in diet, study
size, the predominance of IBS subtypes, IBS severity, as well as
DNA extractionmethods, analytic techniques or primers used for
amplicon generation.

Instillation of SCFAs at high concentrations in the ileum may
detrimentally result in increased ileal motility and abdominal
pain in humans (Kamath et al., 1988) or promote visceral
hypersensitivity in a rat model (Xu et al., 2013). These
observations may be particularly relevant, since abnormal levels
of SCFAs, visceral hypersensitivity and dysmotility are often
observed in those with IBS.

On the other hand, a reduction in SCFA production or
butyrate-producing bacteria relative abundance is also thought to

have consequences on colonic inflammation and barrier defense.
A lower relative abundance of butyrate-producing bacteria,
such as Roseburia and Eubacterium rectale, was observed in
subjects with IBS-C (Chassard et al., 2012), while the families
Erysipelotrichaceae and Ruminococcaceae were found to be
decreased in IBS-D and IBS-M (Pozuelo et al., 2015).

The relative abundance of specific genera also appears to
positively correlate with IBS symptom severity. The composition
linked to the IBS-D enterotype is the most different from
“normal” in terms of composition and is associated with the most
severe symptomatology (Tap et al., 2017). The immune profile
associated with IBS-D has been also reported as different from
the other subtypes and positively correlated with pain severity,
dissatisfaction with bowel habits and overall GI symptoms
(Choghakhori et al., 2017).

The majority of studies investigating the GI microbiota from
IBS subjects, analyzed only a single colonic niche (Malinen et al.,
2005; Lyra et al., 2009; Saulnier et al., 2011; Carroll et al., 2012;
Chassard et al., 2012; Jeffery et al., 2012b; Rigsbee et al., 2012;
Jalanka-Tuovinen et al., 2014; Gobert et al., 2016), because of the
convenience in collecting the fecal microbiota in comparison to
the mucosa-associated microbiota (Figure 3). Fecal and mucosal
microbiota have alternatively been reported to be structurally
distinct but highly correlated (Tap et al., 2017), to discriminate
between IBS-D subjects and healthy controls (Carroll et al., 2011),
to discriminate only the subjects with severe IBS (Tap et al., 2017),
or to not discriminate at all IBS subjects from healthy controls
(Maharshak et al., 2018; Hugerth et al., 2019). Another study
showed that the composition of the colonic mucosal microbiota
could also separate patients with chronic constipation from
controls with 94% accuracy (Parthasarathy et al., 2016).

The differences in microbial composition between IBS and
healthy subjects as well as within IBS subtypes raise questions
regarding which microbes are associated or not with IBS and
which alteration between qualitative (dysbiosis) and quantitative
(bacterial overgrowth) comes first in IBS etiology. The usefulness
of describing the microbiota at higher taxonomic levels may be
limited, since this may not provide meaningful information. New
metagenomic tools allow an integrated analysis of taxonomic
and predictive functional dynamics of the microbiota, providing
improvements in genus-species analyses, more detailed insights
into the effect of microbial metabolic pathways on crucial aspects
of IBS pathogenesis, as well as of the potential host-microbiota
interactions in health and disease. In addition, current techniques
relying for example on 16S rRNA gene analysis, may also
overlook potential pathogens, such as colonic spirochetes, which
may be linked to symptoms of IBS, due to the incompatibility
of standard primers (Thorell et al., 2019). Colonic spirochetosis
has been associated with colonic eosinophilia and with non-
constipating IBS (Walker et al., 2015).

Clinical evidence also supports the involvement of the GI
microbiota in IBS pathogenesis. Rifaximin, a non-systemic
antibiotic which is efficacious for the treatment of IBS-D
(Lembo et al., 2016), showed a largely transient effect across a
broad range of stool microbes, such as Peptostreptococcaceae,
Verrucomicrobiaceae and Enterobacteriaceae, in a randomized,
double-blind, placebo-controlled study with IBS-D subjects
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FIGURE 3 | Comparison between mucosa-associated and luminal microbiota. Although luminal and colonic mucosal associated microbiota can potentially interplay

with the immune system and therefore be involved in FGID symptomatology (Pittayanon et al., 2019), the fecal microbiota is not fully representative of the mucosal

microbiota at the site of disease. Taxonomical and diversity differences between luminal and colonic mucosal microbiota highlight the importance of comparing the

microbial composition in both niches, when analyzing the role of the GI microbiota in FGIDs. The colonic mucosa-associated microbiota seems to be predominantly

characterized by Bacteroidetes (Rangel et al., 2015; Tap et al., 2017) and Lachnospiraceae (Hugerth et al., 2019), whereas the fecal microbiota by Firmicutes,

Actinobacteria (Rangel et al., 2015; Tap et al., 2017), a higher relative abundance of Ruminococcaceae (Hugerth et al., 2019), and a higher bacterial diversity

compared to the colonic mucosa-associated microbiota (Rangel et al., 2015). Microbial abnormalities in IBS subjects have been reported to be more pronounced in

fecal samples than in colonic mucosal samples and the separation between mucosal and fecal microbiota composition was more distinct in IBS subjects than in

healthy controls (Rangel et al., 2015). Whether IBS symptomatology is associated with taxonomical differences in the luminal and/or mucosal microbiota still remain to

be determined. Created with BioRender.com.

(Fodor et al., 2019). Fecal microbiota transplantation with the
aim of restoring the GI microbiota of IBS subjects to a healthy
status have also demonstrated positive outcomes depending on
the mode of delivery (Mazzawi et al., 2018, 2019; Ianiro et al.,
2019), although conflicting results have been reported (Halkjaer
et al., 2018; Johnsen et al., 2018).

MICROBIAL MODULATION OF IMMUNITY
AND HOMEOSTASIS

Several studies highlight the immunological and regulatory
effects of microbially-derived molecules, such as SCFAs, as

an important link between the GI microbiota and the
host. SCFAs are well known for modulating inflammatory
responses from innate immune cells through different signaling
pathways. For instance, butyrate can act as an inhibitor of
histone deacetylases (HDAC), regulatory proteins acting on
the epigenome through chromatin-remodeling changes (Arpaia
et al., 2013). Alternatively, SCFAs can interact with G-protein-
coupled receptor (GPR)41, GPR109A and GPR43, which are
abundantly expressed on intestinal epithelial cells, monocytes
and neutrophils, to decrease pro-inflammatory cytokine and
dampen inflammatory responses (Masui et al., 2013; D’Souza
et al., 2017). GPR109A, a receptor for niacin, is agonized
by butyrate in the colon, promoting regulatory T cells
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FIGURE 4 | Host-microbe interactions mediated by SCFAs. G-protein-coupled receptor expressed on intestinal epithelial and immune cells are activated by SCFAs. In

particular, acetate and propionate are the most efficient agonists for GPR43 and GPR43, followed by butyrate and then other SCFAs (Kim et al., 2013). Propionate

agonizes GPR43 on colonic regulatory T cells to inhibit HDAC function and enhance FOXP3 expression, thereby promoting regulatory T cell differentiation and IL-10

production. Although acetate is a potent GPR43 ligand, and mediates colonic regulatory T cells accumulation, it is not clear whether this is through this receptor (Kim

et al., 2013). Butyrate has similar effects by either stimulating dendritic cells and macrophages to produce IL-10, or directly acting on naive T cells, inhibiting the

activity of HDAC on the Foxp3 gene, inducing naive CD4+ T cells differentiation and regulatory T cell expansion (Kim et al., 2013). Butyrate can induce the production

of TGF-β and cytoprotective IL-18 by the enterocytes through the activation of GPR109A. In addition, butyrate can inhibit NF-κB signaling, reducing the expression of

pro-inflammatory IL-8 and TNF-α (Kim et al., 2013). On the other hand, SCFAs can mediate protective immunity, activating GPR41 and GPR43 on GI epithelial cells

and resulting in the production of pro-inflammatory chemokines and cytokines (Kim et al., 2013). Therefore, SCFAs contribute to the maintenance of intestinal

homeostasis through multiple mechanisms. Created with BioRender.com.

differentiation, interleukin (IL)-10 and IL-18 expression in the
colonic epithelium (Singh et al., 2014). IL-18 can have a dual
role in inflammation and, in this case, it promotes epithelial

restoration and inflammation recession (Pu et al., 2019). On
the other hand, SCFAs can mediate protective immunity in
particular conditions. For example, SCFAs activate GPR41 and
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GPR43 on GI epithelial cells, resulting in the rapid production of
pro-inflammatory chemokines and cytokines (Kim et al., 2013)
(Figure 4).

In addition, SCFAs are well known for modulating also
immune cell chemotaxis, phagocytosis, reactive oxygen species
release and reduction of NF-κB activity. The effect on NF-κB
signaling, assessed on the human colon adenocarcinoma cell
line, Colo320DM, has been shown by all three major SCFAs, in
order of potency being butyrate>propionate>acetate (Tedelind
et al., 2007). In particular, butyrate has been shown to inhibit the
production of pro-inflammatory IL-8 and tumor necrosis factor
(TNF)-α by macrophages in vitro (Park et al., 2007) and in vivo
(Sokol et al., 2008).

However, despite the potential relevance of abnormal levels of
colonic SCFAs in IBS pathophysiology, findings are inconsistent
and often conflicting between studies. In subjects with IBS,
altered levels of fecal SCFAs have been reported either increased
or decreased. However, a recent meta-analysis attempting to
clarify these alterations, identified an overall reduction of
butyrate and propionate in fecal samples of IBS-C subjects and
higher levels of butyrate in fecal samples of IBS-D subjects, when
compared to healthy controls (Sun et al., 2019).

These findings support the role of the GI microbiota in the
modulation of the immune responses from the host. However,
this relationship exists in a mutual interaction where the adaptive
and innate immune systems are likely to shape the composition of
the microbiota in return. This hypothesis is supported by several
arguments, for example, in mice the absence of the myeloid
differentiation primary response 88, an adapter protein involved
in toll-like receptor (TLR) signaling leads to Bacteroidetes
overgrowth (Wen et al., 2008). In addition, the risk of developing
IBS after an episode of gastroenteritis (Spiller et al., 2000)
suggests that the activation of the immune system by infectious
triggers including bacteria, viruses or parasites, could impact the
composition and function of the microbial community.

Further evidence of these mutual microbe-immune
interactions in IBS is the presence of antibodies against the pro-
inflammatory bacterial protein flagellin (Schoepfer et al., 2008).
Flagellin is capable of inducing antibody responses through
TLR5 (Lopez-Yglesias et al., 2014), and an increased abundance
of flagellin-producing species belonging to Clostridium cluster
XIVa has been reported in IBS subjects (Salonen et al.,
2010; Jeffery et al., 2012a). In particular, the mucin degrader
Ruminococcus torques is known to produce flagellin proteins
(Lyra et al., 2009) and is also frequently associated with IBS
(Malinen et al., 2010). Because of these functional features,
this species has been proposed as a potential player in the
modulation of the low-level inflammatory responses at the
mucosal surface.

Different species of commensals have been reported to
induce specific effects on the host immune responses in health
and disease. Bacteroides fragilis was demonstrated to have a
protective role by inducing the proliferation of IL-10 producing-
regulatory T cells, through the expression of the surface factor
polysaccharide A (Round and Mazmanian, 2010).

Similarly, IL-10 release is also promoted by several Clostridia
strains. Seventeen bacterial strains isolated from a healthy human

fecal sample and falling within the Clostridium clusters IV, XIVa
and XVIII have been demonstrated to increase the number
and function of colonic regulatory T cells in colonized rodents
(Atarashi et al., 2013). Moreover, since the Clostridia class is
thought to colonize the area surrounding the colonic mucosa and
includes several major butyrate-producers (Lopetuso et al., 2013),
it is likely that taxa belonging to this class have a crucial impact
on the host immune system.

Several species from the Clostridia class are also able
to generate biologically active catecholamines, including
the neurotransmitters norepinephrine and dopamine, as
demonstrated in gnotobiotic and germ-free mice (Asano et al.,
2012). Therefore, Clostridia seem to be particularly involved in
IBS pathophysiology, because of their crucial role not only in GI
immune homeostasis but also in the gut-brain axis.

The high co-morbidity between FGIDs and stress-related
symptoms represents further evidence of the involvement of
the gut-brain axis in IBS (Mayer et al., 2014). Animal models
of stress-related disorders showed critical changes in fecal
(Bharwani et al., 2016) andmucosal (Galley et al., 2014)microbial
composition, metabolites (Aoki-Yoshida et al., 2016), immune
gene expression in the terminal ileum, as well as in serum
cytokine concentration (Aoki-Yoshida et al., 2016; Bharwani
et al., 2016). This suggests that the microbiota is sensitive
to stress exposure and highlights the importance of analyzing
the microbiota community composition by microbial niche.
Maes et al. were the first to demonstrate that psychological
stress in humans induces inflammatory responses with increased
production of the pro-inflammatory cytokines interferon (IFN)-
γ, TNFα and IL-6 (Maes et al., 1998). In addition, stress-induced
mediators, such as the corticotropin-releasing factor, increased
macromolecular permeability in the healthy human colon via
corticotropin-releasing factor receptor on subepithelial mast cells
(Wallon et al., 2008). These findings may be relevant in the
context of FGIDs, whose course is likely to be affected by
persistent stress.

Crucial host-microbiota-immune interactions in the GI
tract and in the central nervous system can also be affected
by the availability of the essential amino acid tryptophan
(Marsland, 2016; Rothhammer et al., 2016), and by the
metabolites deriving from bacterial tryptophan metabolism
(indole, indolic acid derivatives, skatole, and tryptamine). In
IBS, increased tryptophan metabolism is associated with low-
grade inflammation and microbiota alterations (Clarke et al.,
2009). Tryptophan is also crucially involved in several other
microbiota-mediated interactions in the GI tract, such as
secretory and sensory reflexes, peristalsis and the serotonin
pathway (Keszthelyi et al., 2009). A link between the microbiota
and the tryptophan metabolism has been demonstrated in germ-
free mice, which exhibit abnormal levels of serotonin in the colon
but not in the small intestine (Yano et al., 2015).

In the body, the majority of serotonin, a crucial
neurotransmitter and regulatory factor, is derived from the
hydroxylation of L-tryptophan by the tryptophan hydroxylase 1
enzyme, expressed in intestinal enterochromaffin cells. Mucosal
biopsies from individuals with IBS showed reduced mRNA
expression levels of tryptophan hydroxylase 1 (Kerckhoffs et al.,
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2012). Therefore, dysregulation of the tryptophan pathway,
which may affect mood and cognition, colonic motility and
visceral hypersensitivity (O’Mahony et al., 2015), may be related
to IBS pathogenesis. Similarly, a reduced serotonin reuptake and
an impaired serotonin release have been reported respectively in
subjects with IBS-D and IBS-C (Atkinson et al., 2006). In this
regard, tegaserod, which is used to treat IBS-C, and alosetron,
which is used to treat IBS-D, respectively stimulate and block the
serotonin 5HT4 and 5HT 3 receptor (Binienda et al., 2018). This
reflects the complexity of the interactions underlying abnormal
colonic motility.

Overall, the unavoidable interaction between the GI
microbiota and the immune system could potentially be involved
in the low-grade chronic inflammation often observed in
individuals with IBS regardless of subtypes. Inflammation
may potentially underlie most of the pathways involved in
IBS symptom generation, including visceral hypersensitivity
(Klooker et al., 2010), abdominal pain (Barbara et al., 2004)
and increased permeability (Wallon et al., 2008). However, the
mechanisms behind the connection between stress, inflammation
and colonic mucosal barrier function are largely unknown.

MICROBIAL REGULATION OF EPITHELIAL
BARRIER FUNCTION IN THE GI TRACT

In a healthy GI tract, the direct contact between the microbiota
and the rest of the host is prevented by the mucosal barrier,
that, together with the mucus layer, represents a “shield”
against pathogens. The mucosal barrier also includes the
mucosal immune system and the enteric nervous system
(Kelly et al., 2015).

Mucins are highly glycosylated macromolecule components
of the mucus barrier. They represent an alternative substrate
to dietary polysaccharides for mucin-degrading bacteria, such
as R. torques and Akkermansia muciniphila (Tailford et al.,
2015). An abnormal increase in these species (such as through
dietary restriction) may reduce mucus layer thickness, possibly
contributing to impaired mucus barrier function, increased
pathogen susceptibility and inflammatory conditions (Pelaseyed
et al., 2014). An altered relative abundance of mucin-degraders
may otherwise reflect changes inmucus shedding in subjects with
IBS-D, resulting in mucous discharge in their stool.

The metabolism of sulfated mucins by mucin-degrading
bacteria represents a source of sulfate, which can be subsequently
reduced to hydrogen sulfide (Gibson et al., 1993). High
concentrations of hydrogen sulfide have been demonstrated
to induce oxidative stress, to impair cellular respiration and
adenosine triphosphate production (Cooper and Brown, 2008)
and to inhibit butyrate oxidation by colonocytes in vivo
(Jorgensen and Mortensen, 2001) and in vitro (Roediger
et al., 1993). Colonocytes are therefore deprived of their
main sources of energy. Oxidative stress and energy starvation
may result in colonocyte death, weakening of the epithelial
barrier and direct contact of commensals with the mucosal
immune system (Jorgensen and Mortensen, 2001). Therefore,
increased levels of hydrogen sulfide, in conjunction with

increased microbial nitric oxygen production and decreased
mucosal sulfide detoxification, have been shown to damage the
colonic epithelium and contribute to mucosal inflammation
(Roediger and Babidge, 2000).

The GI microbiota can also directly control epithelial
permeability by upregulating tight junction (TJ) proteins in
both normal and pathological conditions (Ewaschuk et al., 2008;
Anderson et al., 2010; Karczewski et al., 2010). Given this crucial
role played by the commensals in the maintenance of epithelial
barrier integrity, alterations in this community may be relevant
for the increased permeability often seen in IBS-D (Dunlop et al.,
2006; Hou et al., 2017). In particular, biopsies from subjects with
IBS-D showed a reduced expression of occludin (Coeffier et al.,
2010) and claudin-1 in the colonic mucosa (Bertiaux-Vandaele
et al., 2011) and a disrupted apical junctional complex integrity
in the jejunal mucosa (Martínez C. et al., 2013).

Alterations of TJ proteins in IBS have been also associated
with visceral hypersensitivity, abdominal pain (Piche et al., 2009;
Bertiaux-Vandaele et al., 2011) and mast cell activation (Martínez
C. et al., 2013). The increased GI permeability may result in
the translocation of bacteria and their products through the
barrier, influencing local and systemic immune responses and
contributing to the low-grade inflammation in IBS (Kelly et al.,
2015). Pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-4,
IL-12 and IL-1β also contribute to TJ disruption and increased
paracellular permeability (Suenaert et al., 2002). Hypersensitivity
and symptom severity have been observed to be increased in
IBS-D patients with increased GI permeability, in comparison
to healthy controls and IBS-D subjects with normal permeability
(Zhou et al., 2009).

A subtype-specific increase of mucosal mast cell mediators,
such as serine proteases and tryptases, in subjects with IBS-Dmay
be responsible for the observed increased colonic permeability
(Lee et al., 2010; Wilcz et al., 2011). In addition, an in vitro
study demonstrated that plasma lipopolysaccharides and tryptase
levels were increased in IBS-D, but not in IBS-C (Ludidi et al.,
2015). The same study also showed an increased permeability
when Caco-2 cells were exposed to plasma from IBS-D and
IBS-C subjects, with a higher effect for IBS-D in comparison to
IBS-C. In addition, IBS-D patients show distinctive transcription
patterns regarding epithelial permeability, mast cell activity and
TJ expression; for example occludens mRNA expression has been
observed to be inversely correlated with the mRNA expression of
tryptase (Martinez et al., 2012).

In vitro studies with Caco-2 monolayers (Piche et al., 2009)
or murine tissues incubated with colonic (Cenac et al., 2007)
or fecal (Gecse et al., 2008) supernatants from IBS subjects
support the correlation between decreased epithelial barrier
function, zonula occludens-1 mRNA expression, inflammation
and pain severity. Intestinal permeability in IBS may be
possibly ameliorated by the positive effect exerted by lactic-
acid bacteria on TJ proteins. Indeed, a probiotic cocktail
including Streptococcus thermophilus, Lactobacillus spp. and
Bifidobacterium longum has been demonstrated to improve
mucosal barrier function in subjects with IBS-D (Zeng et al.,
2008). Probiotics are live microorganisms that may be beneficial
for conditions featuring dysbiosis, such as IBS. Recent systematic

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10 September 2020 | Volume 10 | Article 468

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Carco et al. Mechanisms Underlying Functional Gastrointestinal Disorders

reviews and meta-analyses reported contrasting results (Ford
et al., 2018a,b), but suggest that probiotics as a class, have
very limited but beneficial effect over placebo on general IBS
symptoms, such as bloating and flatulence (Ford et al., 2018b).

In conclusion, increased GI permeability, which seems
to be a prevalent feature of IBS-D, may trigger low-grade
GI and systemic inflammation and correlates with symptom
severity. The molecular mechanisms responsible for increased GI
permeability in FGIDs are still poorly understood, but represent
potential therapeutic and discriminating targets for IBS-D from
other IBS subtypes and health. Although there is a lack of
concrete evidence to confirm these interactions, hypersensitivity
to certain food have been identified as one of the possible
causes for the increased epithelial barrier permeability, visceral
hypersensitivity and inflammation in up to 65% of IBS subjects
(Simrén et al., 2001).

THE LINK BETWEEN DIETARY
COMPONENTS AND FUNCTIONAL
GASTROINTESTINAL DISORDERS

A growing body of evidence supports the role of dietary
macronutrients (carbohydrates, proteins and lipids) in inducing
shifts in the GI microbiota, influencing host metabolic and
immune markers (Shibata et al., 2017). Several molecules, either
coming directly from food or released by commensals are likely to
influence the activity of the immune system (Shibata et al., 2017).

Diet has been recognized to be involved in the predisposition
or exacerbation of IBS, as up to 65% subjects with IBS report
food to play a crucial role in their symptoms (Böhn et al., 2013).
Three mechanisms have been proposed to explain the dietary
intolerances in individuals with IBS: hypersensitivity to specific
foods; hypersensitivity to food chemicals and luminal distension.

Food hypersensitivity may involve immunoglobulin E-
mediated (atopic) or non-immunoglobulin E-mediated (non-
atopic) reactions. Acute-phase immunoglobulin E-mediated
hypersensitivity results in the activation ofmast cells, eosinophils,
and other immune cells and the release of molecules (histamine,
leukotrienes) involved in GI symptom generation (Portincasa
et al., 2017). Recent studies did not observe increased levels
of immunoglobulin E in IBS subjects (Zar et al., 2005)
nor correlated increased serum immunoglobulin E with IBS
symptom severity (Nybacka et al., 2018), rectal eosinophilia
(Akkuş et al., 2019), or colonic mast cell and eosinophil activation
in IBS subjects (Bischoff et al., 1997). Finally, a recent study
on IBS subjects showed that more than 50% of patients could
have a response to specific foods, characterized by eosinophil
activation but which was not associated with immunoglobulin
E (Fritscher-Ravens et al., 2019). Therefore, although atopic
reactions to specific foods are common in patients with IBS, the
association with IBS pathogenesis is not supported in literature
and immunoglobulin E-mediated food hypersensitivity in IBS is
rare (Crowe, 2019).

There is increasing evidence that immunoglobulin G-
mediated food hyperreactivity may play a role in IBS symptom
generation, but results remain contradictory. Recent studies

found elevated food-specific immunoglobulin G levels in IBS
subjects in comparison to controls (Zar et al., 2005; Lee and
Lee, 2017; Karakula-Juchnowicz et al., 2018). In a randomized
controlled trial, IBS subjects excluded from their diet the foods
responsible for their increased immunoglobulin G levels. After
3 months, the dietary exclusion resulted in a reduction of
symptom severity, suggesting that food elimination based on
immunoglobulin levels may be promising for the reduction of
IBS symptoms (Atkinson et al., 2004). Notably, the 87% of the
IBS subjects from this study reported symptomatic reactions to
yeast, but previous studies with a similar number of participants
observed lower percentages [5% Nanda et al., 1989 and 12%
Hunter, 1985] of IBS patients indicating yeast as an offending
food. Therefore, these discrepancies suggest that increased levels
of immunoglobulin G to a specific food may not be necessarily
linked to IBS symptom generation. Other findings confirmed
that immunoglobulin G-mediated hypersensitivity to yeast or
other specific foods in IBS is unlikely, as no differences were
found in immunoglobulin G levels between IBS subjects and
controls (Ligaarden et al., 2012). Moreover, either low or high
immunoglobulin G levels were associated with more severe
symptomatology (Ligaarden et al., 2012). Therefore, an increase
production of immunoglobulin G is more likely to reflect a
physiological response to diet rather than a pathological reaction
from the GI immune system.

Secondly, food bioactive chemicals, such as salicylates,
(contained for example in almonds, apples, berries..), or related
organic or inorganic acids, have the potential to trigger a
non-specific antigen-induced pseudo-allergic hypersensitivity
reaction, causing the release of cysteinyl leukotrienes (Raithel
et al., 2005). Cysteinyl leukotrienes are pro-inflammatory
lipid mediators deriving from arachidonic acid which increase
smooth muscle contraction and vascular permeability (Raithel
et al., 2005), resulting in nausea, bloating, diarrhea or
visceral hypersensitivity. Although salicylate sensitivity has been
suggested to affect 2–7 % of individuals with inflammatory bowel
diseases (Raithel et al., 2005), there is still a lack of concrete
evidence linking salicylate sensitivity to FGIDs. In a survey of 643
subjects with IBS, 12% reported their symptoms to be associated
with the combined use of analgesics, including the salicylate
aspirin (Locke et al., 2000). However, the study also showed that
these individuals were intolerant to a high number of foods,
which could be associated with the reported symptoms.

In this regard, the third mechanism involves a group of
food components comprising a category of nutrients defined as
fermentable oligosaccharides, disaccharides, monosaccharides
and polyols (FODMAPs), which are short-chain, soluble,
highly fermentable carbohydrates. Their fermentative
properties make FODMAPs closely linked to symptoms
generation in IBS (Figure 5), increasing the stool bulk with
water and fermentation by-products (gas and SCFAs), often
resulting in luminal distension, abdominal pain and bloating
(Böhn et al., 2013).

A diet low in FODMAPs is very restrictive and although long-
term restrictive diets seem to still allow for an adequate nutrients
intake (O’Keeffe et al., 2018), they may decrease the absolute and
relative microbial load and diversity. This can potentially lead to
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FIGURE 5 | The consequences of diet on a dysbiotic microbiota may lead to altered levels of these metabolites, resulting in GI symptoms. In the colon, the

fermentation of dietary fiber results in changes in the microbiota composition, supporting the growth of beneficial bacteria. Consequently, the microbiota generates

gases, SCFAs and other metabolites. The microbial metabolism of lipids entering the colon is involved in several important pathways for the host. The families

Erysipelotrichaceae and Coriobacteriaceae also play an important role in the conversion of cholesterol-derived metabolites, such as bile salts and steroids (Martínez I.

et al., 2013). Altered bile acid metabolism has been associated with chronic inflammation in the colon (Devkota et al., 2012) and microbiota-derived bile acid

metabolites have the potential to affect both host metabolism and immune responses (Alimov et al., 2019). The microbiota-mediated protein metabolism is largely

affected by the proteolytic activity of amino acid-fermenting bacteria, mainly Clostridia and Peptostreptococcus, but also Bacteroides spp., Propionibacterium,

Fusobacterium spp., Streptococcus, Lactobacillus, Veillonella spp., Selenomonas ruminantium and Megasphaera elsdeniiare (Yang and Yu, 2018). The microbial

catabolism of amino acids occurs mostly through deamination and decarboxylation (Bertrand et al., 2014) and can generate immuno-modulatory molecules and

neurotransmitters (like catecholamines) that have effects on both the immune and the nervous system. For example, the microbial glutamate decarboxylases convert

glutamate into gamma-aminobutyric acid, which has immunomodulatory effects in the GI tract (Baj et al., 2019). Histamine, derived from the bacterial decarboxylation

of L-histidine, can inhibit the release of pro-inflammatory cytokines via the histamine type 2 receptor on epithelial cells (Thomas et al., 2012). Hydrogen sulfide is

thought to be responsible for an increased visceral hypersensitivity related to colonic distension, for altered colonic motility (Tsubota-Matsunami et al., 2012) and other

deleterious effect on the colonic epithelium (Jorgensen and Mortensen, 2001). SRB: sulfate-reducing bacteria; BCFAs: branched-chain fatty acids. Created

with BioRender.com.

detrimental effects on the colonic environment and microbiota
(Halmos et al., 2015).

FODMAPs appear to be the preferred fermentation substrate
for the Clostridia class (Flint et al., 2012), so their relative
abundance and their functional characteristics have been
proposed to play a role IBS symptom generation. Because of
their ability to influence themicrobiota composition, fermentable
carbohydrates (e.g., fiber) are the most investigated dietary
category in the context of IBS (Martínez et al., 2010). Primary
fiber-fermenters include Ruminococcus bromii, Roseburia and
Eubacterium rectale (Walker et al., 2011; Martínez C. et al., 2013),
which generate byproducts that are more easily utilized by other
species, contributing to bacterial cross-feeding.

The scientific evidence of the use of fiber and bulking agents
to possibly improve IBS symptoms has been reviewed in several
meta-analyses, but the benefits seem to be too sparse to draw firm
conclusions (Lesbros-Pantoflickova et al., 2004; Ford et al., 2008).
Soluble fiber supplementation may ameliorate constipation in
IBS, but symptoms like bloating and abdominal pain may not
improve or even worsen with some types of fiber, such as wheat
corn and bran (Bijkerk et al., 2004).

Dietary fiber can act as a prebiotic, affecting the composition
of the colonic microbiota, promoting the growth of beneficial
bacteria, such as Lactobacillus and Bifidobacterium, and
increasing the production of SCFAs, which are important in the
maintenance of intestinal homeostasis (Maslowski and Mackay,
2011). Furthermore, dietary fiber can also stimulate mucus
production and secretion by the colonic epithelium (McRorie
and McKeown, 2017).

On the other hand, the consumption of diets rich in
saturated fats of animal origin has been associated with low-grade
inflammation in the GI tract, through the activation of TLR-
dependent signaling bymicrobial factors (Kim et al., 2012; Caesar
et al., 2015). The host lipid metabolism has been often associated
with the microbiota community composition, and particularly
with the families Erysipelotrichaceae andCoriobacteriaceae. Some
members of the Coriobacteriaceae are thought to be involved in
metabolic disorders and FGIDs, and are therefore considered as
fat-induced pathobionts (i.e., potentially pathogenic symbionts
of the microbiota) (Clavel et al., 2014). Similarly, the relative
abundance of Erysipelotrichaceae seem to be linked to diets high
in fats and to play a role in host lipid metabolism (Harris et al.,
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2014) as well as in colonic inflammation. Indeed, some members
of this bacterial family are coated with immunoglobulin A and
therefore, highly immunogenic (Palm et al., 2014). Overall, it is
unclear if Erysipelotrichaceaemay play a role in the development
of colonic inflammation or if their relative abundance is reflecting
more the dietary and/or the lipid and cholesterol status of
the host.

A high intake of dietary protein, specifically animal-based
proteins, has been implicated in the pathogenesis of IBS through
multiple mechanisms (Kakodkar and Mutlu, 2017). An excessive
microbial fermentation of protein results in the release of
toxic end-products, such as ammonia, phenols, branched-chain
fatty acids, and hydrogen sulfide. Clostridium spp. have long
been considered as major producers of ammonia from protein
fermentation (Vince and Burridge, 1980), which can impair
colonic barrier function (Lin and Visek, 1991) and stimulate the
release of pro-inflammatory cytokines (Pieper et al., 2012). This
may explain the fact that many IBS subjects report foods rich
in animal protein, including meat, fish and eggs, to induce GI
symptoms (Hayes et al., 2014).

Hydrogen sulfide, another end-product of protein
fermentation, is produced by the microbiota mostly through
the degradation of the sulfur-containing amino acid cysteine.
Fusobacterium spp., which is known to generate cysteine
through the cysteine desulfydrase activity, has been associated
with impaired colonic function in IBS or inflammatory bowel
diseases (Strauss et al., 2011). Although high concentrations of
hydrogen sulfide can be detrimental for the colonic epithelium,
hydrogen sulfide at low concentrations was demonstrated to
maintain the integrity of the mucus layer and to ameliorate
mucosal inflammation (Wallace et al., 2018). Given the fact
that the colonic microbiota generates much more hydrogen
sulfide from cysteine than the colonic epithelial cells, it has been
suggested that hydrogen sulfide exerts a protective effect when
produced from endogenous metabolism but can be deleterious
when generated at high concentrations by colonic microbes
(Blachier et al., 2019).

BIOMARKERS TOWARD AN IMMUNE
SIGNATURE IN FUNCTIONAL
GASTROINTESTINAL DISORDERS

Understanding the mechanisms underlying host-microbe
interactions and symptoms pathophysiology will likely improve
the current knowledge of pathways involved and the predictive
value of IBS biomarkers. Biomarkers can be measured in blood,
fecal, urine or breath samples, to potentially discriminate IBS
from other GI disorders or from health, and more importantly
within the IBS subtypes and to characterize improvements in
well-being and quality of life of IBS subjects.

General observations in IBS vs. health include differences
in microbial composition, immune profile, GI motor and
sensory function, pain perception, serotoninmetabolism, and the
expression of genes involved in immune activation (Camilleri
et al., 2017). Differences in fecal bile acids and fecal fat
also successfully discriminated between IBS-D and IBS-C

(Vijayvargiya et al., 2019) and fasting serum C4 (7a-hydroxy-4-
cholesten-3-one) and fibroblast growth factor 19 showed good
specificity to exclude the diagnosis of bile acid diarrhea in IBS-D
and FD (Vijayvargiya et al., 2017).

Some of the parameters that have been studied include
biomarkers of GI and immune function and biomarkers of GI
microbiota (Bischoff, 2011; Hyland et al., 2014). In 2009, Lembo
et al. reported 10 “first-generation” serum biomarkers with high
specificity (88%), although the sensitivity was poor (50%) (Lembo
et al., 2009). However, reflecting the complex pathophysiology,
the utility increased when the panel was expanded to 34
serological and gene expression markers to discriminate IBS
from healthy controls (Jones et al., 2014). Subsequently, other
studies combined plasma and fecal biomarkers associated with
different parameters of GI function, to reflect the multifactorial
nature of IBS (Mujagic et al., 2016). A novel multi-domain non-
invasive biomarker panel was identified and validated, which
could discriminate IBS from health with high sensitivity (88.1%)
and specificity (86.5%), and could be correlated with GI symptom
severity in IBS and in the general population (Mujagic et al.,
2016). This included plasma cytokine levels, such as IL-1β, IL-6,
IL12p70, and TNF-α, as markers of systemic immune activation,
fecal Chromogranin A (CgA), as an indicator of the colonic
neuroendocrine cell activity, fecal human β-defensin 2, as an
indicator of host protection against microbes, calprotectin, as
an indicator of colorectal inflammation, reflecting neutrophil
migration to the colonic mucosa, and caproate, a product
of microbial fermentation of non-digested oligosaccharides in
the colon.

Recent studies have highlighted the role of immune
dysregulation andmicrobial dysbiosis in IBS and somemolecules
of the immune system measured in blood or in GI luminal
contents could be putative biomarkers. Fecal CgA plays a
role in pain regulation and antimicrobial activity, and their
fecal levels have been negatively correlated with colonic transit
time in individuals with IBS (Öhman et al., 2012). The fecal
granin profile of IBS has been associated with the microbiota
alpha-diversity and composition, in particular with the genus
Bacteroides (Sundin et al., 2018). Although CgA represents a
link between the neuroendocrine and immune systems, fecal and
serum granins can be increased in other conditions, including
lymphocytic colitis (El-Salhy et al., 2011) and celiac disease
(Pietroletti et al., 1986). Granins thus are not considered as
useful biomarkers for IBS, because their lack of specificity and
discriminatory power.

Calprotectin, a protein released by neutrophils during GI
inflammation, can be easily measured in stool samples, as it
is resistant to degradation in the colon, and can therefore be
considered as a non-invasive marker of low-grade inflammation.
Although calprotectin is primarily used to distinguish IBS from
IBD (Chang et al., 2014; Banerjee et al., 2015), concentrations
have been shown to vary within IBS. In a prospective study,
fecal calprotectin was elevated in one third of all patients
across IBS subtypes (Melchior et al., 2017). In addition, a
recent study demonstrated that differences in fecal calprotectin
concentrations in children discriminated between IBS subtypes
and from healthy controls. In particular, fecal calprotectin
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concentration was highest in IBS-D, followed by those with
IBS-M and IBS-C (Choi and Jeong, 2019). In combination
with other plasma and fecal biomarkers, fecal calprotectin may
effectively discriminate IBS from health and within IBS subtypes
(Nemakayala and Cash, 2019).

Serine proteases, such as tryptases, which are released by
colonic mast cells and bacteria, have been also reported to be
elevated in IBS-D (Róka et al., 2007; Tooth et al., 2014). These
proteases are thought to play a role in several pathways involved
in IBS symptom generation, such as the stimulation of colonic
nerves through the protease activated receptor-2, leading to
abdominal pain (Valdez-Morales et al., 2013; Cattaruzza et al.,
2014). Proteases also contribute to mucosal inflammation (Róka
et al., 2007), affect motility of smooth muscles (Sekiguchi et al.,
2006) and increase paracellular permeability (Róka et al., 2007)
in the colon.

TLRs are a family of receptors present on both epithelial
and immune cells in those tissues exposed to the external
environment, such as the lungs and GI tract (Zarember and
Godowski, 2002). Alterations in the activation of TLR1/2, TLR2,
TLR3, TLR5, TLR7, and TLR8 have been reported in IBS (Brint
et al., 2010), such as increased levels of TLRs 4/5 (Zarember
and Godowski, 2002; Shukla et al., 2018) and decreased levels
of TLRs 7/8 (Brint et al., 2010; Clarke et al., 2012). TLRs bind
to conserved microbial molecular patterns and their activation
induces intracellular signaling cascades leading to the expression
of pro- and anti-inflammatory cytokines and chemokines (Vidya
et al., 2018). In addition, it has been demonstrated that TLR
activation can have consequences on colonic motility, through
the activation of neuroendocrine mechanisms (Tattoli et al.,
2012; Shukla et al., 2018), or through interactions with the
sulfide system (Grasa et al., 2019). In particular, TLR4 seems
to play a crucial role in the maintenance of normal colonic
motility, as Tlr4−/− mice showed a decreased amplitude and
frequency of the contractions in the proximal colon (Forcén et al.,
2016). In human primary cultures of colonic smooth muscle
cells, lipopolysaccharide-induced TLR4 activation resulted in an
increased myogenic effect, whereas the incubation with TLR2
agonists induced a decreasedmyogenic effect (Tattoli et al., 2012).

Consistent with these observations, chronic low-grade
inflammation and differences in pro- and anti-inflammatory
cytokine concentrations in the colonic mucosa or systemically
have been also associated with IBS (Sundin et al., 2015;
Choghakhori et al., 2017). Several studies report an increase
in the concentration of pro-inflammatory cytokines, such
as IL-1β, IL-6, IL-8, TNF-α and IFN-γ (Dinan et al., 2006;
Rana et al., 2012; Darkoh et al., 2014; Barbaro et al., 2016;
Seyedmirzaee et al., 2016; Choghakhori et al., 2017; Bennet et al.,
2018; Vara et al., 2018), and a decrease in the concentration of
the anti-inflammatory cytokine IL-10 (Macsharry et al., 2008;
Choghakhori et al., 2017) in serum, plasma or colonic biopsies of
IBS patients. However, these changes are inconsistent between
studies (Chang et al., 2012; Shulman et al., 2014). Differences in
the count and the activation rate of immune cell populations,
particularly mast cells but also macrophages, lymphocytes and
eosinophils, have also been reported in IBS (Lee et al., 2008;
Walker et al., 2009). Mediators produced by these cells (nitric

oxide, histamine and proteases) are likely to play a role in several
pathways involved in IBS symptoms generation (Figure 6).
Notably, the number and the activation rate of mucosal mast
cells has been reported to be higher in IBS-D patients compared
to healthy controls and correlated with severity and frequency
of abdominal pain (Barbara et al., 2004; Park et al., 2006).
Another study reported no difference in mast cell count, but
the percentage of degranulated mast cells was increased in
IBS-D patients (Liu et al., 2018). In addition to the number of
colonic mast cells, an augmented activity of colonic mast cells
in proximity to sensory nerves is likely to play a role in IBS
symptom development. In subjects with IBS-D the immune
activation of peripheral CD4+ T-cells was reported, but it did
not correlate with GI or psychological symptoms (Nasser et al.,
2019), whereas an enhanced pro-inflammatory cytokine release
in IBS-D was associated with symptoms and anxiety in a previous
study (Liebregts et al., 2007).

An increased count of lamina propria CD3+, CD4+, and
CD8+ T cells and activated macrophages has been observed also
in subjects with a diarrhea-predominant phenotype persisting
after an episode of infectious gastroenteritis (Spiller et al., 2000).
In post-infectious IBS, the initial infection may have altered
the normal GI microbial environment and led to a prolonged
immune response (Al-Khatib and Lin, 2009), persisting even
when the infecting pathogen was no longer detectable (Spiller
et al., 2000). The cytolethal distending toxin, produced by gram-
negative pathogenic bacteria which often persistently colonize
their host, together with the cytoskeletal protein vinculin, have
been recently used as biomarkers to successfully discriminate
IBS-D from other causes of diarrhea and healthy controls (Rezaie
et al., 2017), advancing the understanding of the role of immunity
in FGIDs, although the diagnostic value of these biomarkers is
less certain (Talley et al., 2019).

CONCLUSIONS

FGIDs present a highly variable clinical phenotype associated
with early childhood events, somatisation, different diets,
psychological, hereditary and environmental factors. To date,
specific immune cell populations, cytokine concentrations and
bioactive metabolites have been investigated in an independent
manner, resulting in contrasting findings on the exact role of
immune activation in the development of FGIDs (Lazaridis and
Germanidis, 2018).

Several studies have provided new insights into bacterial
mechanisms influencing the immune system in the context of
inflammatory bowel diseases (Gonçalves et al., 2018), but less is
known about IBS (Barbara et al., 2011).

The evaluation of the consequences of dysbiosis in FGIDs
has some limitations. Firstly, there is still a lack of integration
between taxonomic and functional data for the identification of
specific microbes and to better understand their contribution to
the optimal function of the GI tract and associated organs, for
example the brain via the gut-brain axis. Indeed, the interactions
between microbial community and host could not be gathered
from single analyses as most metabolic pathways in nature take
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FIGURE 6 | Potential role of mast cells in IBS and chronic low-grade inflammation. Mast cells are thought to play a role in the onset of abdominal pain, as well as

diarrhea or constipation. These symptoms are modulated by the mediators released by activated mast cells of the GI mucosa, which stimulate other immune cells,

perpetuate chronic inflammation and alter secretion and peristalsis, resulting in abnormal GI permeability and motility. Mast cells, located close to nerve fibers, are

thought to trigger pain signals. The mediator histamine sensitizes the nociceptor transient receptor potential channel V1 on peripheral nerve terminal of nociceptive

submucosal neurons, resulting in visceral hypersensitivity (Cenac et al., 2010). Studies on rectal biopsies from IBS subjects demonstrated that the histamine H1

receptor-mediated stimulation of the nociceptor transient receptor potential channel V1 was potentiated in IBS subjects but not in healthy controls (Wouters et al.,

2016). Proteases degranulated by mast cells may also destroy various epithelial gap junctional proteins (e.g., zonula occludens), leading to impairments in epithelial

barrier function. Alterations in motility seem also to be linked to mast cells’ degranulation. In particular, the stimulation of prostanoid receptors P2X on smooth muscle

cells generates the excitatory potential responsible for contraction, impacting on smooth muscle contractility (Zhang L. et al., 2016). Created with BioRender.com.

place within communities, rather than pure cultures. High-
throughput DNA sequencing technology has enabled a shift from
descriptive analysis of different taxa of the microbial community
to an investigation of the predictive functional contribution of the
microbiota to health and disease (Rooks and Garrett, 2016).

Secondly, IBS clinical symptoms are heterogenous and
fluctuating and there are no confirmed molecular or organic
biomarkers to diagnose this condition. Finally, the identification

of a microbial signature in IBS is confounded by the individual
complexity, instability and variability of the microbiota, which
can be influenced by the psychological status, medications and
diet. In this regard, diet can affect microbiota composition
and function as well as colonic motility, sensitivity and
epithelial barrier function. However, further research is needed to
elucidate the role of specific macronutrients and micronutrients
in IBS.
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Finally, discrepancies between studies may also reflect
differences in DNA extraction methods, analytic techniques,
number of subjects and the sample collection method. Indeed,
fecal samples do not precisely represent the microbiota
composition or function in the proximal colon, and colonic
biopsies do not physiologically reflect the microbiota, because of
the extensive sample preparation.

A possible microbial pathogenesis in IBS has also therapeutic
implications. In this regard, probiotic, prebiotic, synbiotic and
antibiotic treatments have been largely investigated although
with contrasting results, and the manipulation of GI microbiota
represents a promising strategy in the treatment of FGIDs.

In this review, the recent evidence proposing FGIDs
as systemic conditions has been discussed. This involves
not only individual systems, such as the GI microbiota,
the digestive, immune and enteric nervous systems, but
also their intricate interplay. The mechanisms involved in
FGID pathophysiology can be investigated at the cellular
and molecular level, including the analysis of the genome,
trascriptome, proteome, metabolome and brain connectome.

Therefore, we suggest an integrative system biology approach
as the most appropriate to investigate the complex interactions
underlying FGIDs, considering the broad range of different and
interacting elements, which are responsible for the highly variable
clinical phenotype.
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