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The role of the human microbiome in health and disease is becoming increasingly
apparent. Emerging evidence suggests that the microbiome is affected by solid organ
transplantation. Kidney transplantation is the gold standard treatment for End-Stage Renal
Disease (ESRD), the advanced stage of Chronic Kidney Disease (CKD). The question of
how ESRD and transplantation affect the microbiome and vice versa includes how the
microbiome is affected by increased concentrations of toxins such as urea and creatinine
(which are elevated in ESRD), whether restoration of renal function following
transplantation alters the composition of the microbiome, and the impact of lifelong
administration of immunosuppressive drugs on the microbiome. Changes in microbiome
composition and activity have been reported in ESRD and in therapeutic
immunosuppression, but the effect on the outcome of transplantation is not well-
understood. Here, we consider the current evidence that changes in kidney function
and immunosuppression following transplantation influence the oral, gut, and urinary
microbiomes in kidney transplant patients. The potential for changes in thesemicrobiomes
to lead to disease, systemic inflammation, or rejection of the organ itself is discussed,
along with the possibility that restoration of kidney function might re-establish orthobiosis.

Keywords: oral microbiome, gut microbiome, kidney transplant, surgery, renal allograft, urinary microbiome,
chronic kidney disease, end stage renal disease
INTRODUCTION

The human microbiome can confer multiple benefits to health (Wang et al., 2017). Examples include
aiding development of organs (Goyal et al., 2015) and the innate and adaptive immune systems (Lee
and Mazmanian, 2010; Honda and Littman, 2016; Thaiss et al., 2016) and resistance to infection
(Bäumler and Sperandio, 2016).

The immune system controls the human microbiome, for example, in the small intestine, where
the antimicrobial peptide RegIIIg restricts the number of bacteria in contact with the epithelial surface,
and secreted innate immune effectors can alter the composition of luminal microbiota (Vaishnava
et al., 2011; Hooper et al., 2012). Current evidence suggests that the microbiome differs in diseases
where immune function is altered (Belkaid and Hand, 2014; Idris et al., 2017), including:
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hematological malignancies (Bergmann, 1989; Galili et al., 1992;
Wang et al., 2014), pro-inflammatory cancers (Pushalkar et al.,
2011; Farrell et al., 2012; Han et al., 2014; Hu et al., 2015; Fan et al.,
2018) and inflammatory bowel diseases (Docktor et al., 2012). The
effects of microbiome change on patient outcomes have, however,
not been fully elucidated. Organ transplantation and subsequent
immunosuppression offer the opportunity to study the effects of
immunosuppression longitudinally.

Despite advances in treatment, data yielded by the ELITE-
Symphony trial reported that infections and rejection, broadly
associated with over-immunosuppression and under-
immunosuppression respectively, occurred in approximately
25% of cases within one year of renal transplantation (Cippà
et al., 2015). A knowledge gap remains regarding optimal
immunosuppression, which may be considered to be a balance
of risk between the two outcomes. Understanding the processes
driving microbiome change and potential downstream
consequences to health could therefore inform prediction,
prevention, and management of post-transplant outcomes.
This review considers evidence that microbiome composition
is linked to outcome in kidney transplant surgery. We
additionally consider how changes in kidney function can
affect both the immune system and the microbiome, and
the evidence that microbiome alteration could lead to
acute rejection.
USE OF IMMUNOSUPPRESSANTS
IN TRANSPLANTATION

Advancements in immunosuppressant therapies have led to
improvements in the success of kidney transplantation.
Ciclosporin and tacrolimus have been used in this application
since the 1980s (Spencer et al., 1997; Spolidorio et al., 2006;
Colombo and Ammirati, 2011). Both calcineurin-inhibiting
drugs interact with intracellular proteins of the immunophilin
family; the former forms a complex with cyclophilin, and the
latter with FK506-binding protein 12 with greater molar potency
(Halloran, 2004). Since 90% of kidney transplant recipients in the
US received a calcineurin inhibitor-based regime in 2012 (Matas
et al., 2014), the majority of microbiome studies in this area are
based on patient cohorts following ciclosporin or tacrolimus-
based regimes. However, modern kidney transplantation
procedures involve several other immunosuppressive agents,
including prednisone, mycophenolate mofetil, sirolimus, and
azathioprine, with or without added steroids (Diaz et al., 2013).

Immunosuppressant drugs, including tacrolimus, can
function as a macrolide antibiotic and such properties are
likely to affect bacteria. Moreover, prophylactic antibiotics may
also significantly alter the microbiome (Jakobsson et al., 2010;
Korpela et al., 2016), confounding investigations into the effect of
immunosuppression. Comparisons between cohorts may be
complicated by the lack of consensus on optimal perioperative
prophylaxis regimes (Orlando et al., 2015; Bliven et al., 2018), but
such confounders may be avoided by using living organ donors
as controls paired with their recipients. However, the effect of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
factors which solely affect chronic kidney disease patients pre-
transplant (specialized diet, uremic toxins) are less easily
disentangled from immunosuppression.
THE ORAL MICROBIOME DURING
IMMUNOSUPPRESSION

There is a longstanding association between immunosuppressive
agents and oral disease. Gingival hyperplasia, for example, has
been associated with the immunosuppressant ciclosporin, and
kidney-transplantation (Rateitschak-Plüss et al., 1983) where
bacteria-induced inflammation could be affected by transplant-
driven microbiome changes (Brown et al., 1991). In a large study
of kidney transplant patients, 60% had at least one type of oral
mucosal ulcer (de la Rosa-Garcıá et al., 2005). Similar studies
indicate that these lesions are common in transplant or
immunocompromised cohorts with causal links to oral
microbiome constituents. Oral candidiasis is also more common
in transplant recipients and immunosuppressed cohorts (King
et al., 1994; Olczak-Kowalczyk et al., 2010). Whether the
overgrowth and increased prevalence of Candida spp. in this
context is caused by failure of the immunocompromised host to
maintain normal suppression of its growth, or a side effect of
prophylactic antibiotic use (Lynch, 1994), remains to be discerned.

Immunosuppression has been reported to alter the
composition of the oral microbiome beyond six months post-
transplant (Diaz et al., 2013; Fricke et al., 2014). A study
comparing subgingival plaque bacteria reported increased
bacterial counts and clinical indicators of gingival overgrowth
post-transplantation (Saraiva et al., 2006). More recently,
significant and persistent differences have been reported in
kidney transplant recipients before and after transplant (Table
1). The potential for these changes to negatively impact patient
health is suggested by increases in opportunistic pathogens,
which has been reported even where concurrent differences in
alpha-diversity and global community structure are not observed
(Diaz et al., 2013).
THE CONTRIBUTION OF CHANGES
IN THE ORAL MICROBIOME TO
TRANSPLANT-ASSOCIATED DISEASE

Increased prevalence of opportunistic pathogens in the oral
microbiome of transplant patients including Enterobacteriaceae,
Pseudomonas fluorescens, Actinetobacter spp., and Vibrio spp.,
have been reported (Diaz et al., 2013). Some of the same taxa incur
greater relative abundance in critically ill patients (McDonald
et al., 2016). Post-transplant infections remain the leading cause of
morbidity and mortality in kidney transplantation, occurring in
31% of recipients within the first two years (Karuthu and
Blumberg, 2012; Cowan et al., 2018). The source of infections
within around one month of transplantation may be hositial-
acquired whereas those in the subsequent five months may be due
December 2020 | Volume 10 | Article 558644
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TABLE 1 | Summary of recent studies reporting microbiome-associated differences (and their, potentially, related, post-operative effects) using kidney transplant
recipient (KTR) cohorts.

Study Microbiome
Site

Immunosuppressive
Agents Administered

Comparison Microbiome Change Reported Post-Operative Outcome
Reported

Method of Detection

(Diaz
et al.,
2013)

Oral Prednisone,
Mycophenolate
mofetil, Tacrolimus,
Ciclosporin, Sirolimus,
Azathioprine

Kidney and
Cardiac Transplant
Recipients (20) vs
healthy cohort (19)

Increased prevalence of potentially
opportunistic pathogens
(K. pneumoniae, P. fluorescens,
Acinetobacter spp, Vibrio spp.,
Enterobacteriaceae spp.)

Cluster of opportunistic
pathogens correlated with
serum C-reactive protein,
potential link between flora
and systemic inflammation

16S rRNA sequencing

(Saraiva
et al.,
2006)

Oral Ciclosporin 35 KTRs before
and after
procedure

Increase in total viable counts of
microorganisms on day 90 after
surgery

Increased gingival
overgrowth
Beta-hemolytic
Streptococcus detected
less frequently in gingival
overgrowth

Culturing and oral
disease diagnoses

(Spolidorio
et al.,
2006)

Oral Ciclosporin and
Tacrolimus

KTRs receiving
ciclosporin (88)
and tacrolimus (67)

Increased levels of Candida spp.
detected in ciclosporin group

Increased gingival
overgrowth, candida
infection, squamous cell
carcinoma and herpes
simplex in ciclosporin
group

Culturing and oral
disease diagnoses

(Swarte
et al.,
2020)

Gut Ciclosporin,
tacrolimus,
azathioprine,
mycophenolate
mofetil, prednisolone

KTRs after
procedure (139)
and healthy
controls (105).

Lower Shannon diversity detected in
KTR group.
Use of mycophenolate mofetil
correlated with lower diversity

na 16S rRNA sequencing

(Lee et al.,
2019)

Gut Anti-thymocyte
globulin, basiliximab,
tacrolimus, belatacept,
mycophenolate
mofetil, prednisone

71 KTRs (Diarrheal
specimens vs non-
diarrheal)

Lower Shannon diversity in diarrheal
specimens.
Lower relative abundance of 13 genera
in diarrheal fecal specimens vs non-
diarrheal

26 out of 28 diarrheal
specimens negative for
infectious etiologies.
Diarrhea specimens
predicted to have lower
abundance of metabolic
genes

16S rRNA sequencing
and PICRUSt (Langille
et al., 2013)

(Zaza
et al.,
2017)

Gut Everolimus, tacrolimus,
mycophenolate mofetil

9 KTRs receiving
everolimus and 11
KTRs receiving
tacrolimus

Alpha diversity not significantly different
Three functional genes (fliNY, pilM and
msrA) discriminated microbiome profile
of each group

na Taxonomic profiling
via 16S rRNA
sequencing &
functional analysis
using DIAMOND
(Buchfink et al., 2015)

(Lee et al.,
2014)

Gut Tacrolimus and
Mycophenolate acid or
Mycophenolate mofetil

26 KTRs before
and after
procedure

Increase in relative abundance of
Proteobacteria post-transplant

Post-transplant diarrhea
associated with lower
Shannon diversity index
PCoA1 and LEfSe2

distinguish between acute
rejection and no acute
rejection group
Fecal abundance of
Enterococcus associated
with urinary tract infection

16S rRNA sequencing

(Wu et al.,
2018)

Urinary Tacrolimus,
Ciclosporin and none.

35 KTRs with
Chronic Allograft
Dysfunction vs 32
KTRs without

Shannon diversity index and beta
diversity not significantly different
between groups.
21 OTUs3 significantly higher in
Chronic Allograft Dysfunction cases

na 16S rRNA sequencing

(Modena
et al.,
2017)

Urinary Tacrolimus,
Mycophenolate mofetil
and Prednisone

25 KTRs
developing IFTA vs
23 KTRs with
normal biopsies
and 20 non-
transplant controls

Streptococcus lower in IFTA4 and
“normal” KTR males vs healthy male
controls (after 1 month). Further
decreased after 6–8 months in IFTA
males, but normalized in “normal” KTR
males
IFTA associated with a loss in
dominant resident urinary microbes in
males, and parallel increase in
nonresident, pathogenic bacteria in
males and females

na 16S rRNA sequencing

(Continued)
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to opportunistic pathogens beginning to take advantage of
immunosuppression (Karuthu and Blumberg, 2012). Oral
microbiome analysis indicates that some taxa increasing in
abundance following transplantation are those associated with
common post-transplant infections; particularly Klebsiella
pneumoniae and Pseudomonas spp. (Hlava et al., 2009; Diaz
et al., 2013). Indeed, extra-oral colonization by opportunistic
oral microbiota has been associated with a large number of
diseases (Han and Wang, 2013), representing a significant risk
to immunocompromised patients after transplantation.

Oral cancers are frequently observed in kidney transplant
recipients (Regev et al., 1992; Thomas et al., 1993; Seymour
et al., 1997; Yoon et al., 2003; Spolidorio et al., 2006; Campistol
and Schena, 2007). Patients undergoing immunosuppression are
generally more susceptible to some systemic cancers (Gardner
et al., 2004; Sinha et al., 2004; Gutierrez-Dalmau and Campistol,
2007), but whether such higher rates of oral cancer are linked to
alteredmicrobial activity, such as through increased inflammation,
or unconnected side-effects of the immunosuppression itself, is
unclear. It has been proposed that colonization of dysplastic oral
tissue by Candida spp. might accelerate progression towards oral
squamous cell carcinoma. Elsewhere, microbe-driven
inflammation by Helicobacter pylori and Fusobacterium
nucleatum have been linked to carcinogenesis (Chiba et al.,
2008; Castellarin et al., 2012; Kostic et al., 2012). Alongside
direct action on epithelial cells, H. pylori indirectly drives
carcinogenesis through the secretion of virulence factors (e.g.
g-Glutamyl transpeptidase) causing oxidative stress and long-
term inflammation (Dıáz et al., 2018). Similarly, in the oral
cavity, carcinoma could involve secondary metabolite-driven
inflammation, the production of genotoxic substances such as
acetaldehyde, or cell invasion (Healy and Moran, 2019).
PRE-TRANSPLANT, CO-MORBIDITIES
EXACERBATE SYSTEMIC INFLAMMATION

Evidence for the interaction between chronic kidney disease
(CKD) and chronic periodontitis (CP) has been reviewed by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Hickey et al. (2020). Certain bacteria are understood to cause local
kidney damage, e.g. acute post-streptococcal glomerulonephritis, a
commonnephric conditionoftenattributed togroupAstreptococci
(Ahn and Ingulli, 2008). Systemic interplay between chronic
periodontitis and chronic kidney disease may however go
beyond this to exacerbate both conditions, with CKD-associated
pH changes and gingival hyperplasia creating favorable
conditions for the growth of oral pathogens (Listgarten, 1986),
and CP-associated systemic inflammation aggravating that
already associated with CKD (Paraskevas et al., 2008; Wahid
et al., 2013).
SALIVARY UREA IN KIDNEY DISEASE
AND TRANSPLANTATION

CKD causes the accumulation of waste products, including urea,
to concentrate in the blood and saliva (Pandya et al., 2016). As a
consequence, salivary urea concentration may be up to four
times higher in CKD patients than healthy individuals (Lasisi
et al., 2016). Oral bacteria including Streptococcus salivarius can
metabolize urea to carbonic acid and ammonia, with a net
increase in pH (Casiano-Colón and Marquis, 1988;
Wijeyeweera and Kleinberg, 1989; Chen et al., 1996; Morou-
Bermudez and Burne, 1999; Yaling et al., 2006; Nascimento et al.,
2009) which may differentially affect the growth of oral bacteria
with higher pH optima (Bowden and Hamilton, 1987; Quivey
et al., 2000; Marsh and Devine, 2011; Ratzke and Gore, 2018),
possibly contributing to differences seen in the microbiome of
CKD patients versus healthy controls (Hu et al., 2018).
Alkalization has been suggested to have a role in protection
against acidification and demineralization of enamel (Kleinberg
et al., 1982; Burne and Marquis, 2000) which may influence the
lower caries incidence reported in CKD patients (Peterson et al.,
1985; Al Nowaiser et al., 2003; Andrade et al., 2013). Moreover,
shifts in oral pH could affect the immune system (Lardner, 2001;
Erra Dıáz et al., 2018).

Diseases that increase urea concentrations have also been
linked to various oral co-morbidities, chronic renal failure
TABLE 1 | Continued

Study Microbiome
Site

Immunosuppressive
Agents Administered

Comparison Microbiome Change Reported Post-Operative Outcome
Reported

Method of Detection

(Fricke
et al.,
2014)

Blood,
Urinary, Oral
and Rectal

Not Reported 60 KTRs before
and after
procedure

Differences in structure observed
between pre- and 1 month post-
transplant (persisted after 6 months)
Decreases in Proteobacteria
Escherichia, Porphyromonas (urine)
and Haemophilus, Neisseria,
Pasteurella (oral)

Pre-transplant microbiota
associated with
subsequent rejection and
infection events

16S rRNA sequencing
December 2020 | Volum
1Principal coordinates analysis.
2Linear discriminant analysis effect size.
3Operational taxonomic units.
4Interstitial fibrosis and tubular atrophy.
na, not applicable.
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patients may have increased dental plaque, enamel defects, and
gingival enlargement compared with healthy individuals
(Al Nowaiser et al., 2003). Since the objective of kidney
transplantation is to restore kidney function, which normalizes
urea concentrations, a better understanding of downstream
consequences on the oral microbiome may inform dental care
post-transplant. It is unclear whether the restoration of kidney
function causes the oral microbiome to return to original
function and composition and how this affects the risk of
future oral disease. Also relevant would be the effect of
resulting ammonia concentration change on ammonia-
oxidizing archaea (Pester et al., 2011). Oral archaea, including
those capable of oxidizing ammonia, have been associated with
periodontal disease (Lepp et al., 2004; de Macario and Macario,
2009; Probst et al., 2013) although many studies focus solely
on eubacteria.
THE GUT MICROBIOME IS
STRUCTURALLY ALTERED BY
IMMUNOSUPPRESSANTS

The large intestine is the most heavily colonized site in the body
where microbial cell density exceeds all other human
microbiome sites by at least two orders of magnitude (Sender
et al., 2016). The gut microbiome has a profound influence on
host metabolism and immunity (Sekirov et al., 2010), and its
composition remains relatively stable in healthy adults
(Huttenhower et al., 2012). Following transplantation,
however, significant changes to structure have been reported
(Table 1).

In solid organ transplantation, the immunosuppressants
ciclosporin and tacrolimus have been well documented to
result in significant structural changes to the gut microbiome.
A large liver transplantation study reported that recipients,
largely administered with ciclosporin or tacrolimus (plus
mycophenalite mofetil), had decreased Bifidobacterium spp.,
Lactobacillus spp. and Faecalibacterum prausnitzii, and
significantly higher Enterobacteriaceae and Enterococcus spp.
(Wu et al . , 2012) . Although gut microbiomes are
individualized (Dethlefsen et al., 2007) key compositional
changes including lower overall diversity (Swarte et al., 2020)
and increases in the relative abundance of Proteobacteria (Lee
et al., 2014) have been reported post-transplantation. Whether
fecal microbiota transplantation could restore the microbiome
post-transplant, an effective treatment for Clostridium difficile
infection, remains to be studied at scale (Al Khodor and
Shatat, 2017).

There is some evidence that manipulating the immune
response via changes in the gut microbiome could be used to
modify allograft outcomes. This has been investigated in murine
models, where treatment using gut microbiota has significantly
improved skin allograft survival via tolerogenic immune
responses (Zhang et al., 2018). Moreover, manipulating the
growth of species such as Faecalibacterium prausnitzii which
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
are capable of metabolizing the immunosuppressant tacrolimus
might reduce the requirement to increase immunosuppressant
dose later in treatment (Lee et al., 2015; Guo et al., 2019). This
could reduce the prevalence and severity of side effects caused by
an increased dose. Ultimately both examples highlight the high
motivation for, and utility of, understanding how microbiome
change could manipulate transplant outcome.
KEY STRUCTURAL AND FUNCTIONAL
CHANGES IN THE GUT COULD CAUSE
REJECTION

Immunosuppressants can affect the microbiome in complex and
co-occurring ways. For example, the gut microbiome of patients
treated with everolimus in combination with mycophenolate
mofetil had similar alpha diversity to those treated with
tacrolimus in combination with mycophenolate mofetil (Zaza
et al., 2017). By going beyond comparisons of solely taxonomic
composition, the same study reported that the relative
abundance of three functional genes could distinguish between
these groups. Metabolic pathways usually remain stable within
healthy populations (Huttenhower et al., 2012). Here, flagellar
motor switch protein (fliNY) and type IV pilus assembly protein
pilM (pilM) genes were found to be enriched in tacrolimus-
treated patients, whereas macrolide transport system msrA
(msrA) was more abundant in the everolimus group.

Fecal samples from kidney transplant patients with post-
transplant diarrhea had lower microbial diversity and abundance
of 13 commensal genera (Lee et al., 2019). Whereas patients
without diarrhea had significantly lower relative abundances of 3
genera: Enterococcus, Escherichia, and Lachnoclostridium.
Significant differences were also reported in several metabolic
pathways in diarrheal groups, including decreases in metabolic
pathways involved in sucrose, starch, and amino acid metabolism.
The most significant change was a reduction in cellobiose
phosphorylase, a gene involved in cellobiose metabolism shown
to induce diarrhea in rats (Moinuddin and Lee, 1958). In an
attempt to moderate post-transplant diarrhea, practitioners
regularly reduce dosages of the immunosuppressant
mycophenolate mofetil, despite the increased risk of graft failure
(Bunnapradist et a l . , 2006) . By invest igat ing how
immunosuppression leads to differences in microbiome
function, novel targets for prevention or treatment of post-
transplant diarrhea might remove the requirement for reduction
of the immunosuppressant dose.

There is emerging evidence for an association between
transplantation-linked microbiome change and acute rejection
of the organ. Disparity in the microbiome profiles of patients
following non-rejection or acute rejection of transplanted organs
has been observed in small bowel transplantation (Oh et al.,
2012), and similar findings have been reported in a pilot study
following kidney transplantation (Lee et al., 2014). Whether
changes in the microbiome precede or follow acute rejection
remains to be shown. Should they follow or non-causally precede
December 2020 | Volume 10 | Article 558644
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acute rejection, microbial signifiers of rejection could provide a
potential biomarker for early diagnosis (Fricke et al., 2014; Ren
et al., 2014). If these changes precede acute rejection due to
causality, they may instead provide a modifiable target for
prevention. The composition of the microbiota, and the
metabolites produced, can promote both inflammatory and
tolerogenic immune responses towards transplanted organs
(Ardalan and Vahed, 2017). Short-chain fatty acids produced
by intestinal microbiota may provide protection against local
and systemic inflammation, oxidative cellular stress, cell
infiltration/activation, and apoptosis, as in murine models of
acute kidney injury (Andrade-Oliveira et al., 2015). Identifying
features causing such responses could, therefore, initiate
the development of pre- or pro- biotic therapies aiming
to improve long-term allograft outcome (Ardalan and
Vahed, 2017).
COULD DELAYED KIDNEY FUNCTION
LEADING TO GUT DYSFUNCTION FAVOR
REJECTION?

The structure of the gut microbiome is known to be altered in
individuals with kidney disease (Al Khodor and Shatat, 2017;
Nallu et al., 2017). Investigations in humans and rat models have
shown differences between the gut microbiome in uremic
subjects with ESRD and healthy controls (Vaziri et al., 2013a).
The effect of renal transplantation has, however, not been
extensively investigated. Renal dysfunction with increased
serum urea leads to intestinal barrier dysfunction and
disruption of the epithelial tight junction (Vaziri et al., 2013b).
Such disruptions allow bacterial fragments and toxins to
translocate from the gut microbiome into the bloodstream,
promoting chronic systemic inflammation (Vaziri et al., 2012);
whether this has a causal or exacerbating affect in co-morbidities
associated with ESRD is unclear. After transplantation, there is
some degree in variability as to how quickly the kidney allograft
begins to function, although in recent years the incidence of
delayed graft function has increased, possibly due to the use of
expanded donor criteria, to within the range of 20–45% of cases
(Yarlagadda et al., 2009; Matas et al., 2014; Willicombe et al.,
2017; Jansen et al., 2018). Delayed graft function may expose the
patient to a longer period of uremia and an increased risk of gut
dysfunction, systemic inflammation, and allograft rejection. A
delayed graft function of more than six days has been found to
strongly decrease the long-term survival of transplanted kidneys
(Giral-Classe et al., 1998).
URINARY MICROBIOME MAY HOLD KEY
TO EARLY REJECTION DETECTION

Since the recognition of its medical relevance, the
urinary microbiome has been receiving growing attention
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
(Fouts et al., 2012; Wolfe et al., 2012; Aragon et al., 2018).
The most frequently reported genera are Lactobacillus and
Streptococcus, with Alloscardovia, Burkholderia, Jonquetella,
Klebsie l la, Saccharofermentans, Rhodanobacter , and
Veillonella also found less frequently (Aragon et al., 2018).
Whilst the importance of the urinary microbiome in health is
still emerging, evidence from several studies confirm its
composition is altered by some post-transplant situations
(Table 1). A study comparing the urinary microbiome of 21
kidney transplant recipients with that of 8 healthy controls
reported marked differences between the two groups (Rani
et al., 2017). Under the multiple stressors of kidney
transplantation (including antibiotics, immunosuppression,
and environmental changes) the urinary microbiota of
kidney-transplant recipients suggested an overall decrease in
diversity when compared to healthy controls, alongside an
increased abundance of opportunistic pathogens (Escherichia
coli and Enterococcus faecalis) and may select for promotion of
antibiotic resistance. The effect of elevated urinary urea
concentrations on urinary tract infections caused by urealytic
pathogens also warrants further investigation. In the future,
frequent, longitudinal sampling of the patient’s urinary
microbiome might be implemented to detect deviations from
microbiome stability. If these changes are shown to precede
organ damage or loss, this may be useful as a non-invasive
method of early detection.
CONCLUSION AND PERSPECTIVES

Alterations in the composition and activities of the human
microbiome can have a range of consequences. Microbiome
changes due to reduced kidney function in CKD and ESRD
may be exacerbated during transplantation, with associated
immunosuppression and restoration of kidney function. Whilst
progress has been made in defining associations between the
microbiome and kidney transplantation (summarized in Figure
1), the causal links and health consequences of these associations
are not completely understood. Whilst few studies have
investigated changes over prolonged timeframes in prospective
cohorts, some pioneering studies have proposed how the
microbiome alteration might translate to functional changes
and alter post-transplant outcomes. An important goal of
future research will be to tackle the challenges that kidney
transplantation still faces. Indeed, evidence presented here
implies a role for microbiome research in earlier detection and
prevention of post-transplant infection and acute rejection, and
achieving optimum individualized immunosuppression regimes
to alleviate side effects. By increased understanding of how the
microbiome and the immune system are affected by
transplantation, clinically relevant information may be
provided to enable treatment optimization for renal transplant
recipients. To do so, large scale observations of kidney transplant
recipients and donors are recommended to model the effects of
co-occurring factors such as urea change, immunosuppression,
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and antibiotic administration. Translating these effects to animal
models and in vitro systems, their relative impacts and
interactions with microbial communities could then be
isolated, understood, and, where required, interventions may
be developed to alleviate co-morbidity, rejection and infection.
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FIGURE 1 | Summary of differences found at key body sites in studies of Chronic Kidney Disease (CKD) patients and kidney transplant recipients post-operation
discussed in this review. For CKD patients, health changes associated with microbiome alteration include: (Oral) increased urea and pH (Lasisi et al., 2016), plaque,
enamel defects, gingival enlargement and decreased caries (Al Nowaiser et al., 2003), (Kidney) declining function and build-up of toxins (Pandya et al., 2016), and
(Gut) gut dysfunction and disruption of epithelial tight junction (Vaziri et al., 2013b). Reported microbial change includes significant changes in oral and gut
communities compared with healthy controls (Hu et al., 2018; Hobby et al., 2019). For kidney transplant recipients, post-transplant health changes associated with
microbiome alteration include: (Oral) increased mucosal lesions, gingival hyperplasia, risk of extra-oral colonization, and squamous cell carcinoma (Spolidorio et al.,
2006), (Kidney) variations in time taken for graft to function (Yarlagadda et al., 2009; Willicombe et al., 2017), (Gut) increased diarrheal episodes (Lee et al., 2014),
and (Urinary Tract) increases in urinary tract infections (Giessing, 2012). Microbial changes include: (Oral) increased abundance of Candida species (Spolidorio et al.,
2006), total viable microorganism counts (Saraiva et al., 2006), and relative abundance of opportunistic pathogens (Diaz et al., 2013), (Gut) increased relative
abundance of Proteobacteria (Lee et al., 2014), changes in microbial metabolism between (i) immunosuppressive regimens (Zaza et al., 2017), as well as microbial
community structure in (ii) rejection and non-rejection patients (Lee et al., 2014) and (iii) diarrheal and non-diarrheal patients (Lee et al., 2019). (Urinary Tract)
Structurally different microbiomes are also seen in transplant recipients (Fricke et al., 2014), as well as chronic allograft dysfunction (Wu et al., 2018) and interstistal
fibrosis and tubular atrophy patients (Modena et al., 2017).
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