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In 2019, the United States Food and Drug Administration accorded restricted approval

to Sanofi Pasteur’s Dengvaxia, a live attenuated vaccine (LAV) for dengue fever,

a mosquito-borne viral disease, caused by four antigenically distinct dengue virus

serotypes (DENV 1-4). The reason for this limited approval is the concern that this

vaccine sensitized some of the dengue-naïve recipients to severe dengue fever. Recent

knowledge about the nature of the immune response elicited by DENV viruses suggests

that all LAVs have inherent capacity to predominantly elicit antibodies (Abs) against

the pre-membrane (prM) and fusion loop epitope (FLE) of DENV. These antibodies are

generally cross-reactive among DENV serotypes carrying a higher risk of promoting

Antibody-Dependent Enhancement (ADE). ADE is a phenomenon in which suboptimal

neutralizing or non-neutralizing cross-reactive antibodies bind to virus and facilitate Fcγ

receptor mediated enhanced entry into host cells, followed by its replication, and thus

increasing the cellular viral load. On the other hand, antibody responses directed against

the host-cell receptor binding domain of DENV envelope domain-III (EDIII), exhibit a higher

degree of type-specificity with lower potential of ADE. The challenges associated with

whole DENV-based vaccine strategies necessitate re-focusing our attention toward the

designed dengue vaccine candidates, capable of inducing predominantly type-specific

immune responses. If the designed vaccines elicited predominantly EDIII-directed

serotype specific antibodies in the absence of prM and FLE antibodies, this could

avoid the ADE phenomenon largely associated with the prM and FLE antibodies.

The generation of type-specific antibodies to each of the four DENV serotypes by

the designed vaccines could avoid the immune evasion mechanisms of DENVs. For

the enhanced vaccine safety, all dengue vaccine candidates should be assessed for

the extent of type-specific (minimal ADE) vs. cross-reactive (ADE promoting) neutralizing

antibodies. The type-specific EDIII antibodies may be more directly related to protection

from disease in the absence of ADE promoted by the cross-reactive antibodies.

Keywords: dengue, dengue virus (DENV), dengue vaccine, live attenuated vaccine, Dengvaxia, antibody-
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INTRODUCTION

Daily more than a million people are infected with any of the four
distinct serotypes of dengue viruses (DENV-1,−2,−3, and,−4).
The world needs a dengue vaccine for all age groups, regardless
of whether they may, or may not have been previously exposed
to one of the four dengue viruses. In 2019, Sanofi Pasteur’s
Dengvaxia, a live attenuated tetravalent dengue vaccine, which
does not give complete protection, after a three-dose regimen
spread over 1 year (Arredondo-García et al., 2018; Thomas and
Yoon, 2019), was granted a limited approval by the United States
Food and Drug Administration. This approval was for its use
in 9–16 year-old children with laboratory-confirmed previous
dengue infection, living in dengue-endemic areas (United States
Food & Drug, 2019). Efficacy trials of Dengvaxia in several
dengue-endemic countries of Asia and Latin America, in∼35,000
2–16 year-old children (Sabchareon et al., 2012; Capeding et al.,
2014; Villar et al., 2015), showed that vaccine efficacy (VE) i.e., the
capacity to prevent symptomatic virologically confirmed dengue
(VCD), varied by serotype, and was the lowest against DENV-
2. Overall VE was 65.6% (95% CI 60.7–69.9) in 9–16 year olds,
while in 2–8 year olds it was 44.6% (95% CI 31.6–55), at 2 years
following administration of the first dose of the vaccine. At 3
years post-dose 1, vaccinated children in the 2–5 year age group,
were found to be nearly 8 times likely to be hospitalized for severe
dengue, compared to children in the placebo group (Hadinegoro
et al., 2015). VE was subsequently found to be related to the
pre-vaccination serostatus of the trial subjects. While VE against
VCD at 2 years post-dose 1 was 76% (95% CI 64–84) in >9
year-old children, who had been exposed to dengue infection
before vaccination (seropositive), it was only 39% (95% CI−1
to 63) in children who were dengue-naïve (seronegative) at the
beginning of the trial (Sridhar et al., 2018). Long-term follow-up
studies until 5 years reveal that in seronegative recipients, there is
increased risk of severe dengue from the 3rd year onwards, post-
dose 1. Clearly, developing a safe and efficacious dengue vaccine
constitutes quite a formidable challenge. Several unique factors,
associated with the biology, and pathogenesis of dengue, taken
together with lessons of the Dengvaxia experience, necessitates
exploring alternate dengue vaccine development options. There
are additional whole virus-based dengue vaccines in advance
stages of clinical trials (Clinicaltrials.gov, 2020; Tricou et al.,
2020). Moreover, a few recombinant dengue vaccine candidates
are also at various stages of development (Vannice et al., 2015;
Swaminathan and Khanna, 2019; Deng et al., 2020). It is great
that the pipeline of dengue vaccines continue to increase. A safe
and effective dengue vaccine could soon become a reality.

DENGUE: THE VIRUS AND THE DISEASE

DENVs contain a positive sense RNA genome within a
glycoprotein shell and are members of the Flaviviridae family,
which includes other human pathogenic viruses such as yellow
fever virus (YFV), Japanese encephalitis virus (JEV), and Zika
virus (ZIKV) (Pierson and Diamond, 2013; Poland et al., 2018).
The DENV genome, which is similar in organization to that

of the other flaviviruses, encodes ten viral proteins, three of
which are structural: the capsid (C), envelope (E), and membrane
(M) and the remaining non-structural (NS): NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5. Two of the structural proteins,
the envelope (E) and the pre-membrane (prM) proteins, form
the glycoprotein shell of the virus. The E protein is organized
into three discrete domains, envelope domain I (EDI), EDII,
and EDIII (Modis et al., 2003). The EDI participates in the
confirmation changes required for virus entry. The EDII has
a fusion loop (FL) which is required for fusion with the host
membrane, as a prelude to release of the DENV RNA into
the cytosol of the infected cell, and EDIII is believed to be
responsible for interaction with the host-receptor molecule (Crill
and Roehrig, 2001; Hung et al., 2004; Huerta et al., 2008; Hidari
and Suzuki, 2011; Modis, 2014). The prM protein helps mask the
FL of EDII to avoid premature fusion and release into cytosol
during virus maturation within the infected cell. The immature
virus is decorated with spikes of trimers of prM-E dimers. As a
final step in virus maturation in the trans-Golgi network, prM
is cleaved by host-encoded furin, leaving a peptide (pr) still
covering the FL. Upon secretion to the outside of the infected cell,
pr peptide dissociates from the virion, which is now fully mature
and smooth (Screaton et al., 2015).

In most clinically apparent cases, DENVs cause a self-
limiting febrile illness known as dengue fever. However, a small
proportion of DENV infections cause severe dengue. This is
a potentially fatal form of dengue disease, characterized by
increased capillary permeability leading to plasma leakage and
shock (Simmons et al., 2012). Severe dengue has often been
associated with sequential infection with DENVs of different
serotypes. It has been proposed that antibodies to a given
DENV serotype induced during a first infection, bind to, but
do not neutralize, a different DENV serotype, encountered
during a subsequent infection (Tsai et al., 2015). In fact, the
cross-reacting or neutralizing antibodies at suboptimal levels
facilitate increased uptake of the non-neutralized DENV into
monocytes and macrophages, considered to be the in vivo sites of
DENV replication, via their Fcγ receptors. This phenomenon is
termed antibody-dependent enhancement (ADE) (Halstead and
O’Rourke, 1977; Dejnirattisai et al., 2010). The DENV-induced
prM and fusion-loop Abs facilitate immature DENV entry
through Fcγ receptor and mediate enhanced DENV uptake into
cells, facilitating subsequent increased viral replication (Extrinsic
ADE). The DENVs immune complexed with these antibodies
upon entry via Fcγ receptor results in the suppression of
intracellular cytokine signaling, causing a favorable environment
for enhanced replication of DENVs (Intrinsic ADE). The Fcγ
receptor-mediated DENV entry to host cells seems to be ten
timesmore productive than the DENV entry through its host-cell
receptor, thus increasing the DENV load (Halstead et al., 2010).
On the contrary, the host cell receptor-mediated DENV entry
induces PRR (Pattern recognition receptors) signaling, resulting
in the suppression of DENV viral replication, thus controlling the
DENV load (Figure 1).

There are several in vitro and in vivo studies that support ADE
mediated enhanced disease outcome. Dengue virus-induced sera
or monoclonal antibodies increase the DENV infection of Fcγ
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FIGURE 1 | Cross-reactive, prM and fusion-loop Abs facilitate immature DENV entry through Fcγ receptor and mediate enhanced DENV replication by following the

intrinsic ADE pathway. (Left half) DENV attaches to a host cell surface and is endocytosed followed by virus-endosomal membrane fusion leading to the release of

viral genome. Post-release, viral RNA is translated and the viral genome is replicated. Virus assembly occurs on the surface of the endoplasmic reticulum, and

immature viral particles mature into their infectious form in the Golgi network. These mature viruses are then released from the cell and ready to infect other cells.

(Right half) Cross-reactive Abs bind with immature non-infectious particles turning into infectious virus-Ab immune complexes (V-Ab IC) which then bind with the Fc

receptor bearing cells. This assembly down-regulates the DENV-specific pattern recognition receptor (PRRs) signaling, inhibits type I interferon (IFNα/β) release and

activates production of Interleukin-10 (IL-10) which causes up-regulation of Suppressor of Cytokine Signaling (SOCS) family. Henceforth, controlled mature DENV

production is lost, resulting into manifold increase in wide-range of immature viruses which leads to the extrinsic-ADE pathway by infecting other cells via binding with

cross-reactive Abs (Figure is adapted from Halstead et al., 2010 under Copyright license, # 4852311472038 and generated in Biorender.com).

receptor-bearing cells (Goncalvez et al., 2007). Non-human
primates passively immunized with dengue virus antibodies
promoted higher level of viremia as compared to dengue virus
infection in the absence of antibodies (Muhammad Azami
et al., 2020). A similar outcome was reported earlier using
AG129 mouse model, where, passively transferred DENV-
induced antibodies enhanced non-lethal DENV infection into
a lethal infection, associated with vascular leakage and cytokine
storm (Watanabe et al., 2015).

Apart from this, two longitudinal clinical studies from
Thailand and Nicaragua (Katzelnick et al., 2017; Salje et al.,
2018) evaluated the risk of severe dengue disease following
primary and secondary infection. These clinical studies provide
strong evidence that highest risk of severe dengue is associated
with low levels of pre-existing dengue antibodies. These studies
have revealed that low level pre-existing antibody levels are
correlated with an increased likelihood of severe dengue
disease only during secondary heterotypic infections (Katzelnick
et al., 2017). However, ADE is not observed during secondary
homotypic infection. This is because highly neutralizing type-
specific Abs elicited during primary infection can neutralize a

secondary homotypic infection even at low Ab concentrations,
preventing the incidence of ADE (Ripoll et al., 2019). In
homotypic infection, neutralization is determined by type-
specific antibodies and ADE is limited to a very low level of type-
specific antibody concentration. During heterotypic infection
both type-specific and cross-reactive antibodies contribute
to virus neutralization, but at a lower efficiency. Molecular
simulations have shown that rough form of the virus become
particularly pathogenic in case of heterotypic infection, as the
neutralization is determined by cross-reactive Abs (Ripoll et al.,
2019).

GENETIC DIVERSITY

There are four antigenically distinct serotypes of DENVs,
differing in amino acid (aa) identity of their E proteins by∼40%.
Each of these four DENV serotypes can cause dengue disease
ranging from mild to severe manifestations (Simmons et al.,
2012). Within each serotype there are several genotypes, with
genomic sequences differing by as much as 6% (Rico-Hesse,
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2003). Further, when DENVs replicate within a host, the error-
prone viral RNA replication machinery, generates an array of
genetically related, yet distinct genomic variants, giving rise to
intrahost diversity (Parameswaran et al., 2012, 2017).

MORPHOLOGICAL DIVERSITY

It has become increasingly apparent that the DENV maturation
process is far from complete as the virions exocytosed from the
infected cell display a high degree of heterogeneity. This appears
to be the result of incomplete prM cleavage, resulting in an entire
spectrum of virion particles ranging from fully mature “smooth”
virions (100% prM cleavage) to fully immature, “spiky” virions
(0% prM cleavage). Partially mature virions contain varying
proportions of “smooth” and “spiky” surfaces (Junjhon et al.,
2008, 2010). Further diversity stems from the structural flexibility
of the E proteins on DENVs, termed as “breathing,” which
makes the virion structurally dynamic, with profound effects on
epitope exposure. This is inferred from time- and temperature-
dependent accessibility of certain virion epitopes to antibodies
(Dowd et al., 2014; Kuhn et al., 2015).

ANTIBODIES INDUCED BY DENVs

The immune responses to DENV infections are mainly targeted
against structural proteins i.e., E and prM and one non-structural
protein NS1 (Rey et al., 2018). The immune response against NS1
is prone to cross-react among all the DENV serotypes. Studies
report that NS1 directly triggers vascular hyperpermeability by
inducing pro-inflammatory vasoactive response via activation of
Toll like receptor−4 (Modhiran et al., 2015) and disruption of
endothelial glycocalyx (Puerta-Guardo et al., 2016; Slon-Campos
et al., 2019). Apart from above, studies by (Chuang et al.,
2014, 2016) reported the proposed participatory role of NS1
in severe DENV pathogenesis by promoting bleeding diathesis
through inhibition of thrombin activity and enhancement of
fibrinolysis. However, complete contrary results are also reported,
where, mouse raised polyclonal NS1 antiserum or anti-NS1
mAbs protects mice from the lethal dose of DENV-2 and
also reduces the vascular leakage (Beatty et al., 2015). Thus,
further studies are required to delineate the role of NS1
associated outcomes during dengue virus infection. The immune
response against the DENV structural proteins are summarized
in Table 1. Natural DENV infections elicit both protective as
well as pathogenic antibodies (Dejnirattisai et al., 2010; Chan
et al., 2011). The pathogenic antibodies, which facilitate entry
of non-neutralized and immature DENV into monocytes and
macrophages, are essentially disease-spreading (DENV ADE
promoting) antibodies. Investigations have revealed that prM
and the FL epitope (FLE) are particularly immunodominant and
elicit cross-reactive, disease-spreading antibodies (Beltramello
et al., 2010; Slon Campos et al., 2018). An analysis of the
memory B cell responses in DENV-infected individuals showed
that ∼60% of the human antibody response is directed toward
the prM protein (Dejnirattisai et al., 2010). These are highly
cross-reactive antibodies, which are capable of recognizing prM

of all four DENV serotypes. Further, anti-prM-antibodies are
poor neutralizers of DENV infectivity, but potent promoters of
ADE (Beltramello et al., 2010; Dejnirattisai et al., 2010; Smith
et al., 2012). These antibodies can actually make non-infectious
immature virions infectious, by opsonizing them and facilitating
their intracellular entry via the Fcγ receptor pathway. Once
within the cell, these immature virions can undergo maturation
and become inherently infectious, and spread to other cells.
Likewise the anti-FLE antibodies (accounting for 20–30% of the
antibody response to DENV), are also cross-reactive and tend to
be weak neutralizers but strong promoters of ADE (Beltramello
et al., 2010; Smith et al., 2012, 2014). The FLE, which is conserved
among flaviviruses, is normally buried in the mature virion, but
becomes accessible upon virus breathing (Cockburn et al., 2012;
Pierson and Kuhn, 2012; Fibriansah et al., 2013). In the presence
of prM and FLE antibodies, the partially immature and immature
DENVs become fully infectious and increase the cellular viral
load due to ADE (Halstead et al., 2010; Rodenhuis-Zybert et al.,
2010) (Figure 1).

Protective antibodies appear to be elicited by non-
immunodominant epitopes, and are either type-specific or
pan-DENV specific. The type-specific antibodies against DENVs
are predominantly directed against EDIII (Crill and Roehrig,
2001), which is implicated in host cell receptor recognition and
viral entry (Hung et al., 2004; Chin et al., 2007; Gromowski
et al., 2008; Modis, 2014). Anti-EDIII antibodies constitute
only 5–10% of the total immune responses in DENV infected
individuals (Table 1) (Wahala et al., 2009). However, EDIII
antibodies possess the highest DENV neutralizing capacity with
minimal or no disease enhancing potential, when tested using
in vivo dengue sensitive mouse models (Watanabe et al., 2015;
Ramasamy et al., 2018).

Studies from the National University of Singapore
demonstrate that the fully or partially neutralized immune
complexes (ICs) of a mouse adapted DENV-2 strain (D2 S221)
formed with DENV cross-reactive monoclonal antibody (mAb)
against FLE (4G2) cause lethal disease in dengue sensitive
AG129 mice (Watanabe et al., 2015). The high mortality was
accompanied by intestinal pathology, vascular leak, increased
cytokine storm, and small intestinal tissue virus load. However,
fully or partially neutralized ICs of DENV-2 with type-
specific EDIII mAb (3H5) showed protection and no disease
enhancement under similar conditions (Watanabe et al., 2015)
(Figure 2). This observation may explain the failure of Sanofi’s
vaccine to provide protection against DENV-2 in in-vitro assays
despite exhibiting DENV-2 neutralizing activity.

Moreover, an anti-EDIII monoclonal antibody has been
shown to be capable of protecting humanized mice from all
symptoms associated with severe dengue (Robinson et al.,
2015). Several potently protective mAbs isolated from DENV-
infected individuals have been characterized. These mAbs
recognize conformational epitopes, found only when E is
displayed on the virion surface, and are known as quaternary
epitopes. Many of these are serotype-specific (Teoh et al.,
2012; Fibriansah et al., 2014, 2015a,b; Screaton et al., 2015).
In addition, broadly neutralizing mAbs, which target conserved
quaternary epitopes among the four DENV serotypes, have
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TABLE 1 | Immune responses to DENV infections against the DENV structural proteins.

Immunogenic DENV

structural Antigens

Elicited human immune response Antibody response

(%)

Reference

Membrane protein (prM) Cross-reactive Non-neutralizing, disease enhancing

antibodies, that enhance the ability of non-infective

immature DENV to become infectious (ADE)

∼60 Beltramello et al., 2010;

Dejnirattisai et al., 2010;

Smith et al., 2012

Envelope protein fusion loop

epitope (FLE)

Cross-reactive neutralizing antibodies. These

antibodies provide transient protection against the

heterotypic DENVs, but seem to later (after 2–3

months) enhance replication of heterotypic DENVs

(ADE)

20–30 Beltramello et al., 2010;

Smith et al., 2012, 2014

DENV Envelope- dimer epitope

(EDE)

EDE Ab cross-neutralizes all four DENV serotypes

as well as ZIKV with low ADE potential

0–70# Dejnirattisai et al., 2015;

Barba-Spaeth et al., 2016;

Slon-Campos et al., 2019

DENV Envelope host cell

receptor binding domain (EDIII)

Type-specific highly potent DENV neutralizing

antibodies, which seem to provide life-long

homotypic protection with low ADE

5–10 Wahala et al., 2009; Chen

et al., 2016

#E-dimer epitope antibodies are highly variable in convalescent DENV plasma.

FIGURE 2 | Type-specific (TS) monoclonal antibody (mAb) does not cause ADE in the mouse model whereas cross-reactive (CR) mAb does. The sublethal dose of D2

S221 was inoculated as fully- and sub-neutralized immune complexes (“Fully-nICs” and “Sub-nICs,” respectively) made with either cross-reactive (4G2) or

type-specific (3H5) mAbs. Investigators (Watanabe et al., 2015) found 100% mortality and elevated levels of different ADE related parameters in the small intestine

(Vascular leakage, inflammatory cytokines, and viral load) in both fully and sub-neutralized ICs made with 4G2. On the contrary, fully neutralized TS-ICs exhibited full

protection accompanied by very low virus load. TS sub-neutralizing ICs showed a very minimal level of mortality accompanied by low virus load. ND, data not available

(The illustrative figure created with Biorender.com).

been identified recently (Dejnirattisai et al., 2015; Rouvinski
et al., 2015). However, mimicking quaternary epitopes for a
dengue vaccine candidate has been highly challenging. Recently,
investigators have successfully displayed DENV neutralizing
quaternary structures as covalently stabilized Envelope Dimer
Epitopes (EDE) (Rouvinski et al., 2017; Thomas et al., 2020).

Further studies show EDE antibodies to be dominant toward the
infecting serotype with lower avidity against the other serotypes
(Thomas et al., 2020) Interestingly, these EDE antibodies or EDE-
Mab were able to cross-neutralize ZIKV infection in vitro and
showed protection in a lethal mouse model (Swanstrom et al.,
2016; Fernandez et al., 2017).
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DENV CELLULAR IMMUNE RESPONSES

Several excellent publications on cellular immune responses
during DENV natural infection are available (Mathew and
Rothman, 2008; Yauch et al., 2009; Zellweger et al., 2015; Elong
Ngono et al., 2016; St. John and Rathore, 2019; Tian et al.,
2019). Nonetheless, precise nature of a protective T cell response
in the context of DENV infection and vaccination is yet to
be delineated. Like the antibody response, T cell responses
also are implicated both in protection as well as pathogenesis
(Beaumier et al., 2008; Friberg et al., 2011; Weiskopf et al., 2013).
However, unlike in the case of antibodies for which there is
greater clarity on the nature of epitopes that elicit protective vs.
pathogenic antibodies, similar information on T cell epitopes
is not available. One of the key hypothesis to explain the sub-
optimal performance of the Dengvaxia is that it had YFV specific
T-cell epitopes and did not contain the DENV specific T-cell
epitopes. Nonetheless, a few publications (Simmons et al., 2005;
Weiskopf et al., 2013, 2015) indicate that YFV and DENV
proteomes do carry several highly conserved cross-reactive T-
cell epitopes in the NS3 and NS5 regions. Similar to the B-cell
cross-reactive epitopes, the Dengvaxia and the other whole virus-
based dengue vaccines do carry some level of cross-reactive T-
cell epitopes. Thus, the sub-optimal performance of Dengvaxia
cannot be solely attributed to the absence of DENV specific T-
cell epitopes. Additional research is required to shed more light
on the specific features of both arms of the adaptive immune
system in the context of their opposing roles in protection
and pathogenesis.

VIRAL INTERFERENCE

The success of the yellow fever LAV, based on the attenuated
YFV variant YF17D (Monath, 2005; SAGE Working Group,
2013), provided the paradigm for a dengue LAV. Due to the
ADE phenomenon, the dengue LAV needs to be tetravalent,
so that it may provide immunity against all four DENV
serotypes. However, mixing four monovalent dengue LAVs into
a tetravalent formulation is associated with one component
replicating better at the expense of the others, leading to
a phenomenon known as viral interference (Dittmar et al.,
1982; Edelman, 2011). Intuitively, one may posit a role
for the dynamics of intra-host microevolution, referred to
above, in viral interference. However, this remains to be
experimentally ascertained.

Viral interference was historically noticed by Thai (Kanesa-
Thasan et al., 2001; Sabchareon et al., 2002) and US Army
(Edelman et al., 2003) researchers during initial attempts
at developing tetravalent dengue LAVs. The consequence of
such interference is that the immune response tends to be
skewed toward one DENV serotype. This can lead to the
situation wherein, though the LAV is a physically tetravalent
mixture, it is essentially immunologically monovalent. The
resulting partial protection can prime one to ADE in future,
upon natural DENV exposure. In fact, the observation that
Dengvaxia predisposed seronegative recipients to increased
risk of severe dengue, starting at 3 years after the first dose
(Hadinegoro et al., 2015), lends support to the occurrence of
ADE (Halstead, 2017). The subsequent finding that Dengvaxia

FIGURE 3 | Comparison of conventional DENV vaccine strategy vs. Designer DENV vaccine candidate immune responses. Conventional DENV vaccine generally

have the mixture of live-attenuated all four DENV serotypes, whereas, ongoing pre-clinical designer DENV vaccine candidate (s) has single entity expressing all four

DENV component. The whole DENV-based vaccine inherently poses to induce imbalance immune responses with high load of cross-reactive Abs against all four

DENV serotype, suggests to explore designer DENV vaccine strategy, which may induce non-enhancing type-specific neutralizing immune response in human (Figure

designed with Biorender.com).
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elicited antibodies predominantly specific to DENV-4 (Henein
et al., 2017), is consistent with the vaccine having simulated
a primary monotypic infection. It is to be expected that, like
the natural DENVs, Dengvaxia, being a viral vaccine encoding
prM and E, would also elicit predominantly prM- and FLE-
specific antibodies, which are efficient ADE promoters. This
would undoubtedly be true for other whole virus-based vaccines
as well. This makes ADE evaluation a mandatory step during
pre-clinical vaccine development.

Most live attenuated, killed or chimeric whole dengue
virus-based vaccine candidates will mimic natural DENV
infections and thus will elicit predominantly cross-reactive
disease enhancing antibodies with limited type-specific
protective antibodies. Therefore, there is a need for designing a
dengue vaccine candidate that elicits predominantly protective
antibodies (like anti-EDIII) in the absence of pathogenic
antibodies (anti-prM and anti-FLE) (Lam et al., 2016; Screaton
and Mongkolsapaya, 2018).

The ideal dengue vaccine should be tetravalent and generate
long lasting, type-specific neutralizing antibodies against all
the four-dengue virus serotypes. Therefore, EDIII seems like
an ideal target for dengue vaccine development, as anti-EDIII
antibodies have higher type-specific neutralization capacity with
lower ADE potential (Ramasamy et al., 2018). Comparative
immune responses of novel designer protein-based DENV
vaccine strategy over the conventional whole virus-based DENV
vaccines are highlighted in Figure 3.

A recent study on molecular simulations of dengue virus
infection and experimental data suggest that the interplay
between epitope accessibility, Ab specificity, Ab affinity, Ab
concentration, and mature content of the virus significantly
influence the degree of ADE (Ripoll et al., 2019). Since both Ab
concentration and type specificity are critical host determinants
of ADE, it is important to quantify not only the neutralizing
antibody titer but also fine specificity (type-specific vs. cross-
reactive) when assessing future dengue vaccine candidates.
For the safety and efficacy of a vaccine, it is vital that the
vaccine immunogen should be well-characterized However, the
maturation states of dengue serotypes in a whole virus-based
dengue may be difficult to control. Various maturation states
of DENV serotypes may affect its ability to provoke protective
Ab responses without creating conditions that increase the
risk of severe dengue disease (Ripoll et al., 2019). Vaccine
candidates capable of eliciting predominantly type-specific
immune responses in the absence of FL and prM directed
antibodies could exhibit higher virus neutralization with lower
ADE potential (Ramasamy et al., 2018).

ADE: IN VITRO VS. IN VIVO ASSAYS

Often DENV infection-enhancing activity of antibodies is
evaluated in vitro using cell lines expressing Fcγ receptors,
such as THP-1, U937, or K562. These cell lines differ in
their dengue-susceptibility, due to differences in the types and
levels of Fcγ receptors expressed by them. To measure ADE,
immune complexes (ICs), generated by pre-incubating DENV

with the antibody, are added to these cells in culture, followed by
measuring the amount of cellular DENV uptake. However, due to
the diversity of these cell lines, the in vitro ADE assay is unlikely
to reflect the true in vivo situation (Krol et al., 2019).

In this regard, ADE assays, based on dengue-sensitive mouse
models, offer a closer approximation of the in vivo situation. The
in vivo ADE assay is based on mice with genetic defects in the
innate immune signaling pathway. Typically, an antibody whose
ADE potential is to be evaluated, is either introduced into the
mouse by passive transfer, followed by challenge with a sub-
lethal dose of a mouse adapted DENV strain or pre-incubated
with the mouse-adapted DENV strain to generate ICs, which are
then injected into the mouse, followed by survival monitoring,
as well as analysis of vascular leakage and cytokine production
(Watanabe et al., 2015; Shukla et al., 2020).

The in vivo (mouse model) and in vitro (Fcγ receptor-
bearing cell lines) ADE assays score differently when evaluated

FIGURE 4 | Design of DSV4. Top panel shows schematic diagram of all four

DENV, encircled parts represent envelope domain III (EDIII) component of all

four viruses. These EDIIIs components were linked with hexa-glycine linkers,

fused to n-terminus of Hepatitis-B surface antigen (HBsAg) and further cloned

in the background of four copies of HBsAg. The cloned expression cassette

including DENV-EDIIIs, was integrated into the yeast expression host, Pichia

pastoris, and DSV4 antigen was purified from the recombinant host for further

immunological studies. The figure approach is adapted from Ramasamy et al.

(2018) and created with Biorender.com.
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with cross-reactive vs. the type-specific DENV mAbs. This was
evidenced in a recent study using the interferon α/β and γ

receptor double knock-out AG129 mouse model (Watanabe
et al., 2015). Highly neutralized ICs made by pre-incubating the
pan-DENV cross-reactive FL-specific mAb 4G2 or EDIII DENV-
2 type-specific mAb 3H5 and a mouse-adapted DENV-2 strain,
did not manifest ADE in a THP-1 cell line-based in vitro ADE
assay. However, unlike the ICs made with 3H5 mAb, the ICs
generated with 4G2 mAb revealed potent lethality in the dengue-
sensitive AG129 mouse, without enhancing serum viremia. This
finding is further affirmed with a recent report published in
EBioMedicine by Shukla et al. (2020). The investigators showed
that both Dengue and Zika virus infections are enhanced by live
attenuated dengue vaccine that majorly elicits FL and prM cross-
reactive antibodies but not by a recombinant tetravalent Dengue
Subunit Vaccine candidate, capable of inducing predominantly
EDIII directed type-specific antibodies in the absence of
antibodies to FL and prM epitopes in murine models. This study
provides the first “head-to-head” experimental comparison of in
vivoADE potential between an approved yellow fever virus-based
recombinant dengue vaccine “Dengvaxia” and a designed EDIII-
based Dengue Subunit Vaccine Tetravalent (DSV4) candidate. In
this study, investigators also included an “in-house” version of
the whole DENV-based surrogate vaccine candidate by utilizing
a physical mixture of tetravalent DENVs (TV DENV). The study
revealed that antibodies elicited by Dengvaxia and TV DENV
in BALB/c mice were predominantly cross-reactive and failed
to offer protection against lethal DENV challenge in AG129
mouse model. Moreover, the completely neutralized immune
complexes of DENV-2made with the virus-based dengue vaccine
sera promoted ADE of DENV-2 infection and caused mortality
despite virus neutralization. On the other hand, DSV4-induced
predominantly type-specific mouse antibodies not only provided
significant protection against the lethal DENV-2 challenge but
also did not promote ADE of DENV infection when evaluated
in the AG129 mouse model. Anti-Dengvaxia and anti-TV DENV
antibodies were directly associated in the elevation of intestinal
pro-inflammatory cytokines (TNF-α & IL-6) production as well
as viral load which leads to intestinal vascular leakage and

ultimately death of mice. The study provides crucial insight that
type-specific neutralizing Abs are vital for protection without
ADE. Thus, testing in vivo ADE potential of neutralized DENV
ICs in a small animal model offers a superior strategy to
de-risk experimental dengue vaccine candidates during pre-
clinical development.

DENV/ZIKV INTERACTION AND ADE

A key challenge in dengue vaccine development stems from
the interaction between DENV and Zika virus (ZIKV), another
human flaviviral pathogen transmitted by the same mosquito
vector (Musso et al., 2015). More recently, concerns that DENV
antibodies could enhance infection of ZIKV have been raised
because: (1) ZIKV is phylogenetically related to DENV, (2) ZIKV
outbreaks have occurred in DENV endemic regions around the
world, and (3) DENV antibodies can enhance ZIKV infection
both in vitro as well as in vivo in mice. Thus, the worry that a
DENV vaccine could also enhance ZIKV disease in humans is a
serious concern.

Studies show that the DENV-induced anti-FLE antibodies
can interact with Fcγ receptors to mediate ZIKV uptake into
susceptible cells. In fact, the recent ZIKV outbreaks associated
with Guillain Barre syndrome in adults and microcephaly in
infants, have occurred in regions of high DENV endemicity
(Lessler et al., 2016; Culshaw et al., 2017), suggesting a role for
ADE of ZIKV mediated by cross-reactive anti-DENV antibodies
(Dejnirattisai et al., 2016; Bardina et al., 2017). This notion has
received strong support from very recent work which shows
that DENV-specific antibodies introduced into ZIKV-infected
pregnant Stat2−/− mice significantly increased placental damage,
fetal growth restriction, and fetal resorption (Brown et al.,
2019). Interesting findings were reported using the murine
sera obtained by immunization with Dengvaxia, Tetravalent
mixture of 1-4 DENVs (TV-DENV) and the recombinant DSV4
immunogens. The Dengvaxia and TV-DENV-based surrogate
vaccine candidate anti-sera cross-neutralized ZIKV in vitro
and also induced ADE of ZIKV infection in adult Stat2−/−

TABLE 2 | Comparison of designer dengue vaccine candidate over whole DENV-based vaccine or vaccine candidates.

Features Whole DENV-based

vaccine/candidate (s)

Designer dengue Vaccine Candidate

DSV4 E-dimer

Immunogen Mix of 4 viruses 4-in-1 VLP Quaternary epitope

Viral interference Yes Not applicable Not applicable

Viral breathing Yes Not applicable Not applicable

FLE, Present Absent Buried

prM, NS1 Present Absent Absent

Type-specific Abs

responses

Minimal Maximum Fair

In vivo DENV ADE High Absent Low

In vivo ZIKV ADE Present Absent Low

Expression host Mammalian cells Yeast Transient mammalian cells
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mice. Moreover, enhanced ZIKV infection were observed in
several organs of Stat2−/− mice inoculated with anti-Dengvaxia
and anti-TV DENV sera. However, DSV4-induced anti-serum
neither cross-neutralized ZIKV in vitro nor promoted ADE in
vivo (Shukla et al., 2020). The pre-immunity against ZIKV is
also a serious concern for developing the dengue vaccine. Recent
Nicaraguan prospective pediatric cohorts study suggested that
prior ZIKV infection can enhance severe dengue disease in future
(Katzelnick et al., 2020).

DESIGNER VACCINES

It is becoming increasingly evident that alternate dengue vaccine
strategies need to be explored (de Silva and Harris, 2018;
Rey et al., 2018; Screaton and Mongkolsapaya, 2018), given
the formidable challenges that are intrinsically associated with
whole virus-based vaccines. It is quite obvious that successful
dengue vaccines must be designed to target potently neutralizing
epitopes (EDIII and quaternary epitopes such as EDE) while
avoiding pathogenic epitopes (prM and FLE). Based on the
recent knowledge on dengue virus biology and immunology,
several dengue experts are veering to the view that a safe and
effective dengue vaccine can be designed using recombinant
DNA technology. These findings suggest that a designed EDIII-
based VLP platform and stabilized E-Dimer Epitope (EDE)-
based dengue vaccine could provide the basis for a safe and
effective vaccine candidate capable of eliciting predominantly
type-specific antibodies.

Recently, investigators have successfully engineered a
stabilized EDE as a novel subunit DENV vaccine candidate.
This has been achieved by interfacing the two E-monomers to
form a E-dimer and lock this E-dimer via covalent disulphide
linkages. The stabilized EDE protein was recognized by Mabs
specific to the DENV quaternary epitopes. Moreover, the
FLE was unavailable on the surface of these stabilized EDE,
thus avoiding a significant level of cross-reactive antibodies
to this FLE that are elicited by immunizations with E-
monomers. This EDE design resulted in a higher level of
serotype-specific immune responses as compared to the E-
monomers (Thomas et al., 2020). The DENV cross-reactive
antibodies elicited by EDE exhibited potent neutralization
of all four DENV serotypes due to the conserved region
of EDE (Barba-Spaeth et al., 2016; Fernandez et al., 2017;
Rouvinski et al., 2017; Abbink et ‘al., 2018; Thomas et al.,
2020). Studies show that anti-dengue EDE mAbs exhibit
protection against ZIKV infection in pregnant and non-
pregnant immunocompromised C57BL/6 mice (Fernandez et al.,
2017).

A recently published pre-clinical results of a virus-like particle
(VLP) vaccine candidate known as DSV4 (Dengue Subunit
Vaccine Tetravalent) are very promising (Ramasamy et al.,
2018). This candidate is based on EDIII. Unlike domains
EDI and EDII, which elicit largely flavivirus cross-reactive
and weakly-neutralizing or non-neutralizing antibodies, EDIII
elicits potent serotype-specific virus-neutralizing antibodies. The

“four-in-one,” tetravalent vaccine candidate incorporates the
EDIIIs of all four DENVs spliced together through flexible
linkers in a single translational reading frame. Further, it is
genetically fused with Hepatitis-B surface antigen (HBsAg)
and co-expressed with four expression cassettes of HBsAg in
order to display EDIIIs on the surface of HBsAg virus-like-
particles (VLPs).

The schematic representation of DSV4 design is shown in
Figure 4. DSV4 assembles into VLPs and displays critical DENV
neutralizing epitopes of all 4 serotypes. It is immunogenic in
mice and macaques with aluminum hydroxide as adjuvant.
It elicits serotype-specific neutralizing antibodies against all
four DENVs in mice. These antibodies exhibit breadth of
neutralization against various genotypes of each serotype
(Ramasamy et al., 2018). The lack of in vivo ADE in the
recombinant DSV4 design is a crucial differentiator from the
whole virus-based dengue vaccine strategies. Table 2 compares
the key features of DSV4 with other whole DENV-based
vaccine strategies.

CONCLUSIONS

Antibodies elicited by DENVs play roles both in protection
against, and pathogenesis of, dengue disease. Protective
immunity is determined by the balance between these two
opposing antibody roles. A safe and efficacious dengue vaccine
must confer durable protection against all four DENV serotypes,
without the risk of ADE. Further, it should be suitable for all
age groups, irrespective of pre-vaccination serostatus. LAVs
have been the focus of most efforts, with one partly protective
vaccine already licensed, one which has completed Phase 3
trials and a third one due to complete efficacy trials soon.
However, the unique features of DENVs and the predominantly
ADE-prone nature of antibodies they elicit, coupled to the
issues of viral interference rendering physically tetravalent LAVs,
functionally monovalent, could continue to pose a challenge
for a risk-free dengue vaccine. In this regard, recombinant
subunit vaccine strategies that can facilitate selective retention
of neutralizing epitopes, while eliminating ADE-associated
epitopes, offer alternate promising options that must be
explored. Subunit vaccines for preventing infections by other
viruses such as hepatitis B, hepatitis E and human papilloma
viruses have been licensed (Shukla et al., 2019). Learning
from the Dengvaxia experience, it is very critical to assess
the in vivo ADE potential of all vaccine candidates early on,
using the available dengue-sensitive mouse ADE model. The
safety and efficacy are inter-linked attributes and both must
be evaluated.
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