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Periodontal disease is a chronic infectious disease associated with a variety of bacteria,
which can cause damage to the periodontal support structure and affect a variety of
systemic system diseases such as cancer, cardiovascular disease, diabetes, rheumatoid
arthritis, non-alcoholic fatty liver, and Alzheimer’s disease. Porphyromonas gingivalis (P.
gingivalis) is the most important pathogenic bacteria for periodontal disease. It can
produce outer membrane vesicles (OMVs) and release them into the environment,
playing an important role in its pathogenesis. This article focuses on P. gingivalis OMVs,
reviews its production and regulation, virulence components, mode of action and related
diseases, with a view to providing new ideas for the prevention and treatment of diseases
related to P. gingivalis infections.

Keywords: Porphyromonas gingivalis, outer membrane vesicles, virulence factors, periodontal disease,
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INTRODUCTION

Periodontal disease is a chronic infectious disease associated with a complex of bacterial species
leading to the destruction of periodontal structures, including gingiva, periodontal ligament,
alveolar bone and cementum (Patini et al., 2018). The initial stage of periodontal disease is
gingivitis, which gradually develops into periodontitis as the disease progresses. It can cause gingiva
bleeding, tooth mobility and even tooth loss. Apart from oral health issues, many evidences indicate
that periodontal disease is tightly bound to systemic diseases, including but not limited to diabetes
(Liccardo et al., 2019), cardiovascular disease (Carrizales-Sepulveda et al., 2018), rheumatoid
arthritis (Koziel et al., 2014), Alzheimer’s disease (Sochocka et al., 2017), and non-alcoholic fatty
liver disease (Alakhali et al., 2018). Specific bacteria form biofilms that accumulate on the tooth
surface, interact with host cells, release inflammatory mediators, evade host immune defenses and
resist drug action, and play different pathogenic effects in a suitable microenvironment. Therefore, it
is very important to study the virulence mechanism of periodontal pathogens for the treatment of
periodontal disease and related systemic diseases.
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P. gingivalis is the most important pathogenic bacteria for
chronic periodontitis. It forms the “red complex” with
Tannerella forsythia, and Treponema denticola, which has been
the focus of researchers for many years (Darveau et al., 2012). In
1988, Stanley C et al. implanted P. gingivalis into the subgingival
microbiota of rhesus monkeys and successfully caused
periodontitis (Holt et al., 1988). Colonization by P. gingivalis
leads to impaired innate host defense and promotion of
inflammation. These alterations cause quantitative and
compositional changes in the subgingival microbiota, which
resulting in the emergence of dysbiosis (Hajishengallis et al.,
2011; Maekawa et al., 2014). The destruction of inflammatory
tissues increases the flow of gingival crevicular fluid (GCF),
which brings the degraded collagen and heme-containing
compounds into the gingival crevice. These molecules are
selectively used by other bacteria, and further develop dysbiotic
communities in gingival crevice. In contrast, health-related
species are at a disadvantage under this environmental
condition, causing imbalances and further exacerbating
inflammation, which eventually results in individual
periodontitis (Lamont et al., 2018). At the same time, P.
gingivalis can be detected in other sites such as synovial fluid
and plasma, suggesting its potential correlation with systemic
diseases (Kriauciunas et al., 2019). It can also interact with the
host to promote gene enrichment related to Alzheimer’s disease,
diabetes and cardiovascular disease, and even aggravate
inflammation at the level of the central nervous system, which
is conducive to the occurrence of diseases (Carter et al., 2017;
Dioguardi et al., 2020).

With the deepening of research, the OMVs gradually enter
people’s field of vision as integral parts of biofilm matrices
(Flemming et al., 2007). OMVs are double-layer spherical
membrane-like structure with a diameter of about 50 to 250
nanometers that are continuously discharged from the cell
surface during the growth of Gram-negative bacteria without
loss of membrane integrity (Beveridge, 1999). It is composed of
outer membrane proteins, lipopolysaccharides (LPS),
phospholipids, DNA, and a part of the periplasm that is
enveloped by the outer membrane during the formation
process (Cecil et al., 2019). Bacterial OMVs participate in
adaption to stress, nutrient acquisition, and communication
with host cells and other bacteria (Ellis and Kuehn, 2010).
Many enrichment components associated with OMVs are
pathogenic factors that contribute to host cell destruction,
immune system escape, host cell invasion, or antibiotic
resistance. Virulence factors wrapped in OMVs have various
advantages including preventing from proteolytic degradation,
enhancing long-distance delivery, and coordinating secretion
with other bacterial effectors (Bonnington and Kuehn, 2014).
In addition, OMVs present a series of natural conformations of
surface antigens and have natural characteristics such as
immunogenicity, adaptation, and immune cell absorption,
making them attractive vaccines against pathogenic bacteria
(Pol et al., 2015; Chen et al., 2020). In 1985, Williams and
Holt, 1985 first reported that P. gingivalis can produce OMVs,
but its physiological function and pathogenic mechanism are not
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
clear (Williams and Holt, 1985). In recent years, more and more
evidence indicates that P. gingivalis OMVs play important roles
in the pathogenesis. This review mainly discusses the generation,
virulence mechanism and the role of P. gingivalis OMVs in
periodontal disease and related systemic diseases, and aims to
provide new ideas for the prevention and treatment of
related diseases.
PRODUCTION AND REGULATION OF
PORPHYROMONAS GINGIVALIS OUTER
MEMBRANE VESICLES

Gram-negative bacteria produce OMVs at various stages of
growth in various environments, such as infected tissues (Ellis
and Kuehn, 2010). OMVs can be formed through different
pathways, and they can be produced by different mechanisms
even within the same bacterial species (Perez-Cruz et al., 2015).
There are various descriptions to explain its generation
mechanism. In 1998, Leah Zhou et al. proposed a model for
Gram-negative bacteria OMVs formation. During the growth of
bacteria, the cell wall is excised and released from the
peptidoglycan. If the released muramyl peptides cannot be
absorbed, and expansion pressure is always generated on the
outer membrane, it will form continuously growing blebs and
eventually be shed into the growth medium (Leah Zhou et al.,
1998). Therefore, Kuehn and Kesty, 2005 believe that vesicles
may be formed at locations where the connection between
peptidoglycan and outer membrane is infrequent, absent or
broken (Kuehn and Kesty, 2005). In P. gingivalis, this
mechanism causes the substances located near the outer
membrane of the bacteria to be released into the environment
in the form of vesicles and act with stronger virulence than the
parent bacteria (Mantri et al., 2015).

The production of OMVs can be regulated by microorganisms.
In 2016, Roier et al. proposed a general mechanism for
OMVs generation that can be regulated by microorganisms.
First, decreased or missing expression VacJ and/or Yrb
genes leads to phospholipid accumulation in the outer
membrane. This asymmetric expansion triggers the outward
expansion of the outer membrane. Second, the positive and
negative curvatures on the outer membrane will cause
further enrichment of phospholipids and support the budding
of the outer membrane, which will eventually be released to
form OMVs. Finally, the released OMVs are enriched in
phospholipids present in the outer membrane. This biogenesis
mechanism of OMVs based on phospholipid accumulation can
cooperate with all other OMVs formation models proposed so
far (Roier et al., 2016). For P. gingivalis, it also has some special
regulatory factors. According to the genotype of FimA, the
main subunit of fimbriae, P. gingivalis strains can be divided
into six types: I, Ib, II, III, IV, and V. Kerr et al. observed that
the surface OMVs of P. gingivalis strains ATCC 33277 (type I)
and ATCC 49417 (type III) were significantly more than those
of W83 strain (type IV) (Kerr et al., 2014). Mantri et al.
January 2021 | Volume 10 | Article 585917
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also found that the OMVs produced by the FimA mutant and
the FimR mutant were much fewer than the parent strain
33277. It indicates that production and pathogenicity of
P. gingivalis OMVs may mainly depend on the expression of
the fim locus (Mantri et al., 2015), which may be due to
changes in the envelope structure or reduced membrane
stability (Baker et al., 2014). Moreover, Nakao et al. found
the GalE mutant of P. gingivalis produced little or no OMVs
(Nakao et al., 2011). On the contrary, OMVs were overproduced
around the OmpA mutant of P. gingivalis (Iwami et al., 2007)
(Figure 1).

Researchers believed that the formation of vesicles is related
to the protective mechanism of bacteria. McBroom and Kuehn,
2007 demonstrated that the amount of OMVs released is directly
related to the level of protein accumulation in the cell envelope.
After being attacked by stressors or accumulating toxic misfolded
proteins, the misfolded protein mimics are preferentially
packaged into OMVs for removal, which indicates that the
process of vesicle formation can selectively eliminate unwanted
substances to increase the survival rate of bacteria (McBroom
and Kuehn, 2007). On the other hand, Xie suggests that OMVs
carry some antigenic substances of their parent bacteria, which
can act as bait to interact with the host or drugs, thereby
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
promoting the survival of P. gingivalis in oral environment
(Xie, 2015).
CONTENTS AND VIRULENCE FACTORS

P. gingivalis OMVs are small and adherent. It is found that the
ratio of cells to OMVs is about 1:2,000 (Cecil et al., 2016). They
are more stable since they are not affected by host-derived
proteases. Compared to the parent P. gingivalis, OMVs can
better penetrate deep tissues and activate an inflammatory host
response (O’Brien-Simpson et al., 2009), and the way they exert
their virulence depends largely on lipids, proteins, and nucleic
acids (Gui et al., 2016). The components of virulence-related and
transport factors contained in OMVs are dynamic and cannot
simply reflect changes on the cell surface, and can be enriched
according to different growth conditions (Veith et al., 2018).

P. gingivalis can specifically concentrate considerable
virulence factors in the form of OMVs and release them to the
environment. Veith et al. performed a proteomics analysis of P.
gingivalis OMVs and identified a total of 151 proteins, almost all
of which were derived from the outer membrane or periplasm,
and its protein composition is different from its parent bacteria
FIGURE 1 | Production and regulation of P. gingivalis OMVs. 1. After the cell wall is excised, phospholipids accumulated in the outer membrane leaflets, and the
expansion pressure continued to produce, which intensified the further enrichment of outer membrane components. The linkage between the peptidoglycan and the
outer membrane layer is disrupted, and finally P. gingivalis OMVs are formed. 2. The fim locus and GalE mutant strains reduced or even eliminated the production of
P. gingivalis OMVs, while the OmpA mutant strain overproduce P. gingivalis OMVs.
January 2021 | Volume 10 | Article 585917
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(Giorgio Gabarrini et al., 2020) (Figure 2). Of all the 151
proteins, 30 exhibited CTD secretion signals and localized
them on the surface of the vesicles, while 79 and 27 were
localized in the vesicle membrane and lumen, respectively, and
15 were of uncertain location (Veith et al., 2014) (Figure 2). It is
found that all CTD proteins and other virulence factors are
abundantly enriched in the OMVs, while proteins that exhibit
OmpA peptidoglycan binding motif and TonB-dependent
receptors are preferentially retained on the outer membrane of
P. gingivalis (Veith et al., 2014). CTD protein is a protein
containing a C-terminal domain (CTD), which can be secreted
by the type IX secretion system (T9SS). CTD can direct the
protein to the outer membrane translocon of P. gingivalis. After
the secreted protein is modified in the inner membrane and
translocated across the outer membrane, the CTD is removed by
a protease with sortase-like activity and the secreted protein is
modified by A-LPS. Thereafter, the secreted protein can be
released into the environment or anchored on the surface of
the bacteria (Lasica et al., 2017; Kim and Davey, 2020). CTD
proteins include the well-studied gingipains, Mfa5, A-LPS,
HBP35, CPG70, PPAD, etc (Shoji et al., 2011). Gingipains are
a group of proteases, including Kgp and Rgps, which constitute a
major virulence factor of P. gingivalis (Sato et al., 2010). They can
promote the destruction of supporting bones and tissues in the
oral cavity, thereby promoting P. gingivalis cell spread
throughout periodontal tissue and host cell invasion (Li and
Collyer, 2011). Haurat et al. considered that P. gingivalis could
selectively package certain outer membrane proteins, mainly
gingipains, into OMVs and exclude other abundant outer
membrane proteins from the OMVs, such as PG0694 and
PG0695. However, in the case of WaaL mutant, no gingipains
were detected in OMVs, which may be related to the specific
mechanism of protein sorting during the formation of P.
gingivalis OMVs (Haurat et al., 2011). Data show that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
gingipain levels on OMVs are three to five times higher than
their parent bacteria (Mantri et al., 2015). In addition to
gingipains, heme-binding lipoproteins HmuY and IhtB are
selectively enriched on the surface of P. gingivalis OMVs, while
their cognate TonB-linked transmembrane transport proteins
HmuR and IhtA remained on the surface of P. gingivalis (Veith
et al., 2014). Heme is an essential growth factor and virulence
regulator of P. gingivalis. It can be obtained from hemoglobin
through the synergistic effect of heme-binding proteins and
gingipains (Smalley et al., 2011). Among P. gingivalis OMVs,
the most up-regulated proteins in response to heme limitation
are the proteins involved in the binding and transport of heme,
and the 4 most up-regulated proteins in the case of heme excess
constitute the putative heme efflux system (Veith et al., 2018).
The preferential packaging of these heme-binding proteins and
the gingipains on OMVs indicates that OMVs can achieve
micronutrient capture by obtaining heme (Gui et al., 2016). P.
gingivalis OMVs can return the heme-loaded OMVs to the
biofilm and provide many other subgingival plaque bacteria
with these micronutrients, thereby providing community
benefits that allow other species to proliferate. Similarly, the
oligo-, monosaccharides, peptides, and amino acids produced by
the activity of hydrolases located in OMVs can also be used in
other bacteria (Elhenawy et al., 2014). This may be one of the
mechanisms by which P. gingivalis acts as a key pathogen
producing dysbiosis.

In addition to protein components, OMVs also have some
noncoding RNAs, which play critical roles in many biological
processes, including microRNA(miRNA), long noncoding RNA
(lncRNA) and circular RNA(circRNA) (Chew et al., 2018). In
2015, Sjöströmz et al. first reported that RNA is one of the
components associated with OMVs (Sjostrom et al., 2015).
Recently, a novel class of small RNAs of miRNA size (miRNA-
size, called small RNAs or msRNAs) has also been found in
FIGURE 2 | Overview of localization of P. gingivalis OMVs and core P. gingivalis proteins. The data in the figure show the number of proteins resident at particular
locations in the P. gingivalis OMVs proteome and the core P. gingivalis proteome. Most proteins of the P. gingivalis OMVs are membrane proteins, lipoproteins, and
extracellular proteins. Among them, all 30 extracellular proteins exhibit CTD secretion signals, including well-studied gingipains, Mfa5, A-LPS, HBP35, CPG70, PPAD,
etc. Therefore, P. gingivalis OMVs may play a key role in the influence of P. gingivalis on the host.
January 2021 | Volume 10 | Article 585917
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several bacteria. Choi et al. listed msRNAs with high clone copy
number in P. gingivalis OMVs, including P.G_45033, P.G_4378,
P.G_122, P.G_16418, and P.G_25037. Subsequent experiments
found that these msRNA can be delivered to eukaryotic cells,
identify certain potential immune-related target genes, and
inhibit the expression of certain cytokines in Jurkat T cells
(Choi et al., 2017). High-throughput RNA-seq has revealed
that msRNAs may act either as virulence factors or modulator
of virulence factors (Diallo and Provost, 2020). However, the
specific role of msRNA in P. gingivalis OMVs and related
mechanisms need to be further explored.
ROLES OF PORPHYROMONAS
GINGIVALIS OUTER MEMBRANE
VESICLESs IN ORAL INFLAMMATION
MICROENVIRONMENT

Dental plaque formation is an important factor in periodontal
disease. Dental plaque is a biofilm formed by the aggregation of
various microorganisms, and the interaction between different
species is established through specific recognition between
adhesins and receptors. Most of the noted adhesins such as
FimA and Mfa1 are present in P. gingivalis OMVs. As a result,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
OMVs may represent P. gingivalis to communicate with other
oral bacteria (Ho et al., 2015) (Figure 3). Kamaguchi et al.
demonstrated that P. gingivalis OMVs strongly promotes
coaggregation between Staphylococcus aureus with oral
microorganisms that do not or only weakly copolymerize
with Staphylococcus aureus, such as Streptococcus, Actinomyces,
and the mycelium type Candida albicans (Kamaguchi
et al., 2003). Grenier found that P. gingivalis OMVs can
mediate the coaggregation between Treponema denticola and
Lachnoanaerobaculum saburreum, and that non-motile bacteria
can be transported by carrying spirochetes (Grenier, 2013).
P. gingivalis OMVs can also inhibit and disperse competitive
biofilms in a gingipain-dependent manner, such as biofilms
composed of Streptococcus gordonii, thereby creating a
favorable environment for P. gingivalis (Ho et al., 2015). In
addition, Inagaki found that P. gingivalis OMVs enhance
adhesion and invasion of epithelial cells by Tannerella forsythia
(Inagaki et al., 2006). It can be seen that P. gingivalis OMVs can
change the composition of plaque biofilm, but its specific
mechanism remains to be explored.

Gui concluded that P. gingivalis OMVs can be internalized
into cells through two different mechanisms (Gui et al., 2016)
(Figure 3). The first internalization mechanism is considered to
be an actin-mediated pathway. P. gingivalis OMVs can utilize
host cell receptors, especially a5b1-integrin to adhere and trigger
FIGURE 3 | Virulence factors and related effects in P. gingivalis OMVs. (1) P. gingivalis OMVs can be internalized into cells by an actin-mediated pathway that utilizes
host receptors, especially a5b1-integrin, which is controlled by PI3K and depends on caveolin, dynamin, and Rac1. (2) P. gingivalis OMVs can be internalized into
cells through the fimbria-dependent lipid raft pathway, which is dependent on PI3K and Rac1, and involves various regulatory GTPases. (3) P. gingivalis OMVs can
exert virulence by affecting different receptors on the host cell surface, such as activating PRR receptors and degrading TfR receptors. (4–6) P. gingivalis OMVs can
activate or degrade a variety of biologically active substances in host cells, inhibit cell proliferation, promote glycolysis, apoptosis, and cause host cells to produce a
variety of inflammatory factors thereby promoting the formation of an inflammatory environment.
January 2021 | Volume 10 | Article 585917

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zhang et al. Porphyromonas gingivalis Outer Membrane Vesicles
the polymerization of F-actin, thus inducing OMVs cellular
engulfment. The pathway is controlled by phosphatidylinositol
3 kinase (PI3K), which is dependent on caveolin, dynamin, and
Rac1 (Tsuda et al., 2005). The second mechanism is considered
to be fimbriae-dependent and mediated through lipid raft
endocytosis, it depends on PI3K and Rac1, and involves
various regulatory GTPases (Furuta et al., 2009b). P. gingivalis
OMVs swiftly enter host epithelial cells via an endocytosis
pathway, survive in the organelles for a period, and are finally
sorted to lytic compartments (Furuta et al., 2009b). The choice of
endocytosis pathway is based on the different sizes of endocytosis
particles (Conner and Schmid, 2003).

P. gingivalis OMVs can play a variety of virulence after
entering the host cell (Figure 3). Nakao et al. found OMVs
cause oral epithelial cell detachment in a dose-dependent
manner, but this effect can be completely inhibited by
arginine-specific gingipain antiserum, suggesting that OMV-
associated gingipains were responsible for this activity (Nakao
et al., 2014). Bartruff et al. reported that OMVs not only inhibit
the proliferation of fibroblast and endothelial cells, but also
suppress angiogenesis, resulting in inhibited wound repair in
periodontal tissues (Bartruff et al., 2005). These OMVs activate
pattern recognition receptors (PRRs) in gingival epithelial cells,
leading to cell activation, cytokine secretion or apoptosis (Cecil
et al., 2019). Furuta et al. found that OMVs can impair the
function of epithelial cells by degrading the signaling molecules
required for cell migration such as TfR and paxillin/FAK, leading
to cellular impairment (Furuta et al., 2009a). Kou et al. found
that after co-culture of immortalized human gingival epithelial
cells with P. gingivalis OMVs, the inflammation-related factor
cyclooxygenase (COX)-2, interleukin (IL) -6, IL-8, matrix
metalloproteinase (MMP)-1 and MMP-3 expression levels
increased (Kou et al., 2008). Fleetwood et al. found that P.
gingivalis OMVs can penetrate gingival tissue, causing tissue
damage and inflammation. Compared with cells infected with P.
gingivalis, OMVs stimulated macrophages produce a large
amount of TNFa, IL-12p70, IL-6, IL-10, IFNb, and nitric
oxide, and promote the gingival tissue macrophage populations
of glycolysis, which leads to apoptosis. They also effectively
activated caspase-1, produced numerous IL-1b, IL-18, released
LDH, and were positive for 7-AAD, indicating apoptosis
(Fleetwood et al., 2017). Cecil et al. found that P. gingivalis
OMVs can also induce nuclear factor kappa B (NF-kB)
activation, thereby exerting immunomodulatory effects on
monocytes and macrophages (Cecil et al., 2017). Pro-
inflammatory cytokines promote the destruction of connective
tissue and alveolar bone resorption, forming the clinical features
of chronic periodontitis (Mendes et al., 2015).

Characteristics of P. gingivalis OMVs that stimulate the host’s
immune response have led researchers to link it to vaccine
development. Nakao et al. identified by ELISA that OMVs
retained the immunodominant determinant of P. gingivalis.
Subsequently, they intranasally inoculated OMVs in BALB/c
mice, and later detected a significant increase in P. gingivalis-
specific IgA in the nasal lavage fluid and saliva of mice, as well as
serum IgG and IgA (Nakao et al., 2011). Bai et al. suggest that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
LPS and A-LPS-modified proteins in P. gingivalis OMVs carry
immune determinants and eventually induce specific antibodies
against P. gingivalis in mice (Bai et al., 2015). On the other hand,
they found that the serum of patients with periodontitis was
significantly more reactive to OMV-producing wild type strain
than isogenic OMV-depleted strain, indicating that OMVs are
highly antigenic (Nakao et al., 2014). Therefore, they believe that
OMVs of P. gingivalis can be used as a vaccine for the
development of periodontal disease.
PORPHYROMONAS GINGIVALIS OUTER
MEMBRANE VESICLES AND RELATED
SYSTEMIC DISEASES

P. gingivalis OMVs can migrate to the blood and affect distant
tissues and organs (Aguayo et al., 2018). Therefore, OMVs can
also play a role in systemic diseases related to P. gingivalis
infection (Figure 4).

Diabetes Mellitus
Diabetes mellitus (DM) is a group of metabolic diseases
characterized by high blood glucose. In the 1960s, researchers
discovered a link between DM and periodontal disease (Belting
et al., 1964). Multiple studies have demonstrated that this
association is bidirectional. On the one hand, people with DM
are more likely to suffer from periodontitis (Sergio Guzman et al.,
2003). DM stimulates a significant increase in NF-kB expression
(Zheng et al., 2018) and activation in periodontal ligament
fibroblasts, increases the RANKL/OPG ratios and enhances the
expression levels of AGEs, ROS and inflammatory mediators.
These factors induce osteoblast apoptosis and osteoclast
formation, both increase bone resorption and reduce reparative
bone formation, thereby promoting the loss of alveolar bone in
periodontitis (Wu et al., 2015). On the other hand, the severity of
periodontitis is a factor that affects the development of glycemic
control and complications in diabetic patients (Lalla and
Papapanou, 2011). Ohtsu et al. found that slight insulin
resistance caused by P. gingivalis caused an increase in fasting
blood glucose levels in streptozotocin-induced diabetic mice
(Ohtsu et al., 2019). Seyama et al. confirmed that P. gingivalis
OMVs can carry active gingipains and delivered to the liver, and
attenuated the insulin-induced Akt/glycogen synthase kinase-3b
(GSK-3b) signaling in a gingipain-dependent manner in hepatic
HepG2 cells. These results indicate that the delivery of gingipains
mediated by P. gingivalis OMVs causes changes in glucose
metabolisms in the liver and promotes the development of DM
(Seyama et al., 2020).

Cardiovascular Disease
Cardiovascular disease (CVD) is still the leading cause of death
worldwide according to the World Health Organization (WHO)
(Carrizales-Sepulveda et al., 2018). In 1993, DeStefano et al.
found for the first time that periodontitis is one of the risk factors
for coronary heart disease through a prospective cohort study
January 2021 | Volume 10 | Article 585917
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(Frank DeStefano et al., 1993). Geerts et al. suggested that tooth
brushing, chewing, debridement or scaling may cause oral
pathogens and their pathogenic factors to enter the
bloodstream (Geerts et al., 2002). Results of Zaremba et al.
support the possibility that bacteria associated with
periodontitis can permeate into coronary vessels as well
(Zaremba et al., 2007). Current research shows that the
presence of periodontal bacteria in the bloodstream or in situ
in the vascular lesions is a risk associated with the development
of aneurysmal disease (Salhi et al., 2019), and the main feature of
P. gingivalis infection associated with aneurysms is the
proliferation of smooth muscle cells in the distal aorta (Wada
and Kamisaki, 2010). It has been found that P. gingivalis can be
detected in atherosclerotic plaque (Figuero et al., 2011; Szulc
et al., 2015), and observed the significance of P. gingivalis type II
FimA for atherosclerosis (Mahalakshmi et al., 2017). Researchers
further studied the relationship between P. gingivalis OMVs and
CVD. Jia et al. found OMVs can activate ROCK of human
umbilical vein endothelial cells through ERK1/2 and p38 MAPK-
dependent mechanisms, suggesting that they may promote
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
endothelial dysfunction and leading to CVD (Jia et al., 2015).
Yang et al. indicated that P. gingivalis OMVs promote
calc ificat ion of vascular smooth muscle cel ls in a
concentration-dependent manner through ERK1/2-RUNX2,
which is a hallmark of atherosclerosis (Yang et al., 2016).
Farrugia et al. preformed experiments in vitro and in vivo and
confirmed that P. gingivalis OMVs significantly increases
vascular permeability and enhances vascular edema and
mortality in a gingipain-dependent manner. The possible
reason involves P. gingivalis OMVs cleavage endothelial cell
connexins, such as PECAM-1. They believe that the nano-scale
size of OMVs will cause proteolytic damage to occur in blood
vessels where the parent bacteria cannot access, making OMVs
as important as the parent bacteria in the pathogenesis (Farrugia
et al., 2020).

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic, inflammatory synovitis-
based systemic immune disease, which can cause the destruction
of articular cartilage and joint capsule, and in severe cases can
FIGURE 4 | Systemic diseases related to P. gingivalis OMVs and possible mechanisms. (1) P. gingivalis OMVs attenuate insulin-induced Akt/GSK-3b signaling in
hepatic HepG2 cells to promote the development of DM. (2) Mechanisms related to P. gingivalis OMVs and CVD: activate ROCK of human umbilical vein endothelial
cells through ERK1/2 and p38 MAPK-dependent mechanisms to promote endothelial dysfunction; promote vascular smooth muscle cell calcification through ERK1/
2-RUNX2; increase vascular permeability by cleavaging endothelial cell connexins such as PECAM-1. (3) PPAD contained in P. gingivalis OMVs is closely related to
RA. (4) P. gingivalis OMVs may be involved in the progression of AD, NAFLD, and carcinoma. DM, diabetes mellitus; CVD, cardiovascular disease; RA, rheumatoid
arthritis; AD, Alzheimer’s disease; NAFLD, non-alcoholic fatty liver disease.
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lead to joint deformities (Leech and Bartold, 2015). Extensive
evidence suggests a link between RA and periodontal disease
(Kaur et al., 2013). When the periodontal lesions are removed,
arthritis remission has been observed in the absence of specific
RA therapy (Salemi et al., 2014). P. gingivalis DNA exists not
only in serum (Menke de Smit et al., 2012) but also in synovial
fluid (Reichert et al., 2013). Citrulline is an a-amino acid,
patients with RA (about 80%) will develop an immune
response against proteins with citrulline. In 1999, McGraw
et al. first discovered peptidylarginine deiminase (PPAD) in P.
gingivalis, which can citrullinate human proteins and potentially
contribute to the loss of tolerance to citrullinated proteins in RA
(McGraw et al., 1999). The PPAD enzyme produced by P.
gingivalis not only disturbs the balance of amino acids, but also
destroys the entire body’s immune system. It makes the Ag/Ab
complexes imbalance, and the human body produces
citrullinated antibodies against self-antigens (Kriauciunas et al.,
2019). Gabarrini et al. found that PPAD can be associated with
OMVs and modified by A-LPS to protect PPAD from proteolytic
degradation (Gabarrini et al., 2018). 78 citrullinated proteins
were identified in OMVs of P. gingivalis W83 wild-type strain,
which indicates the association between OMVs and RA (Larsen
and Bereta, 2019).

Other Systemic Diseases
In addition to the content mentioned above, there are some other
systemic diseases that may be associated with P. gingivalis
OMVs. We have cited Alzheimer’s disease, Non-alcoholic fatty
liver disease and carcinoma here.

Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by a slow and progressive loss of one or more
functions of the nervous system (Du et al., 2018). Carter detected
the presence of P. gingivalis in AD brains through bioinformatics
analysis, indicating that P. gingivalis may be associated with AD
(Carter, 2017). Dominy et al. succeeded in reducing the bacterial
load of the established P. gingivalis brain infection by using
small-molecule inhibitors against gingipains, blocked Ab1–42
production, reduced neuroinflammation in the hippocampus
and rescued neurons (Dominy et al., 2019). This finding
demonstrates that P. gingivalis and gingipains play a leading
role in the pathogenesis of AD, which provides a new conceptual
framework for the treatment of AD. As a carrier containing high
concentrations of gingipains, P. gingivalis OMVs may also play
an important role in AD. Studies have confirmed that P.
gingivalis OMVs-derived LPS can activate glial cells, induce
brain inflammation, and correlate with the expression of AD’s
marker proteins Ab and neurofibrillary tangles (Singhrao and
Olsen, 2018).

Non-alcoholic fatty liver disease (NAFLD) is a disease in
which ≥5% to 10% of liver cells show macroscopic steatosis
under an optical microscope without other risk factors for liver
disease (Neuschwander-Tetri and Caldwell, 2003). Yoneda et al.
found that the detection rate of P. gingivalis in patients with
NAFLD was significantly higher than that in the control group,
and periodontal treatments decreased the serum AST and ALT
levels of NAFLD patients (Yoneda et al., 2012). Hisako Furusho
et al. first demonstrated in mice that the dental infection of P.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
gingivalis aggravated NASH from simple steatohepatitis to
steatohepatitis with fibrosis through a mechanism involving
the synergistic interaction between FFA-induced NLRP3
inflammasome activation and the LPS-TLR pathway (Furusho
et al., 2013).

Carcinoma is a common cause of death worldwide and can
invade and spread to different organs of the body through
metastasis (Zhang et al., 2019). There is already a lot of
evidence supporting P. gingivalis associated with various
digestive tract tumors, such as oral squamous cell carcinoma,
esophageal cancer, hepatocellular carcinoma, colorectal cancer
and pancreatic cancer (Liu et al., 2019). Zhang et al. suggest three
mechanisms of oral microbiota in the pathogenesis of cancer,
including the induction of chronic inflammatory mediators, the
direct impact on the cell cycle and the production of certain
carcinogens (Zhang et al., 2018).

There is no report about the relationship between P. gingivalis
OMVs and NAFLD and carcinoma. It is also very interesting to
study the difference between vesicles and parent bacteria on
the disease.
CONCLUSIONS

During the growth of P. gingivalis, phospholipids accumulate in
the outer membrane of P. gingivalis, while the outer membrane
to swell outwards and eventually pinch off to form OMVs. A
large number of pathogenic factors are highly concentrated and
protected by the capsule structure to avoid degradation and
enhance long-distance delivery, so OMVs can produce stronger
virulence than its parent bacteria. These virulence factors mainly
include membrane proteins, lipoproteins and extracellular
proteins, such as well-studied CTD proteins like gingipains,
Mfa5, A-LPS, HBP35, CPG70, PPAD, and heme-binding
lipoproteins HmuY and IhtB. In addition, msRNA is included.
It is worth noting that the exact mechanisms of the formation of
P. gingivalis OMVs are still unknown, so bioinformatics tools
have not been or cannot be used to analyze the components in
detail, and the existing biochemical analysis is also limited to
individual strains. Most of noted adhesins are present in P.
gingivalis OMVs, which allows P. gingivalis OMVs to
communicate with other oral bacteria on behalf of their parent
bacteria, promote the formation of related bacterial biofilms and
inhibit and disperse competing biofilms. On the other side, P.
gingivalis OMVs can be internalized into host cells through the
actin-mediated host receptor pathway and the fimbria-
dependent lipid raft endocytosis pathway. It can also activate
or degrade a variety of biologically active substances in host cells,
inhibit cell proliferation, promote glycolysis, apoptosis, and
cause host cells to produce a variety of inflammatory factors
thereby promoting the formation of an inflammatory
environment. Through long-distance transmission, P. gingivalis
OMVs can also reach distant target organs and induce related
systemic diseases. Many reports indicate the correlation between
P. gingivalis OMVs and systemic system diseases. Here are a few
examples. First, P. gingivalis OMVs attenuate insulin-induced
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Akt/GSK-3b signaling in hepatic HepG2 cells, thereby causing
changes in glucose metabolism in the liver and promoting the
development of DM. Secondly, P. gingivalis OMVs activate
ROCK of human umbilical vein endothelial cells through
ERK1/2 and p38 MAPK-dependent mechanisms to promote
endothelial dysfunction, promote vascular smooth muscle cell
calcification through ERK1/2-RUNX2, and increase vascular
permeability by cleavaging endothelial cell connexins such as
PECAM-1, thereby promoting CVD. Thirdly, P. gingivalis
OMVs contain PPAD that closely related to RA, and are
modified by A-LPS to protect PPAD from proteolytic
degradation. However, the relationship between P. gingivalis
OMVs and other systemic diseases including AD, NAFLD and
carcinoma is still little researched, and further exploration is
needed. In summary, compared to its parent bacteria, OMVs
contain a higher concentration of virulence factors, and a thin
membrane is used to protect their smaller structures. These
characteristics enable OMVs to achieve long-distance
transmission and reach locations where the parent bacteria
cannot access, amplifying the pathogenic effects of P. gingivalis
in the oral environment and even in various parts of the body.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
This also suggests that the balance of our oral microecological is
of great significance to oral and whole body health.
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