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Increasing evidence suggests that features of the gut microbiota correlate with ischemic
stroke. However, the specific characteristics of the gut microbiota in patients suffering
different types of ischemic stroke, or recovering from such strokes, have rarely been
studied, and potential microbiotic predictors of different types of stroke have seldom been
analyzed. We subjected fecal specimens from patients with lacunar or non-lacunar acute
ischemic infarctions, and those recovering from such strokes, to bacterial 16S rRNA
sequencing and compared the results to those of healthy volunteers. We identified
microbial markers of different types of ischemic stroke and verified that these were of
diagnostic utility. Patients with two types of ischemic stroke, and those recovering from
ischemic stroke, exhibited significant shifts in microbiotic diversities compared to healthy
subjects. Cluster of Orthologous Groups of Proteins (COG) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses revealed reduced metabolic and
transport-related pathway activities in ischemic stroke patients. We performed fivefold
cross-validation using a Random Forest model to identify two optimal bacterial species
(operational taxonomic units; OTUs) serving as markers of lacunar infarction; these were
Lachnospiraceae (OTU_45) and Bacteroides (OTU_4), and the areas under the receiver
operating characteristic curves (AUCs under the ROCs) were 0.881 and 0.872
respectively. In terms of non-lacunar acute ischemic infarction detection, the two
optimal species were Bilophila (OTU_330) and Lachnospiraceae (OTU_338); the AUCs
under the ROCs were 0.985 and 0.929 respectively. In post-ischemic stroke patients, the
three optimal species were Pseudomonas (OTU_35), Sphingomonadaceae (OTU_303),
and Akkermansia (OTU_9); the AUCs under the ROCs were 1, 0.897, and 0.846
respectively. Notably, the gut microbial markers were of considerable value for utility
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when diagnosing lacunar infarction, non-lacunar acute ischemic infarction, and post-
ischemic stroke. This study is the first to characterize the gut microbiotic profiles of
patients with lacunar or non-lacunar, acute ischemic strokes, and those recovering from
stroke, and to identify microbiotic predictors of such strokes.
Keywords: lacunar infarction, post-ischemic stroke, gut microbiota, acute ischemic infarction, non-lacunar acute
ischemic infarction, random forest model
INTRODUCTION

Ischemic stroke is a major cause of death and severe neurological
disability; global post-stroke mortality is 39% (Wang et al., 2017).
Unhealthy living habits, excessive stress, and aging have increased
the global incidence of cerebral ischemia. Acute ischemic
infarction is the most common type of stroke, associated with
high rates of death and disability (Paciaroni et al., 2008). Acute
ischemic infarction subtypes were classified based on clinical data
using the Oxfordshire Community Stroke Project (OCSP)
classification scheme as total anterior circulation infarcts
[TACIs], partial anterior circulation infarcts [PACIs], posterior
circulation infarcts, and lacunar infarcts [LACIs]) (Sandset et al.,
2015). Lacunar infarctions are small (<2-cm-diameter) infarctions
that account for approximately 25% of all strokes; LIs differ
pathologically from large artery strokes, including TACI, PACI,
and POCI (Das et al., 2019). Thus, some studies divide acute
ischemic infarctions into lacunar and non-lacunar acute ischemic
infarctions (Regenhardt et al., 2019; Zhou et al., 2020). Post-
ischemic stroke patients have experienced acute ischemic stroke
and often deal with severe sequelae including cognitive and anxio-
depressive disorders, fatigue, and restricted participation in daily
life (Zhang et al., 2018). Though the progress were made in the
treatments of stroke, the prognosis is poor, most ischemic stroke
patients are diagnosed at advanced stages causing high risks of
disability and mortality. Therefore, early diagnostic measures of
ischemic stroke need to be explored so as to greatly improve the
management of the disease.

Gut microbiotic alterations are newly identified risk factors
for stroke; patients exhibit significant dysbiosis in terms of both
microbial diversity and composition (Yin et al., 2015). A recent
study found that ischemic stroke altered the gut microbiome,
reduced microbiome diversity, and increased the immune
response (Singh and Roth, 2016). Ischemic stroke triggered
maladjustment of the mouse cecal microbiota within 72 h
(Houlden et al., 2016). Thus, the gut microbiota was presumed
to play roles in stroke initiation and development (Zhang et al.,
2015; Langdon et al., 2016). Moreover, many neurological
disorders (Alzheimer’s and Parkinson’s diseases, depression,
gy | www.frontiersin.org 2
and multiple sclerosis) are commonly accompanied by
gastrointestinal symptoms (McDonald and Cervenka, 2018).
Therefore, the microbiota-brain axis is proposed and is
thought to constitute a bidirectional informational network
linking the gut microbiota and the brain (Wang and Wang,
2016). Despite extensive analysis of the link between the gut
microbiome and stroke, the microbiotic features of different
types of stroke have rarely been studied. Moreover, it remains
unclear whether the overall gut microbiota, or only specific
bacterial species, affect stroke outcomes; no report has
described microbiotic or bacterial predictors of stroke. Here,
we describe changes in gut microbiotic species in patients with
lacunar or non-lacunar, acute ischemic strokes, and those
recovering from acute ischemic strokes, and we identify
potential bacterial predictors of such strokes.
MATERIALS AND METHODS

Samples
This study was approved by the Ethics Committee of the First
Affiliated Hospital of Guangdong Pharmaceutical University. All
participants signed written informed consent prior to enrolment.
Fecal samples were collected from 16 healthy volunteers (N
group, n = 16); 20 patients with ischemic stroke: lacunar
infarction (LI group, n = 10), non-lacunar acute ischemic
infarction (AI group, n = 10); and 10 post-ischemic stroke
patients who had undergone 15 days of treatment after acute
ischemic stroke (PI group, n = 10). All of age, sex and the body
mass index were comparable among the groups (Table 1; all
P>0.05). The enrolled stroke patients were satisfied the clinical
diagnostic criteria and were confirmed by magnetic resonance
imaging (MRI) or brain computed tomography (CT). The
exclusion criteria included respiratory or renal failure, a recent
cardiac event, an immune system condition, intestinal disease or
severe liver dysfunction, or the use of probiotics or antibiotics
within 1 month prior to admission. The healthy volunteers who
had not taken antibiotics, probiotics, or possibly confounding
drugs within the prior 1 month were enrolled.
TABLE 1 | Characteristics of each group.

Group N LI AI PI P-value

Gender (M/F) 7/9 4/6 5/5 5/5 0.9592
Age, year 71 (61–81) 72 (57–89) 73 (59–87) 73 (60–83) 0.8049
BMI (kg/m2) 24.1(20.4–27.2) 24.8(21.2–28.4) 25.1(21.8–28.1) 24.9 (20.2–28.6) 0.6914
Dece
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Extraction, Amplification, and Sequencing
of Bacterial
Genomic DNA From Fecal Samples
Fresh fecal samples were collected into Eppendorf tubes and
frozen at −80°C. Bacterial genomic DNA was extracted using
QIAamp DNA Stool Mini Kits according to the manufacturer’s
instructions. The V3 variable regions of 16S rDNA genes were
subjected to PCR amplification as described previously (Muyzer
et al., 1993; Fan et al., 2016): predenaturation at 94°C for 5 min;
30 cycles of denaturation at 94°C for 30 s, annealing at 55°C for
30 s, extension at 72°C for 30 s; and a final extension at 72°C for
10 min. Fragments were purified via agarose gel electrophoresis
and re-electrophoresed to determine DNA concentrations using
the Qubit 2 method. The mixed products were sent to our
Sequencing Institute.

OTUs, Abundances, and Complexity
Analysis
The data were filtered by Mothur software and clustered into
operational taxonomic units (OTUs; species) at a similarity level
of 97% using Quantitative Insights into Microbial Ecology
(QIIMEv) software ver. 1.80 (Houlden et al., 2016). All OTUs
in the discovery and validation sets were recorded. Gut
microbiota alpha diversity indices (the Observed Species, Chao,
ACE, Shannon, and Simpson indices) were calculated by Mothur
ver. 1.31.2 software and dilution curves and box diagrams
created with the aid of R software ver. 3.1.1. Beta diversity
analysis was used to compare microbiotic species diversities.
Principal component analysis (PCA) was performed with the aid
of the Ade4 R package; this revealed similarities among relative
microbial abundances. To compare microbial compositions
among samples, principal coordinate analysis (PCoA) and
nonmetric multidimensional scaling (NMDS) were applied,
and the Bray-Curtis distances were used to generate two-
dimensional plots.

Species Composition
The microbial compositions after grouping were compared at the
phylum, class, and genus levels. Beta diversity heatmaps were
plotted using the NMF package of R. The Bray-Curtis distances
lay between 0 and 1; higher values indicated greater between-
sample differences. To identify bacteria that differed significantly
among groups, the taxon summaries were reformatted and linear
discriminant analysis effect sizes (LEfSes) determined with the
aid of the Huttenhower Lab Galaxy Server. In this setting, the
Kruskal-Wallis sum-rank test (a = 0.05) was initially used to
detect taxa exhibiting significantly different abundances. The
false discovery rate (FDR) was the corrected P-value; an
FDR<0.05 was considered significant. Biological consistency
was then investigated via pairwise testing among subclasses
using the Wilcoxon rank-sum test. Finally, linear discriminant
analysis (LDA) was employed to estimate the effect sizes of
differentially abundant gut microbiota. The logarithmic LDA
threshold for discrimination was 2.0. The Clusters of
Orthologous Group (COG) annotations were determined using
PICRUSt2 software. The affected Kyoto Encyclopedia of Genes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
and Genomes (KEGG) Pathways were identified using the KEGG
Automatic Annotation Server (KAAS).

Statistical Analyses
The Wilcoxon rank-sum test (two groups) or Kruskal-Wallis
test (multiple groups) of R ver. 3.0.3 software were used for inter-
group comparisons. The t- test, chi-squared test, and the
Spearman rank correlation analysis of SPSS ver. 19.0 were
employed as appropriate. A P-value <0.05 was considered to
reflect statistical significance.

A species-based classifier was trained using the Random
Forest package of R. The model was employed for fivefold
cross-validation of the relative species abundance profile. Case
probabilities were calculated by drawing receiver operating
characteristic (ROC) curves.
RESULTS

OTU Distributions
The OTUs annotated for subsequent analyses included 22 phyla,
116 families, and 217 genera of gut microbes inferred via V4
amplicon sequences (39 to 297 base pairs); the among-sample
similarity was 97% (Figure 1A). The total OTUs of the LI, PI,
and AI groups (at the 97% similarity level) were 1,094, 1,528, and
1,650 respectively, and 2,053 for the control group. OTUs shared
by the stroke and control groups numbered 360, as revealed by a
Venn diagram (Figure 1B).

Alpha and Beta Diversities
In terms of alpha diversity, the chao1 richness index of the AI
group differed significantly from those of the LI, PI, and control
groups (61.3 P = 0.0; 51.9 P = 0.0002; and 28.6375 P = 0.0272).
The Observed_species index of the AI group differed
significantly from those of the LI and PI groups (52.75 P =
0.005; 45.95 P = 0.0015). The Shannon and Simpson indices of
the PI group differed significantly from those of the AI and
control groups (Shannon 35.8 P = 0.0369, 36.3375 P = 0.0369;
Simpson 35 P = 0.0386 40.15 P = 0.0216) (Figure 2A). The ACE
index of the AI group differed significantly from those of the LI,
PI, and control groups (60.4 P = 0.0; 51.6 P = 0.0002; 26.8125 P =
0.0381). PCA and PCoA indicated that the AI microbiome
differed significantly from those of the LI and PI groups
(which were clustered), and was comparable to that of healthy
controls (Figures 2B, C). Analysis of similarities (ANOSIM)
indicated that the gut microbiotic structure differed significantly
among the groups (ANOSIM, r = 0.371, P = 0.001) (Figure 2D).
NMDS analysis based on the Bray-Curtis distances between
microbial genera revealed significant differences between AI
patients and the other three groups (Figure 2E).

Taxonomy
The gut microbiota differed among the groups at the phylum,
family, and genus level. At the phylum level, Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria were the most
common phyla of the four groups, comprising 99.73% of all gut
December 2020 | Volume 10 | Article 587284
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FIGURE 1 | (A) The species trees and distributions of gut microbial communities. (B) A Venn
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FIGURE 2 | (A)Gut microbiotic alpha and beta diversity indices of ischemic stroke patients. The Observed_species, Chao1, ACE, Shannon, Simpson and J index values.
(B) PCA scores based on the relative abundances of OTUs (at the 97% similarity level). (C) PCoA analysis based on weighted Unifrac distances. (D) Analysis of similarities.
(E) Non-metric multi-dimensional scaling. Each dot represents a sample; the group is identified in the legend. In the graphs, closer samples are more similar.
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bacteria in the AI group; the figures for the PI, LI, and control
groups were 87.97, 97.57, and 99.3% respectively (Figures 3A, B).
All stroke patients exhibited fewer Firmicutes than controls
(P<0.05). LI group contained more Cyanobacteria and
Fusobacteria than the other groups. AI group exhibited
markedly higher Actinobacteria levels (P<0.05) than the other
groups. Verrucomicrobia, Synergistetes, and Proteobacteria were
significantly enriched in the PI compared to the other groups
(P<0.05). The ratio of Firmicutes : Bacteroidetes was lower in AI
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
and LI groups but higher in PI group compared to healthy controls
(1.30 in AI group, 3.47 in PI group, 1.47 in LI group, and 2.86 in
control group).

At the family level, individual variations were more
marked; the dominant taxa differed among the groups
(Figure 4A). Of all families identified, 74, 60, 51, and 75 of the
dominant families were present in AI, PI, LI, and control groups
respectively. Bacteroidaceae, Lachnospiraceae, Ruminococcaceae,
Bifidobacteriaceae, Enterobacteriaceae, Coriobacteriaceae,
A

B

FIGURE 3 | (A) Taxonomic profiling assigned most OTUs to Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia, and Fusobacteria at the
phylum level. (B) Among-group differences at the phylum level. *P < 0.05.
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Veillonellaceae, and Prevotellaceae were the eight most abundant
microbiotic components in all groups. Bacteroidaceae levels were
significantly higher in AI and LI groups (P<0.05) compared to
the other groups. Bifidobacteriaceae and Coriobacteriaceae were
most abundant in AI group (P<0.05). Veillonellaceae levels
were highest in the LI group (P<0.05). Enterobacteriaceae,
Enterococcaceae, Lactobacillaceae, and Verrucomicrobiaceae
levels were highest in PI group (P<0.05). Lachnospiraceae,
Ruminococcaceae, and Prevotellaceae levels were maximal in
control group (P<0.05).

LEfSE analysis was used to identify bacterial taxa, the levels of
which differed significantly among groups (Figure 4B).
Weeksellaceae, Bacillaceae, Paenibaciiaceae, Brucellaceae, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Xanthomnadaceae were significantly more abundant in AI
group. Bacteroidaceae and Erysipelotrichaceae levels were
highest in LI group. Methanobacteriaceae, Sphingomonadaceae,
Pseudomonadaceae, and Verrucomicrobiaceae levels were
maximal in PI group. Lactobacillaceae was most abundant in
control group.

The genus-level compositions were more complex; the levels of
many genera differed significantly among the groups
(Figures 5A, B). In control group, Lachnospiraceae, Bacteroides,
Ruminococcaceae, Prevotella, Blautia, Enterobacteriaceae,
Bifidobacterium, and Ruminococcus, were the eight principal
genera (of 132). In LI group, the eight predominated genera (of
100) were Bacteroides, Enterobacteriaceae, Phascolarctobacterium,
A

B

FIGURE 4 | (A) The most abundant microbiotic components (at the family level) of each group. *P < 0.05. (B) LEfSE analysis reveals bacterial taxa, the levels of
which differ significantly among groups.
December 2020 | Volume 10 | Article 587284

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Xiang et al. Diagnosis of Acute Ischemic Stroke
A

B

FIGURE 5 | (A) A heat map showing the relative total abundances of the top 30 species, and the relative abundances of all species, at the genus level. (B) A taxonomic
summary of the gut microbiota of each group at the genus level. Starring (*) indicates a significant difference between two groups.
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Megasphaera, Lachnospiraceae, Acidaminococcus, Lachnospira,
and Parabacteroides. In AI group, the eight common genera
(of 136) were Bacteroides, Ruminococcaceae, Bifidobacterium,
Blautia, Enterobacteriaceae, Lachnospiraceae, Coriobacteriaceae,
and Prevotella. In PI group, Enterobacteriaceae, Enterococcus,
Bacteroides, Veillonella, Ruminococcaceae, Akkermansia,
Lactobacillus, and Lachnospiraceae were eight predominated
genera (of 121).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
Functional Profiling of the Gut Microbiome
We compared the COG and KEGG pathways among the groups;
we sought differences in microbiotic functions between stroke
patients and controls. Figure 6A shows that nine functional
KEGG pathways were highly enriched in both AI patients and
healthy controls. These included the pathways of folate
biosynthesis, photosynthesis, peroxisomal action, the citrate
cycle (TCA cycle), galactose metabolism, phenyltransferase,
A

B

FIGURE 6 | KEGG pathways (A) and COG categories (B) that was less frequent in stroke groups than healthy controls.
December 2020 | Volume 10 | Article 587284
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other glycan degradation, amino sugar and nucleotide sugar
metabolism, and fructose and mannose metabolism. Figure 6B
shows that 12 COG categories were highly enriched in AI patients
and healthy subjects, including transposase (and its inactivated
derivatives), the predicted Rossmann fold nucleotide-binding
protein, the ribonucleotide reductase alpha subunit, the L-
asparaginase/archaeal Glu-tRNAGln amidotransferase subunit
D, the Mn2+ and Fe2+ transporters of the NRAMP family, the
ABC-type transport system involved in Fe-S assembly,
a permease component, the site-specific recombinase XerC,
an exopolyphosphatase, 7,8-dihydro-6-hydroxymethylpterin-
pyrophosphokinase, a predicted membrane protein, an
enzyme related to GTP cyclohydrolase I, and a peptidylarginine
deaminase and related enzymes. The transposase (and inactivated
derivatives), predicted Rossmann fold nucleotide-binding protein,
ribonucleotide reductase alpha subunit, and L-asparaginase/
archaeal Glu-tRNAGln amidotransferase subunit D were
significantly more abundant in the AI than the LI or PI groups
(all P<0.05).

Random Forest Identification of Ischemic
Stroke Markers
We used a Random Forest model to identify microbial profiles
that optimally differentiated the ischemic stroke and healthy
groups; the Random Forest is a robust machine-learning
technique that can handle nonlinear relationships and
dependencies among microbiotic features. We performed
fivefold cross-validation five times using a validation set
(Figures 7A–C). Two species afforded optimal LI detection:
Lachnospiraceae (OTU_45) and Bacteroides (OTU_4); the
areas under the receiver operating characteristic curves (AUCs
under the ROCs) were 0.881 and 0.872 respectively (Figure 8A,
Table 2). Two species optimally detected AI: Bilophila
(OTU_330) and Lachnospiraceae (OTU_338); the AUCs under
the ROCs were 0.985 and 0.929 respectively (Figure 8B,
Table 2). Three species optimally detected PI: Pseudomonas
(OTU_35), Sphingomonadaceae (OTU_303), and Akkermansia
(OTU_9); the AUCs under the ROCs were 1, 0.897, and 0.846
respectively (Figure 8C, Table 2).
DISCUSSION

This is the first study to explore the characteristics of the gut
microbiota in patients suffering from different types of acute
ischemic stroke, or recovering from such strokes. The
gastrointestinal tract is a major organ of the immune system,
containing over 70% of all immune cells and the largest
population of macrophages in the human body. The
composition of the gut microbiota depends on many factors,
including lifestyle, diet, metabolism, antibiotic use, and hygiene;
all are also closely associated with ischemic stroke (Bibbò et al.,
2016). Several reports have described intestinal dysfunction
and gut dysbiosis after stroke, highlighting the delicate
interplay between the brain, gut, and microbiome after acute
brain injury (Benakis et al., 2016; Singh and Roth, 2016;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
Zhao et al., 2018). The “brain-gut axis” is considered to
facilitate bidirectional communication between the central
nervous system and the gastrointestinal tract (Khlevner et al.,
2018). Although many studies have confirmed the relationship
between stroke and gut microbiome, the microbiotic status of
patients differing in terms of stroke status has not been explored.

In this study, the phylum Firmicutes was less abundant in
three stroke groups than the control group. The genera of
butyrate-producing bacteria (e.g., Lachnospiraceae) were less
common in the stroke groups. Increasing evidence indicates
that the short-chain fatty acid (SCFA) metabolites (especially
butyric acid) of gut bacteria are key signaling molecules (Stilling
et al., 2016). Butyric acid supplementation significantly reduced
intestinal leakage in patients with cerebral ischemic strokes and
reduced levels of butyrate-producing bacteria may trigger stroke
(Singh and Roth, 2016). Transplantation of fecal bacteria that
produce SCFAs, and butyric acid supplementation, may
effectively treat cerebral ischemic stroke.

AI and LI groups exhibited lower Firmicutes: Bacteroidetes
ratios, and a higher ratio in PI group, than healthy controls. A
reduced ratio reflects dysbiotic gastrointestinal tract metabolism,
associated with low levels of circulating SCFAs, compromising
systemic immunity and triggering systemic inflammation. It may
be possible to reduce the risk of stroke, and prevent stroke
progression and complications, by manipulating the ratio
(Eckburg et al., 2005).

Each stroke group exhibited unique microbiotic features.
Fusobacteria and Cyanobacteria were most abundant in LI
group. Notably, LEfSE analysis showed that Bacteroidaceae and
Erysipelotrichaceae were more abundant in LI than other groups.
To the best of our knowledge, this is the first such report. The
opportunistic pathogens of the Veillonellaceae were more
abundant in LI group, as previously reported by Zeng et al.,
(2019). Lacunar infarcts are thought to be primarily attributable
to intracranial, small vessel disease. Endothelial dysfunction may
play important roles in the pathogenesis and progression of such
disease (Regenhardt et al., 2018). Ruminococcaceae levels were
dramatically decreased in LI group, and beneficial bacteria such
as Meganonas enriched. Emerging evidence indicates that
microbiotic interventions may enhance the efficacy of therapy
and ameliorate toxicity; the gut microbiome performs several
vital functions including vitamin production and dietary
metabolism, and protects against gut pathogen expansion and
systemic infiltration.

AI group exhibited markedly higher levels of Actinobacteria
than other groups. A mouse study found that the gut microbiota
affected stroke progression by acting on the immune system
(Benakis et al. , 2016). The opportunistic pathogens
Bacteroidaceae , and lactate-producing bacteria (e.g. ,
Bifidobacterium), were enriched in AI group. The serum
trimethylamine N-oxide (TMAO) concentration is positively
associated with the first stroke in hypertensive patients. TMAO
is produced when hepatic flavin mono-oxygenases act on
trimethylamine, a waste product of gut microbes (Zeisel and
Warrier, 2017). Ruminococcaceae, Bifidobacteriaceae, and
Coriobacteriaceae were most abundant in the AI group.
December 2020 | Volume 10 | Article 587284
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FIGURE 7 | OTU-based markers of ischemic stroke identified by the Random Forest model. (A) lacunar infarction. **p < 0.01 compared with the LI group. (B) non-
lacunar acute ischemic infarction. *p < 0.05 and **p < 0.01 compared with the AI group. (C) post-ischemic stroke. *p < 0.05 and **p < 0.01 compared with the PI group.
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Notably, LEfSE analysis revealed that Xanthomonadaceae,
Bacillaceae, Brucellaceae, Paenibacillaceae, and Weeksellaceae
were most abundant in AI group. To the best of our
knowledge, this is the first report to show that these bacteria
were more common in acute ischemic stroke patients than
controls. KEGG analysis revealed a cluster of affected
metabolic modules in AI group, including folate biosynthesis,
photosynthesis, the citrate cycle (TCA cycle), galactose
metabolism, amino sugar and nucleotide sugar metabolism,
and fructose and mannose metabolism. Stroke alters the gut
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
microbiotic composition; conversely, microbiotic dysbiosis
substantially affects stroke outcomes by modulating the
immune response and the metabolic system. Intestinal
microorganisms affect host metabolism and immune status, in
turn modulating neuronal pathways of the enteric and central
nervous systems. Intestinal probiotics may protect against stroke.

Verrucomicrobia, Synergistetes, and Proteobacteria levels were
significantly higher in PI than the other groups. Lactobacillus
levels were highest in PI group; these bacteria help to maintain
good health and optimal immune function. Moreover,
A

B

C

FIGURE 8 | ROC curves for the OTU-based diagnostic biomarkers of ischemic stroke. (A) lacunar infarction; (B) non-lacunar acute ischemic infarction; (C) post-
ischemic stroke.
TABLE 2 | Diagnostic values of significant gut microbiota for acute ischemic stroke.

Disease Species AUC SE Sig. 95% C.I. for AUC

LI Lachnospiraceae (OTU_45) 0.881 0.071 <0.01 0.751~0.957
Bacteroides (OTU_4) 0.872 0.096 <0.01 0.741~0.952

AI Bilophila (OTU_330) 0.985 0.014 <0.01 0.895~1.000
Lachnospiraceae (OTU_338) 0.929 0.039 < 0.01 0.813~0.984

PI Pseudomonas (OTU_35) 1.000 0.000 <0.01 0.923~1.000
Sphingomonadaceae (OTU_303) 0.897 0.069 <0.01 0.772~0.967
Akkermansia (OTU_9) 0.846 0.068 <0.01 0.709~0.935
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Lactobacillus exerted protective effects in rat models of cerebral
ischemic stroke, inhibiting neural cell apoptosis, decreasing the
cerebral infarction volume, reducing oxidative stress, and
restoring neurobehavioral impairment (Chen et al., 2019). We
thus speculate that Lactobacillus may aid recovery after stroke.

Together, the gut and brain control neurodevelopment,
neurotransmitter production, and microglial function, thus
modulating cerebral biochemistry and behavior (Moschopoulos
and Kratimenos, 2018; Blacher et al., 2019). Clostridium butyricum
alleviated ischemia stroke injury in diabetic mice by regulating the
gut microbiota (Sun et al., 2016). Butyric acid significantly
enhanced the alpha diversity of gut microbiota and reduced the
levels of pathogenic bacteria such as Bacteroides. Conversely,
brain lesions of various etiologies change the composition of the
microbiota. Microbiotic manipulation may open new therapeutic
approaches to various neurological diseases.

Wegobeyonda simpledescriptionof gutmicrobiotic changes in
ischemic stroke patients; we propose that the gut microbiota
contains non-invasive markers of early ischemic stroke. Thus, we
performed fivefold cross-validation using a Random Forest model.
Two species allowed of optimal LI detection: Lachnospiraceae
(OTU_45), and Bacteroides (OTU_4); the AUCs under the ROCs
were 0.881 and 0.872 respectively. Two species optimally detected
AI: Bilophila (OTU_330) and Lachnospiraceae (OTU_338); the
AUCs under the ROCs were 0.985 and 0.929 respectively. Three
species optimally detected PI: Pseudomonas (OTU_35),
Sphingomonadaceae (OTU_303), and Akkermansia (OTU_9); the
AUCs under the ROCswere 1, 0.897, and 0.846 respectively. To the
best of our knowledge, the microbiotic markers mentioned above
have not previously been used to predict ischemic stroke.

The main limitation of the study is the small samples size,
which is conduce to some potential bacteria serving as useful
predictors of stroke may not be discovered. Moreover, patients
with non-lacunar acute ischemic infarctions were not further
subdivided into subpopulations because of the small sample size.
In this condition, it is difficult to define some bacterial flora is
associated with a particular subtypes of acute ischemic infarction.

We analyzed the gut microbiota of ischemic stroke patients.
The microbiotas differed from those of healthy controls. Fecal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
microbial markers (OTUs) may be developed as useful utility
when diagnosing various types of ischemic stroke, and may
facilitate early appropriate therapy.
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