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Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom

Human cytomegalovirus (HCMV) is an important pathogen in immunocompromised
individuals and neonates, and a paradigm for viral immune evasion. We previously
developed a quantitative proteomic approach that identified 133 proteins degraded
during the early phase of HCMV infection, including known and novel antiviral factors.
The majority were rescued from degradation by MG132, which is known to inhibit
lysosomal cathepsins in addition to the proteasome. Global definition of the precise
mechanisms of host protein degradation is important both to improve our understanding
of viral biology, and to inform novel antiviral therapeutic strategies. We therefore developed
and optimized a multiplexed comparative proteomic analysis using the selective
proteasome inhibitor bortezomib in addition to MG132, to provide a global mechanistic
view of protein degradation. Of proteins rescued from degradation by MG132, 34–47
proteins were also rescued by bortezomib, suggesting both that the predominant
mechanism of protein degradation employed by HCMV is via the proteasome, and that
alternative pathways for degradation are nevertheless important. Our approach and data
will enable improved mechanistic understanding of HCMV and other viruses, and provide
a shortlist of candidate restriction factors for further analysis.

Keywords: human cytomegalovirus, HCMV, quantitative proteomics, protein degradation, proteasome inhibitors,
tandem mass tag (TMT), proteasome, lysosome
INTRODUCTION

Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that persistently infects the
majority of the human population worldwide (Cannon et al., 2010). Following primary infection
under the control of a healthy immune system, a latent infection is established that persists lifelong
(Reeves et al., 2005). Although primary infection is mostly asymptomatic in healthy individuals,
HCMV may lead to significant morbidity or mortality in immunocompromised patients,
particularly transplant recipients and AIDS patients (Griffiths et al., 2015). Vertical transmission
of HCMV is a leading cause of congenital infection, resulting in deafness and intellectual disability
in newborns (Manicklal et al., 2013). Existing therapies that either target the viral polymerase or
terminase are associated with significant toxicity and/or sporadic resistance (El Helou and
Razonable, 2019). The identification and characterization of critical facets of host innate
immunity that are targeted for degradation by HCMV proteins thus has important implications
gy | www.frontiersin.org January 2021 | Volume 10 | Article 5782591
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for antiviral therapy, since such interactions may be inhibitable
by small-molecules, facilitating endogenous inhibition of viral
replication (Nathans et al., 2008).

HCMV has been reported to disrupt interferon (IFN)
production (Kim et al., 2017; Goodwin et al., 2018), neutralize
the IFN response (Le-Trilling and Trilling, 2015; Le-Trilling et al.,
2020), inhibit natural killer (NK) cell activation (Patel et al., 2018),
and avoid T cell surveillance via downregulation of MHC
molecules (Jackson et al., 2011). Additionally, diverse effects on
other key cellular functions have been observed including on cell
cycle regulatory proteins and ubiquitin ligases themselves (Weekes
et al., 2014; Clark and Spector, 2015; Koshizuka et al., 2016;
Koshizuka et al., 2018). A common final pathway for many host
protein targets is proteasomal or lysosomal degradation (Halenius
et al., 2015; Le-Trilling and Trilling, 2020). HCMV facilitates viral
replication by degrading components of cellular promyelocytic
leukemia nuclear bodies (PML-NB) Sp100, MORC3, and DAXX
that act as restriction factors (Kim et al., 2011; Tavalai et al., 2011;
Schreiner and Wodrich, 2013; Sloan et al., 2016). We previously
developed three orthogonal proteomic/transcriptomic screens to
quantify protein degradation early during HCMV infection,
identifying 133 degraded proteins that were enriched in antiviral
restriction factors. The power of this approach was demonstrated
by our identification of helicase-like transcription factor (HLTF) as
a novel restriction factor that potently inhibited early viral gene
expression and was targeted by the HCMV protein UL145
(Nightingale et al., 2018). However, a global approach to identify
themechanism of HCMV-induced protein degradation is lacking.
Our previous study employed the broad, non-selective inhibitor
MG132, which is known to affect lysosomal cathepsins in addition
to the proteasome (Wiertz et al., 1996), and leupeptin which is a
naturally occurring protease inhibitor that can inhibit some
proteasomal proteases in addition to the lysosome (Nightingale
et al., 2018).

In this study, we used the selective proteasome inhibitor
bortezomib (Chen et al., 2011) to identify proteins specifically
targeted for proteasomal degradation during HCMV infection.
This identified that the majority of proteins rescued from
degradation by MG132 were also rescued by bortezomib,
highlighting the role of viral subversion of the proteasome in
immune evasion. Our data additionally provide a shortlist of
proteins degraded by the proteasome early during infection that
are enriched in known antiviral factors for further investigation.
MATERIAL AND METHODS

Cells and Cell Culture
Primary human foetal foreskin fibroblast cells (HFFFs)
immortalized with human telomerase (HFFF-TERTs, kindly
provided by Dr. Richard Stanton at School of Medicine,
Cardiff University) (McSharry et al., 2001) were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% v/v foetal bovine serum (FBS), 100 U/ml penicillin, and
100 mg/ml streptomycin at 37°C with 5% CO2 (DMEM/FBS/PS).
HFFF-TERTs have been tested at regular intervals since isolation
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to confirm that human leukocyte antigen (HLA) and MHC Class
I Polypeptide-Related Sequence A (MICA) genotypes, cell
morphology, and antibiotic resistance are unchanged.

Virus and Virus Titration
The recombinant HCMV (RCMV1111) used was derived by
transfection of a BAC clone of HCMV strain Merlin, the genome
of which is designated the reference HCMV sequence by the
National Centre for Biotechnology Information and was
sequenced after three passages in vitro (Dolan et al., 2004;
Stanton et al., 2010). Virus stocks were prepared from HFFF-
TERTs as described previously (Nobre et al., 2019). Tissue
culture supernatants were kept when a 100% cytopathic effect
was observed, and were centrifuged to remove cell debris. Cell-
free virus was pelleted from supernatant by centrifugation at
15,000×g for 2 h and then resuspended in fresh DMEM. Residual
debris was removed from the resulting virus stocks by
centrifugation at 10,000xg for 1 min. Virus titration was
achieved by intracellularly staining HCMV IE1/2 in HFFF-
TERTs that had been infected with serially diluted HCMV.
Cells were harvested 24 h post-infection, fixed in 4%
paraformaldehyde, permeabilized with ice-cold methanol,
blocked with human TruStain FcX Fc receptor blocking
solution (Biolegend) and then subjected to primary (anti-
HCMV IE1/2, mouse monoclonal 6F8.2, Millipore) and
secondary (anti-mouse IgG conjugated with Alexa Fluor 488,
Thermo) antibody incubation. Data was acquired by
FACSCalibur (BD biosciences) and analyzed with FlowJo
software (BD biosciences). The percentage of infected cells was
determined by the percentage of IE1/2 positive cells, which was
used to calculate the titre of virus stock.

Virus Infections and Inhibitors
1x106 HFFF-TERTs were plated in a 25 cm2

flask. After 24 h, the
medium was changed to DMEM lacking FBS but with 4 mg/ml
dexamethasone, as this approach has been shown to improve
infection efficiency (Tanaka et al., 1984). After 24 h, the medium
was changed to DMEM containing the requisite volume of
HCMV strain Merlin stock to achieve MOI 5. Cells were
gently rocked (5 rpm) for 2 h, and then the medium was
changed to DMEM/FBS/PS. MG132 (Sigma) at 10 mM or
bortezomib (Sigma) at a range of concentrations was added to
the cell culture 12 h prior to sample collection. Bortezomib was
used at final concentrations between 50 nM–2 µM. Inhibitors
were dissolved in dissolved in dimethyl sulfoxide (DMSO,
Sigma), which was used at the same final concentration in
both treated and untreated samples. For 12 hpi experiments,
inhibitors were added to the initial viral mixture used for
infection, which was replaced with drug-containing fresh
DMEM after the 2 h of incubation.

Quantitative Tandem-Mass-Tag Based
Proteomics Analysis and Statistical
Analysis
Methods of proteomics analysis were described in our previous
publication (Nightingale et al., 2018), and are briefly described
January 2021 | Volume 10 | Article 578259
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here with a detailed description in the supplementary
information. Whole cell lysates were digested into peptides
with LysC and trypsin, and equal amounts of peptide labelled
with 10-plex tandem-mass-tag (TMT) reagents. (Thermo, Cat #
90110). Enriched, labelled peptides were subjected to liquid
chromatography coupled with multi-stage mass spectrometry
(LC-MS3) prior to quantification of ~2,500 proteins in a single
mass spectrometry analysis using an Orbitrap Fusion Lumos
(Thermo). To acquire more comprehensive data, TMT-labelled
peptide samples were subjected to high pH reversed-phase
fractionation (HpRP) to generate 12 combined peptide
fractions prior to mass spectrometry. Mass spectra were
processed using a SEQUEST-based software pipeline for
quantitative proteomics, “MassPike”, through a collaborative
arrangement with Professor Steven Gygi’s laboratory at
Harvard Medical School. Experiments were performed in one
biological replicate. The method of significance A was used to
estimate the p-value that each ratio was significantly different to
1 using Perseus version 1.5.1.6 (Cox and Mann, 2008). Values
were adjusted for multiple hypothesis testing using the method
of Benjamini-Hochberg (Cox and Mann, 2008).

Immunoblot
Cells were lysed with RIPA buffer (Cell Signaling) containing
Complete Protease Inhibitor Cocktail (Roche) and then lysates
were sonicated with Bioruptor Pico (Diagenode). Protein
concentration was measured by BCA kit (Thermo). Lysates
were reduced with 6X Protein Loading Dye (Tris 375 mM pH
6.8, 12% SDS, 30% glycerol, 0.6 M DTT, 0.06% bromophenol
blue) for 5 min at 95°C. Thirty mg of protein for each sample was
separated by PAGE using 4–15% TGX Precast Protein Gels (Bio-
rad), then transferred to PVDF membranes using Trans-Blot
Systems (Bio-rad). The following primary antibodies were used:
anti-GLG1 (MAB78791, R&D Systems) and anti-GAPDH
(MAB374, Millipore). Secondary antibodies were IRDye
680RD goat anti-mouse (925-68070, LI-COR) and IRDye
800CW goat anti-rabbit (925-32211, LI-COR). Fluorescent
signals were detected and quantified using a LI-COR Odyssey
scanner and Image Studio software (LI-COR).
RESULTS

Optimization of Bortezomib Concentration
for Experiments in HFFF-TERTs
Bortezomib has been employed in a number of studies of human
cell lines as a specific inhibitor of the proteasome. However, a
wide range of concentrations have been used, from 0.1 to 20 µM
(Price et al., 2011; Chui et al., 2019). To optimize conditions for
proteomic analysis in HCMV-infected immortalized primary
human foetal foreskin fibroblasts (HFFF-TERTs), a range of
bortezomib concentrations were compared with 10 mMMG132,
a concentration we previously showed to provide efficacious
inhibition of protein degradation (Figures 1, S1A–B)
(Nightingale et al., 2018). TMT peptide labels and MS3 mass
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
spectrometry enabled very precise protein quantitation, as well
as multiplexed analysis of up to 16 samples in the
same experiment.

For each protein, ratios of (HCMV with bortezomib)/HCMV
and (HCMVwithMG132)/HCMVwere compared to quantify the
relative efficacy of protein rescue. Here, we define “rescue” as the
increased expression of a given protein in the presence of inhibitor
in the context of viral infection. In order to make an appropriate
comparison of fold rescue by both drugs, it was necessary to ensure
that a difference could confidently be quantified upon addition of
either drug. At lower bortezomib concentrations, rescue ratios
were close to 1 with a compressed range of values, making it
difficult to assess significance of any given change (Figure S1B).
The trend of linear correlation and slope of the trend line both
increased with increasing bortezomib concentration, with a
gradient near to one for 2 µM bortezomib. At this concentration,
the degree of rescue was most similar between MG132 and
bortezomib, enabling the same fold-change cut off to be applied
for bothMG132 and bortezomib analyses and 2 µMbortezomib at
12 h post infection (hpi) was therefore selected for detailed
assessment (Figures 1A, B). A comparison of mock infection in
the presence of either inhibitor at optimized concentration
identified very similar protein changes (Figure S1C), suggesting
that although theremay be off-target effects of either inhibitor, at a
protein level at least these are similar. Furthermore, comparison of
protein changes in the presence of MG132 at 12 h of HCMV
infection from this and our previous study showed positive
correlation, albeit in some cases with different effect sizes on an
individual protein level (Figure S2, Table S4).

Multiple Host Proteins Are Targeted for
Proteasomal Degradation Early During
HCMV Infection
To build a comprehensive picture of host protein degradation
during the first 12 h of HCMV infection, data from experimental
samples described in Figure 1A (that included the 2 µM
bortezomib condition) was analyzed in detail. Overall, 7,192
host proteins were quantified, 145 of which were down-regulated
by HCMV >1.5-fold (with p < 0.01) compared to mock infection.
MG132 and bortezomib “rescue ratios” were calculated for each
protein, obtained by comparing protein abundance during
HCMV infection +/- inhibitor with protein abundance during
mock infection +/- inhibitor (Figure 2A).

For simplicity and consistency with our previous study
(Nightingale et al., 2018), a rescue ratio of >1.5-fold with
p<0.01 was set as a threshold to identify proteins rescued by
either MG132, bortezomib or both (Figures 2A, Table S1).
Using these criteria, 64/145 (44%) proteins were considered to
be rescued by either inhibitor, with 34/64 proteins rescued by
both drugs. Notably, this group contained the known HCMV
restriction factors Sp100, MORC3, DAXX, and HLTF in addition
to cell cycle regulating protein ANAPC1, all of which have been
reported to be degraded during HCMV infection by ourselves
and others (Figure 2B) (Tran et al., 2010a; Chen et al., 2011; Kim
et al., 2011; Tavalai et al., 2011; Schreiner and Wodrich, 2013;
Sloan et al., 2016; Nightingale et al., 2018).
January 2021 | Volume 10 | Article 578259
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Data from all proteomic experiments in this study are shown
in Table S2. Here, the worksheet “Plotter” is interactive, enabling
generation of graphs of protein expression of any of the
proteins quantified.

Certain proteins exhibited a greater degree of rescue with
MG132 compared to bortezomib (Figure 2B, yellow dots). Of
the 21 proteins only rescued >1.5 fold by MG132, 13 (62%)
exhibited bortezomib rescue ratios of >1.25 and <1.5, suggesting
that many of this group of proteins may nevertheless be
proteasomally degraded. These included the PDZ domain
containing protein 11 (PDZD11) and transcriptional repressor
BENDomainContaining 3 (BEND3) (Figure S3,Tables S1–2). In
contrast, 8/21 proteins appeared genuinely to be selectively rescued
by MG132 but not bortezomib (bortezomib rescue ratio <1.25),
including the fibroblast growth factor receptor Golgi Glycoprotein
1 (GLG1), E3 ligase NEDD4, and carbohydrate sulfotransferase 14
(CHST14) (Figure 2Cmiddle panel, Table S1). Similar data were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
obtained for treatments with 500 nM and 1 µM bortezomib,
validating these findings, and differential effects of MG132 and
bortezomib on GLG1 protein were validated by immunoblot
(Figures 3A, B). Interestingly, Gene Ontology annotation of all 8
proteins indicated an association with either the cell membrane,
theGolgi apparatus, or vesicle secretion. Furthermore, comparison
of data with our previous study examining protein rescue by
MG132 or leupeptin indicated that GLG1, NEDD4, and CHST14
were also significantly rescued by treatment with the lysosomal
protease inhibitor leupeptin (Figure 3A), suggesting that a
proportion of the proteins rescued by MG132 alone are
degraded lysosomally.

Of proteins exhibiting a greater degree of rescue with
bortezomib compared to MG132 (Figure 2A, purple dots), 8/9
(89%) exhibited MG132 rescue ratios >1.25 but <1.5 (examples
in Figure S2, 2C bottom panel), suggesting that the majority of
all proteins in this class were in fact rescued by both inhibitors.
A

B

FIGURE 1 | Optimization of bortezomib concentration by comparison with 10 µM MG132. (A) Schematic of the experimental workflow. HFFF-TERT cells were
infected with Merlin strain HCMV (MOI 5) or mock infected and simultaneously treated with 10 µM MG132, 500 nM, 1 µM, or 2 µM bortezomib. Samples were
harvested at 12 hpi to maximize the ability to study very early infection as we previously described (Nightingale et al., 2018). Whole cell lysates were digested into
peptides, which were labelled with TMT reagents followed by MS3 mass spectrometry. (B) Comparison of 10 µM MG132 with 500 nM, 1 µM, or 2 µM bortezomib
during HCMV infection. Each dot represents a protein quantified in the experiment. The x-axis shows the fold change of protein abundance +/- 10 µM MG132 during
HCMV infection. The y-axis shows the fold change of protein abundance +/- 500 nM, 1 µM, or 2 µM bortezomib during HCMV infection. The equations and
correlation coefficients of the linear trend lines are shown.
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The one exception was LIM domain-containing protein AJUBA,
whose MG132 rescue ratio was 1.16 in this data (Figure 2C
bottom panel), but neared significance in our previous study
(Table S2); these differences may reflect relatively poor
quantitation by only two or one peptides respectively.

Proteasomal Regulation of Viral Proteins
The application of MG132 during infection led to significant
changes in the abundance of several viral proteins. Overall, 82
viral proteins were quantified, including 77 canonical proteins
and 5 novel open reading frames (ORF). Two, ORF1872 and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
US34, were up-regulated by both MG132 and bortezomib
(Figure 4, Table S5), suggesting they were readily degraded via
the proteasome during early infection. We previously identified
ORF1872 as a putative unstructured and inherently unstable
protein (Nightingale et al., 2018). Only glycoprotein gH (UL75)
was up-regulated by MG132 in the absence of substantial
upregulation by bortezomib (Figure 4, Table S5). gH was
quantified in our previous multiplexed MG132/leupeptin
analysis (Nightingale et al., 2018). Its rescue by MG132 and
leupeptin but not bortezomib is likely to reflect lysosomal
proteolysis after virion entry through endocytosis.
A

B

C

FIGURE 2 | Identification of proteins targeted for degradation by HCMV using an inhibitor-based proteomic screen. (A) Results of the inhibitor-based screen. All 145
proteins downregulated >1.5 fold are plotted, with down-regulated proteins divided into 4 groups using rescue ratios of >1.5 as cut-offs. The table shows the
number of proteins in each group. For rescue ratios, the denominator (mock with drug)/mock was limited to a minimum of 1 to prevent artificial ratio inflation.
(B) Examples of positive controls from the existing literature that were validated in this screen. (C) Examples of degraded proteins rescued >1.5-fold by both
inhibitors (top panels), MG132 but not bortezomib (middle panels), and bortezomib but not MG132 (bottom panels).
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A

B

FIGURE 3 | Proteins rescued by MG132 but not bortezomib are also rescued by Leupeptin. (A) Results for GLG1, NEDD4 and CHST14, proteins selectively
rescued by MG132 but not bortezomib. The left hand panels show data from the complete MG132/bortezomib screen and the right hand panels show the MG132
(10 µM)/Leupeptin (200 µM) screen (12 hpi) described previously (Nightingale et al., 2018). (B) (Left panel) Immunoblot showing differential effects of proteasome
inhibitors MG132 (MG) and bortezomib (bort) on GLG1 protein during HCMV infection (MOI 5, 12 hpi). (Right panel) Quantitation of GLG1 relative to GAPDH (internal
loading control).
FIGURE 4 | Regulation of 82 viral proteins by proteasome inhibitors. Viral proteins up- or down-regulated >2-fold by both proteasome inhibitors are marked in
purple, with proteins up- or down-regulated >2-fold by one proteasome inhibitor, but <2-fold by the other inhibitor marked in green.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org January 2021 | Volume 10 | Article 5782596
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DISCUSSION

HCMV is known to be a master regulator of host immunity,
achieving lifelong persistence in infected individuals by utilizing
a wide range of strategies to modulate host protein expression.
These include the deployment of proteins to target host factors
for degradation. Here, we provide a searchable database that
systematically details the route of degradation of cellular proteins
during the establishment of a productive HCMV infection.
Furthermore, this data can be used to predict molecules of key
importance in antiviral immunity to HCMV on the basis of
their degradation.

MG132 is a less selective proteasomal inhibitor than
bortezomib, having previously been reported to inhibit lysosomal
degradation pathways via inhibition of calpains and cathespsins
(Kisselev and Goldberg, 2001), in addition to the proteasome. In
our previous publication, 75% of proteins rescued by leupeptin at
12 h of infection were also rescued by MG132. The usefulness of
comparing this broad proteasomal/lysosomal inhibitor with the
specific proteasomal inhibitor bortezomib is the identification that
62–85% (34–47 proteins) of proteins rescued byMG132 were also
rescued by bortezomib, suggesting that the proteasome is the
predominant route for early protein degradation at 12 h post-
HCMV infection. Overall, of all downregulated proteins, 44%were
rescued by at least one of MG132 or bortezomib. It is possible that
in order to downregulate certain proteins, HCMV must employ
degradative pathways in order to achieve sufficiently rapid change
in protein abundance.

We and others have previously shown thatmembrane proteins
are targeted for lysosomal degradation during HCMV infection
(Weekes et al., 2013; Fielding et al., 2014; Hsu et al., 2015; Fielding
et al., 2017), and data here identified that all proteins rescued by
MG132 but not bortezomib had a membrane origin. Certain
proteins were exclusively degraded by a non-proteasomal route,
including GLG1 and CHST14. Extension of these inhibitor studies
to examining membrane-enriched samples, for example samples
enriched for plasma membrane proteins (Weekes et al., 2013;
Weekes et al., 2014) would therefore be of substantial interest, and
may identify a distinct degradative route for proteins originating
from these compartments.

Comparison of data from this study with our previous
transcriptional analysis of host gene expression during infection
at 24 hpi (Nightingale et al., 2018) suggested that 44 of the 81
proteins (54%) with MG132 and bortezomib rescue ratios <1.5
were more than 1.5-fold transcriptionally downregulated, which
would be expected to be a major mechanism of protein
downregulation in the absence of degradation (Tirosh et al.,
2015). The fold change cut off of 1.5 for both downregulation by
HCMV, and rescue by either inhibitor was based on a significance
threshold of p <0.01, however had the effect of excluding proteins
with “borderline” rescue ratios of >1.25 but <1.5. 39/81 proteins
with MG132 and bortezomib rescue ratios <1.5 exhibited rescue
ratios for MG132 or bortezomib or both that were nevertheless
>1.25, suggesting that this group of proteins included some
candidates that downregulated by degradation, at least in part.

Proteasome activity is necessary for efficient viral gene
transcription and viral replication (Prösch et al., 2003; Kaspari
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
et al., 2008; Tran et al., 2010b; Le-Trilling et al., 2016). More viral
proteins were down- than up-regulated upon application of
proteasome inhibitors at 12 hpi, including seven down-regulated
>2-fold by both MG132 and bortezomib. One reason could be that
cellular factors hindering viral gene transcription (e.g. ND10
components) are no longer degraded during HCMV infection in
the presence of proteasome inhibition, leading to impaired
expression of viral genes. This highlights that there are at least two
mechanisms that could lead to the stabilization of a given host
protein. The first is degradation of the host protein along the
pathway inhibited by the drug. A second possibility is reduction
by the drug of the abundance of a viral protein responsible for the
degradationprocess. For instance,US22,whichwasdown-regulated
by MG132 and bortezomib, has been reported to function as an
RNA-associated viral protein, thus has the potential to regulate gene
expression post transcriptionally (Lenarcic et al., 2015). Although
none of the viral proteins downregulated >2-fold by both MG132
and bortezomib orMG132 alone are known to target host proteins
for degradation, their downregulation could potentially provide an
alternative explanation for some of the changes we observed.

Overall, this analysis of host protein degradation during
HCMV infection has not only identified proteasomal
degradation as a key mechanism subverted by the virus early
during infection, but has also generated a shortlist of
proteasomally degraded proteins enriched in known HCMV
restriction factors. Further investigation into the role of the
other proteins in this shortlist is warranted to determine if
they also have restrictive capabilities. Identification of HCMV
restriction factors, understanding the mechanism by which they
restrict infection and identification of viral antagonists that target
these factors for degradation are of fundamental interest due to
the potential for therapeutic intervention.
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