
Frontiers in Cellular and Infection Microbiolo

Edited by:
Federico Iovino,

Karolinska Institutet (KI), Sweden

Reviewed by:
Lars-Ove Brandenburg,

University Hospital RWTH Aachen,
Germany

Elisabetta Blasi,
University of Modena and Reggio

Emilia, Italy

*Correspondence:
Stephen L. Leib

stephen.leib@ifik.unibe.ch

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Bacteria and Host,
a section of the journal

Frontiers in Cellular
and Infection Microbiology

Received: 28 July 2020
Accepted: 14 October 2020

Published: 05 November 2020

Citation:
Pan SD, Grandgirard D and Leib SL

(2020) Adjuvant Cannabinoid
Receptor Type 2 Agonist Modulates

the Polarization of Microglia
Towards a Non-Inflammatory

Phenotype in Experimental
Pneumococcal Meningitis.

Front. Cell. Infect. Microbiol. 10:588195.
doi: 10.3389/fcimb.2020.588195

ORIGINAL RESEARCH
published: 05 November 2020

doi: 10.3389/fcimb.2020.588195
Adjuvant Cannabinoid Receptor
Type 2 Agonist Modulates the
Polarization of Microglia
Towards a Non-Inflammatory
Phenotype in Experimental
Pneumococcal Meningitis
Steven D. Pan, Denis Grandgirard† and Stephen L. Leib*†

Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland

Background: Microglia initiates and sustains the inflammatory reaction that drives the
pathogenesis of pneumococcal meningitis. The expression of the G-protein cannabinoid
receptor type 2 (CB2) in the brain is low, but is upregulated in glial cells during infection. Its
activation down-regulates pro-inflammatory processes, driving microglia towards an anti-
inflammatory phenotype. CB2 agonists are therefore therapeutic candidates in
inflammatory conditions like pneumococcal meningitis. We evaluated the effects of
JWH-133, a specific CB2 agonist on microglial cells, inflammation, and damage driven
by S. pneumoniae in vitro and in experimental pneumococcal meningitis.

Materials/methods: Primary mixed glial cultures were stimulated with live or heat-
inactivated S. pneumoniae, or lipopolysaccharide and treated with JWH-133 or vehicle.
Nitric oxide and cytokines levels were measured in the supernatant. In vivo,
pneumococcal meningitis was induced by intracisternal injection of live S. pneumoniae
in 11 days old Wistar rats. Animals were treated with antibiotics (Ceftriaxone, 100 mg/kg,
s.c. bid) and JWH-133 (1 mg/kg, i.p. daily) or vehicle (10% Ethanol in saline, 100 µl/25g
body weight) at 18 h after infection. Brains were harvested at 24 and 42 h post infection
(hpi) for histological assessment of hippocampal apoptosis and cortical damage and
determination of cyto/chemokines in tissue homogenates. Microglia were characterized
using Iba-1 immunostaining. Inflammation in brain homogenates was determined using
membrane-based antibody arrays.

Results: In vitro, nitric oxide and cytokines levels were significantly lowered by JWH-133
treatment. In vivo, clinical parameters were not affected by the treatment. JWH-133
significantly lowered microglia activation assessed by quantification of cell process length
and endpoints per microglia. Animals treated with JWH-133 demonstrated significantly
lower parenchymal levels of chemokines (CINC-1, CINC-2a/b, and MIP-3a), TIMP-1, and
IL-6 at 24 hpi, and CINC-1, MIP-1a, and IL-1a at 42 hpi. Quantitative analysis of brain
damage did not reveal an effect of JWH-133.
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Conclusions: JWH-133 attenuates microglial activation and downregulates the
concentrations of pro-inflammatory mediators in pneumococcal infection in vitro and in
vivo. However, we didn’t observe a reduction in cortical or hippocampal injury. This data
provides evidence that inhibition of microglia by adjuvant CB2 agonists therapy effectively
downmodulates neuroinflammation but does not reduce brain damage in experimental
pneumococcal meningitis
Keywords: bacterial meningitis, microglia, endocannabinoid system, neuro-inflammation, brain damage
INTRODUCTION

In bacterial meningitis an overshooting inflammatory reaction in
the central nervous system contributes to the pathophysiology of
the disease including the development of brain damage.
Specifically, pneumococcal meningitis is characterized by a
high rate of mortality and morbidity, even when patients are
treated with efficient antibiotic therapy. Survivors, in particular
children, are left with several long-lasting disabilities, the most
frequent being hearing loss, but also cognitive impairments,
including learning and memory deficits, as well as focal
neurological deficits (Edmond et al., 2010; Agyeman et al.,
2014; Lucas et al., 2016; Muri et al., 2019a). The causes of
these different sequelae have been deduced from the
histological analyses of tissues of deceased patients or from
experimental models. Hearing loss has been related to damage
in the inner ear, including loss of hair cells or spiral ganglion
neurons and from cochlear ossification (Klein et al., 2003;
Perny et al., 2016). Focal neurological deficits are mostly
caused by cerebrovascular events or intracerebral bleeding and
characterized by the occurrence of cerebral infarcts due to
localized hypoxia/ischemia or hemorrhages, respectively (Ment
et al., 1986; Auer et al., 2000; Vergouwen et al., 2010). Finally, the
development of cognitive impairments was linked to the
detection of hippocampal damage, including apoptosis in
the dentate gyrus (Nau et al., 1999; Wellmer et al., 2000;
Loeffler et al., 2001; Leib et al., 2003; Grandgirard et al., 2007a).

On the pathophysiological level, these damages are the
consequence of an intensive inflammatory reaction initiated by
the recognition of bacterial compounds by endothelial cells,
microglia and perivascular macrophages. The further recruitment
of neutrophils in the cerebrospinal fluid contributes to the over-
production of pro-inflammatory mediators, including cytokines,
chemokines, matrix-metalloproteinases, and nitric oxide. Together
with the release of bacterial toxins, they contribute directly or
indirectly to the development of the different forms of damage
described above (Mook-Kanamori et al., 2011; Agyeman et
al., 2014).

Limiting this detrimental inflammatory reaction has therefore
been extensively investigated (Van Der Flier et al., 2003;
Grandgirard and Leib, 2006; Bewersdorf et al., 2018), but to
date, adjuvant corticosteroids is the only recommended
therapeutic option (Van De Beek et al., 2016). It has been
proven beneficial, in specific patient populations, especially in
high income countries, for the prevention of hearing loss
gy | www.frontiersin.org 2
(Brouwer et al., 2015). However, detrimental effects of
dexamethasone therapy has been observed in a number of
experimental models (Leib et al., 2003; Spreer et al., 2006; Bally
et al., 2016) and dexamethasone may predispose patients to
delayed cerebral thrombosis (Lucas et al., 2013).

Thus, alternative anti-inflammatory approaches for the
adjuvant therapy of BM are being evaluated. Recently, the
endocannabinoid system has received considerable attention
for its potential to modulate inflammation and pain disorders.
Immune cells, regardless of their lineage, express cannabinoid
receptors (CB). These receptors are divided into multiple
subtypes, the most common being central cannabinoid
receptor type 1 (CB1) and peripheral cannabinoid receptor
type 2 (CB2) (Facci et al., 1995; Mccoy, 2016). CB1 is
primarily expressed in the CNS and various peripheral tissues.
On the other hand, CB2 is prevalent within all lineage of the
immune system. In the healthy brain, CB2 expression is limited
(Svizenska et al., 2008; Turcotte et al., 2016). However, during
neurological diseases, glial cells express high levels of CB2
(Ashton and Glass, 2007; Stella, 2010). In vitro experiments
demonstrated that activation of CB2 by its endogenous ligands,
the endocannabinoids, led to contrasting results. While
activation with 2-arachidonoyl-glycerol (2-AG) mostly up-
regulated functions related to leukocytes recruitment, N-
Arachidonoyl-ethanolamide (AEA) down-regulated leukocyte
functions, such as pro-inflammatory cytokine release and nitric
oxide production (Turcotte et al., 2016). In contrast to
endocannabinoids, exogenous CB2 receptor agonists exert
exclusively anti-inflammatory activity. It has been for example
demonstrated that JWH-015 repressed LPS-induced TNF-a
production and migration in microglial cells (Romero-
Sandoval et al., 2009). It also suppressed TNF-a and nitric
oxide production induced by IFN-g or Ab peptide (Ehrhart
et al., 2005). Furthermore, in vivo studies demonstrated that
CB2 knockout mice were characterized by the development of an
exacerbated inflammatory response, including increased
leukocyte recruitment and pro-inflammatory cytokine
production, which often caused tissue damage. In particular,
CB2 -/- mice with traumatic brain injury displayed an increased
gene expression of TNF-a, iNOS and ICAM, accompanied by an
elevated blood brain barrier permeability (Amenta et al., 2014).

JWH-133 is a potent and selective CB2 agonist, with no
activity on CB1 receptor, in both human and mouse. It has
therefore been recommended as one of the most suitable CB2
agonist for preclinical target validation (Soethoudt et al., 2017).
November 2020 | Volume 10 | Article 588195
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It has already been shown to have beneficial effects, including
downregulation of the inflammation and the improvement in
neurofunctional outcome in different experimental models of
brain injury, including okadaic-induced neurodegeneration
(Cakir et al., 2019), subarachnoid hemorrhages (Fujii et al.,
2014a; Fujii et al., 2014b), stroke (Zarruk et al., 2012; Li
et al., 2015; Bravo-Ferrer et al., 2017), endotoxemia (Gamal et al.,
2015), traumatic brain injury (Amenta et al., 2014) or Parkinson’s
disease (Chung et al., 2016).

Since pneumococcal meningitis shares pathophysiological
mechanisms with some of the brain diseases successfully
targeted by JWH-133, we hypothesized that its application as
adjuvant therapy may prevent the excessive neuroinflammation
by reducing pro-inflammatory glial activity during the acute
phase of the disease and attenuate brain damage.
MATERIALS AND METHODS

Infecting Organism
A clinical isolate of Streptococcus pneumoniae (serotype 3) from
a patient with bacterial meningitis was cultured overnight in
Brain Heart Infusion (BHI) medium, diluted tenfold in pre-
warmed BHI, and grown for 5 h to reach logarithmic growth
phase. Bacteria were then centrifuged for 10 min at 3,100 × g and
resuspended in 0.85% saline (NaCl). After a second wash in
saline, bacteria were further diluted with saline to the desired
optical density at 570 nm, so to obtain a mean concentration of
approx. 1 × 107 CFU/ml. Inoculum concentration was
determined using serial dilution and plating on Columbia
sheep blood agar (CSBA) plates.

In Vitro Mixed Glia Stimulation
Mixed glial cultures consisting of microglial and astroglial cells
were isolated from infant rat brains at postnatal day 3 (P3) as
previously described (Muri et al., 2019b). Cortex was
mechanically homogenized in PBS by pipetting up and down,
and resuspended in DMEM (Sigma-Aldrich, Merk Switzerland)
containing 5% FCS (Biochrom, Germany), 1% GlutaMAXTM

(ThermoFisher, Switzerland) and antibiotic-antimycotic solution
(100 units/ml penicillin and streptomycin, 0,25 µg/ml
Amphotericin B, Thermofisher, Switzerland) and plated in a
poly-L-ornithine-coated T75 flask. On day 11, cells were seeded
at a density of 200,000 cells/well onto a poly-o-ornithine coated
24-well plate. Mixed glial cells were challenged with 1 mg/ml of
lipopolysaccharide (Escherichia coli, L2654, Sigma-Aldrich), live
S. pneumoniae serotype 3 (9.1 × 108 CFU/ml) in presence of
Ceftriaxone (CRO, 12 mg/ml, Rocephine, Roche) or PBS as a
control. Each group was treated with 1.0 mM of JWH-133 (Tocris
Bioscience) compared to untreated cells. Three independent
experiments were performed with all conditions in triplicates.

Quantification of Nitric Oxide Production
From Mixed Glial Cell Stimulation
After 42 h challenge, 100 ml of cell culture supernatant was mixed
with 100 ml of Griess reagent (Sigma-Aldrich) in a 96-well plate.
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NO2- concentration, serving as an indicator of NO release, was
determined by measuring absorbance at 550 nm with a
microplate reader (Molecular Devices, THERMO max). A
serial dilution of NaNO2 from 100–1.625 mM was used to
generate a standard curve. All measures were performed in
triplicate and a mean value was calculated

Quantification of Cyto/Chemokines
in the Supernatants of Stimulated Mixed
Glial Cells
Cytokines known to be upregulated during PM (IL-1b, IL-6,
TNF-a, IL-10, and IFN-g) were assessed using magnetic
multiplex assay (Rat Magnetic Luminex® Assay, Rat Premixed
Multi-Analyte Kit, R&D Systems, Bio-Techne) on a Bio-Plex 200
station (Bio-Rad Laboratories) as described previously (Muri
et al., 2019a). Fifty µl of cell culture medium was used undiluted.
For each sample, a minimum of 50 beads was measured. If the
concentration of the sample was below the detection limit, a
value corresponding to the detection limit provided by the
manufacturer was used, considering the dilution factor.
The detection limits for undiluted samples were 2.93 pg/ml for
IL-1b, 23.2 pg/ml for IL-6, 8.95 pg/ml for IL-10, 11.5 pg/ml for
TNF-a, and 70.9 pg/ml for IFN-g.

In Vivo Pneumococcal Meningitis Model
All animal experiments were approved by the Animal Care and
Experimentation Committee of the Canton of Bern (BE 1/18). A
well characterized in vivomodel of pneumococcal meningitis was
used (Leib et al., 2001; Perny et al., 2016). Eleven-day old mixed
gender Wistar rats and their dams were purchased from Charles
River (Sulzfeld, Germany), and housed at room temperature
(22 ± 2°C) in natural light. The pups were infected
intracisternally with 10 ml of live S. pneumoniae serotype 3
(1.14 x 107 ± 7.5 x 106 CFU/ml). Control animals were injected
with 10 ml of 0.85% NaCl. Meningitis was confirmed through
quantification of bacterial titers from cerebrospinal fluid (CSF)
harvested from animals at 18 hpi. CSF was harvested through
puncture of the cisterna magna with a 30-guage needle and
diluted in saline for plating on CSBA plates. Disease symptoms
were scored as following: (1) = minimal or no spontaneous
motor activity, coma (2) = unable to turn upright (3) = turns
upright within 30s (4) = signs of disease in terms of weight loss
and/or appearance of fur, (5) = healthy, normal behavior.
Spontaneous mortality was documented and animals with a
score of 2 or lower were sacrificed.

A total of 84 infant rats were used for this study, representing
7 independent experiments of 12 animals. All animals were
sacrificed during the acute phase of pneumococcal meningitis
to assess neuroinflammation. Both infected and uninfected
animals were randomized for treatment with JWH-133 (1mg/
kg, i.p.) and/or CRO (100 mg/kg, i.p). JWH-133 was first
dissolved in 100% ethanol and diluted 1:10 in 0.9% saline at a
final concentration of 0.25 mg/ml). JWH-133 was administered
once at 18 hpi, and CRO was administered at 18 hpi and 24 hpi.
Animals not treated with JWH-133 received an equivalent
volume (100 µl/25 g) of vehicle. Depending on the endpoints,
November 2020 | Volume 10 | Article 588195
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animals were sacrificed at 24 hpi and 42 hpi with an overdose of
pentobarbital (Eskonarkon, Streuli Pharma AG, Uznach,
Switzerland, 150mg/kg b.w. i.p) and perfused via the left
ventricle with either 4% paraformeldahype (PFA) in PBS or
ice-cold PBS.

Histological Analysis of Cortical Damage
and Hippocampus Apoptosis
Brains were harvested at 42 hpi after perfusion of animal with 4%
PFA and fixed in 4% PFA for 4 h at 4°C. After 4 h, brains were
transferred into 18% sucrose and kept at 4°C overnight. Brain
cryosections (45 mM) were stained for Nissl substance with cresyl
violet. Cortical damage was quantified using ImageJ software,
and apoptosis was measured in the hippocampal dentate gyrus
using x 400 magnification.

Iba1 Staining of Microglial Cells
Brains harvested at 42 hpi were sampled into 50 mm free-floating
cryosections. Microglia immunostaining was performed with
ImmPRESSTM HRP anti-rabbit IgG Peroxidase Polymer
Detection Kit (Vector Laboratories, USA) in conjunction with
rabbit anti Iba-1 (WAKO, Germany). Free-floating sections were
incubated at room temperature for 72 h in 1 ml of primary Iba-1
antibody diluted 1:400. Endogenous peroxidase activity was
blocked with 3% hydrogen peroxide, followed by incubation
for 20 min in 2.5% normal goat blocking serum. Sections were
then incubated in the ImmPRESSTM anti-rabbit peroxidase
polymer for 30 min. Microglia were visualized following a 2-
minute incubation with Vector© 3,3’-diaminobenzidine (DAB)
substrate (Vector Laboratories, USA).

Quantification and Categorical Analysis
of Microglia Morphology
Quantification was performed in a subset of the animals, randomly
chosen in each experimental group with Iba-1 staining of sufficient
good quality. Our method of microglia quantification was adapted
from a previously described methodology (Young and Morrison,
2018). Nine separate images of microglia in the cortex and
hippocampus of 50 mm brain sections were randomly sampled
under x 400 magnification from each animal (3 images per section,
3 sections per animal). Through ImageJ, microglia images were
passed through an unsharp mask filter and converted into an 8-bit
image, and then a binary image. Incomplete microglia structures
around the periphery of the image were cleared. The binary image
of microglia was then skeletonized with the AnalyzeSkeleton
plugin, which allowed to measurement of cell branching and
summed branch length. The summed endpoints and branch
length were divided by the number of cell bodies in the visual
field to determine the endpoints/cell and branch length/cell of the
microglia visualized.

Using a previously described characterizations of microglia
activations states (Davis et al., 1994; Davis et al., 2017), cells were
classified into three categories: resting = round, oval body with
thin, long and radially projecting processes; intermediate =
enlarged and darkened cell bodies with thick processes and less
branching; active = enlarged, darkened cell bodies with little to
no processes observed.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Quantification of Cyto/Chemokines
in the Brain Parenchmya
Quantification of neuroinflammation in the parenchyma was
performed using a membrane-based immunoassay containing a
panel detecting 29 inflammatory parameters (Proteome Profiler
Rat Cytokine Array Panel A, R&D Biosystems, Biotechne).
Brains were harvested from animals perfused with ice cold PBS
at 24 and 42 hpi. The brains were snap frozen on dry ice and
stored at -80°C until further processing. For preparation of
homogenates, brain samples were thawed on ice, and a portion
of the frontal cortex was excised. Samples were homogenized in a
7-ml glass tissue grinder (Kontes Glass Co., USA) with a 7×
volume to mass ratio in a buffer consisting of ice-cold PBS, 1%
Triton-X-100, and protease inhibitors (cOmplete™, Mini,
EDTA-Free, Sigma-Adrich, Merk, Switzerland). The
homogenate was cleared by centrifugation at 16000 × g, for 10
min at 4°C. Protein concentration was determined using
Pierce™ BCA Protein Assay kit (ThermoFischer Scientific).
Each membrane was incubated with 900mg of protein extract
and processed according to the manufacturer’s instructions.
Enhanced chemiluminescent detection (ECL) was performed
on a Fusion FX-6 imaging system (Vilber Lourmat, Marne-la-
Vallée, France). Spot density was determined on digitalized
images using Image J for the analysis (V. 1.45, National
Institutes of Health, Bethesda, Maryland, US) and normalized
using internal controls integrated on each membrane.

Statistical Analysis
All statistical analyses were performed with GraphPad Prism
(Prism 8; GraphPad Software Inc., San Diego, USA). Results are
presented as mean values ± standard deviation if not stated
otherwise. Survival was calculated using a log rank (Mantel-Cox)
test. To compare differences between two groups, an unpaired
Student t test or a non-parametric Mann-Whitney test were
used. To compared difference between multiple groups, we use
one-way ANOVA with Tukey’s multiple comparison test. For
combined in vitro experiments, we performed a repeated
measure two-way ANOVA with Sidak multiple comparison for
NO and multiple t test with Holm Sidak multiple comparison for
cytokines. For clinical scores and weight changes, we used a
repeated measure mixed effect model (because of missing values
at later time points). A value of p < 0.05 was considered
as significant.
RESULTS

JWH-133 Reduces Inflammatory Cytokine
Levels and Nitric Oxide Production In Vitro
Following stimulation of mixed glial cells with LPS,
S. pneumoniae serotype 3, and heat inactivated S. pneumoniae,
each stimulation condition was immediately treated with JWH-
133. Both NO and cytokine concentrations showed that LPS and
live bacteria induced inflammatory responses in the mixed glial
cells (Figures 1A–E). In cells stimulated with LPS, JWH-133
significantly decreased NO concentration (p < 0.0001), as well as
November 2020 | Volume 10 | Article 588195
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IL-1b concentration (p = 0.019). In cells stimulated with live
S. pneumoniae serotype 3, JWH-133 significantly decreased
concentrations of NO (p = 0.0071), IL-6 (p = 0.00034), IL-1b
(p = 0.014), and TNF-a (p = 0.014). Challenge with LPS didn’t
efficiently stimulated the production of IL-10, and stimulation
with live bacteria wasn’t affected by JWH-133 treatment. In cells
stimulated with PBS, NO levels were observed in very low
concentrations and cytokines levels were under detection limit.
No significant difference between treated and untreated cells
were observed in cells stimulated with PBS only.

Clinical Parameters of Animals With
Pneumococcal Meningitis Are Not
Impacted by JWH-133 Administration
A total of 84 infant rats were used in this study, of which 70 were
infected with S. pneumoniae. The development of productive
bacterial meningitis was proven in all 70 animals, with CSF
bacterial titers ≥ 106 CFU/ml and clinical scores inferior to 5,
both determined at 18 hpi. Of these infected animals, 35 were
concomitantly treated with JWH-133 and CRO, while the
remaining were treated with CRO only.

Survival, relative weight change, and clinical scores were
significantly different in animals infected with PM compared to
uninfected animals. However, in infected animals, adjuvant
JWH-133 treatment did not alter these clinical parameters
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
when compared to animals treated with CRO only (Figures
2A–C).

Microglia Morphology and Distribution Are
Affected by JWH-133 Administration
A prominent characteristic of microglia is their different
branching and cell body morphology linked to their activation
states (Davis et al., 1994; Karperien et al., 2013; Gomez-Nicola
and Perry, 2015). To assess how JWH-133 attenuates
inflammation through microglia modulation, the morphology
and activation of microglia cells were quantified on Iba-1
immuno-stained sections.

Quantitative Assessment of Branching and Cell
Process Length
The microglia images were skeletonized on ImageJ software, as
previously described in the methods (Figures 3A–D). These
images were analyzed for the endpoints per cell body, as well as
the total summed branch length per cell body. Infected animals
treated with CRO exhibited significantly fewer endpoints per cell
as well as branch length when compared with every other
experimental groups. In particular, the difference between
infected animals that received JWH-133 or not was highly
significant for endpoints (p < 0.0001) and branch length (p <
0.001). In contrast, infected animals treated with JWH-133 didn’t
A B

D E

C

FIGURE 1 | In vitro, JWH-133 treatment attenuates LPS or S. pneumoniae-induced activation of glial cells. The expression of IL-1b (A), IL-6 (B), and TNF-a (C) was
reduced by JWH-133 during challenge of astroglial cells by S. pneumoniae. JWH-11 also attenuated LPS-induced production of IL-b, but had not effect on IL-10
(D). Nitric oxide production (E) upon LPS- and S. pneumoniae activation was reduced by JWH-133. (For cytokines, n = 3 for each group; for NO: three independent
experiments represented by black, gray, and white symbols; *p < 0.05; **p < 0.01, ***p < 0.001).
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exhibit differences in branch length and endpoints when
compared to uninfected animals (Figures 3E, F).

Classification of Microglia in Three Categories Based
On Morphology
In conjunction with quantitative assessments of microglia
morphology, the Iba-1+ cells were also classified in three
categories, based on their morphology. In uninfected animals,
more microglial cells possessed thin processes with light staining
of cell bodies (Figure 4B). These characteristics are indicative of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
“resting” microglia, which patrol the body under physiological
conditions (Davis et al., 1994). Interestingly, JHW-133 increased
the proportion of this microglial type not only in infected
animals, but also in uninfected. In infected animals treated
only with CRO, Iba-1 staining showed significantly more cells
with little to no processes, with enlarged bodies and an amoeboid
shape (Figure 4D) compared to animals treated with JHW-133.
Between these two phenotypes, microglia can possess thicker
processes and larger cell bodies (Davis et al., 1994; Davis et al.,
2017). These microglial cells are believed to be an intermediate
between ramified and reactive microglia, and have been referred
to as “bushy”, “hypertrophied”, “rod-like” and “bipolar” (Davis
et al., 2017). In our study, we characterized these cells as
“hypertrophied” (Figure 4C). In contrast to the treatment with
CRO alone, the brain of infected animals with adjuvant JWH-
133 exhibited a majority of Iba-1+ cells possessing the phenotypic
characteristics of hypertrophied microglia (Figure 4A).

Quantitative Assessment of Microglial Density
The total number of Iba-1+ cells was assessed to determine
whether adjuvant JWH-133 influences the density of microglia.
No statistically significant difference caused by JWH-133
treatment, neither in uninfected nor in infected animals was
observed. Furthermore, when comparing infected and
uninfected animals, no significant increase in microglial
density was documented (Supplementary Figure 1).

JWH-133 Reduces the Expression of
Inflammatory Cyto/Chemokines, But Not
of MMP-9 in the Parenchyma of Animals
With Pneumococcal Meningitis
In order to analyze the inflammation in the parenchyma over the
course of acute meningitis, brain homogenates of animals
sacrificed at 24 and 42 hpi were used to profile an array of
inflammatory cytokines. With the exception of fractalkaline,
sICAM-1, and thymus chemokine, inflammatory proteins were
not detected in uninfected animals, while animals with PM
demonstrated detectable levels of several inflammatory
cytokines (Figures 5A, B). At 24 hpi, the animals treated with
JWH-133 demonstrated significantly decreased levels of several
neutrophil chemoattractants, including CINC-1 (p < 0.001),
CINC-2a/b (p = 0.0037), and CINC-3 (p < 0.001). At 42 h,
the only chemoattractant that was significantly reduced was
CINC-1 (p < 0.001). Inflammatory interleukin levels were also
reduced in the parenchyma after administration of JWH-133
(Figures 5A, B). At 24 h, IL-6 was significantly reduced (p <
0.001), and at 42 h, IL-1a was significantly reduced compared to
animals treated with only CRO (p < 0.001). Macrophage
inflammatory proteins were also significantly reduced
following JWH-133 administration at both 24 and 42 hpi
(Figures 5A, B). Levels of MIP-3a (CCL20) were significantly
reduced at 24 hpi (p < 0.001), and levels of MIP-1a (CCL3) were
reduced by JWH-133 at 42hpi (p < 0.001). While JWH-133
administration reduced levels of inflammatory cytokines, it also
reduced the level of metalloproteinase inhibitor TIMP-1 at 24
hpi (p = 0.0019). In contrast, we couldn’t detect a reduction in
MMP-9, neither at 24 hpi, nor 48 hpi (Supplementary Figure 2).
A

B

C

FIGURE 2 | Survival and time-course of clinical parameters during
experimental pneumococcal meningitis. No differences could be observed in
survival (A), relative weight changes (B) or clinical score (C) between animals
treated with ceftriaxone (CRO) or ceftriaxone combined to adjuvant JWH-133
(CRO/JWH133), neither in uninfected (PM-) nor infected (PM+) animals (PM-
CRO and PM- CRO/JHW-133, n = 7; PM+ CRO and PM+ CRO/JWH133,
n = 19–35, depending on the time points).
November 2020 | Volume 10 | Article 588195
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Adjuvant JWH-133 Doesn’t Significantly
Alter Cortical Damage or Hippocampus
Apoptosis
To further assess the effects of JWH-133, cortical damage and
hippocampal apoptosis were analyzed. No cortical damage was
observed in uninfected animals with CRO or CRO/JWH133
administered. In animals infected with PM, administration of
JWH-133 didn’t reduce the cortical damage nor hippocampal
apoptosis (Figure 6).
DISCUSSION

Pneumococcal meningitis induces inflammation in the CNS, that
can be exacerbated by bacteriolytic antibiotics such as CRO,
leading to long term neurological sequelae (Mook-Kanamori
et al., 2011). While dexamethasone is currently used as an
adjuvant therapeutic, its long-term neuroprotective properties
on hearing loss and memory impairment are limited (Leib et al.,
2003; Van De Beek, 2009) and concerns exist about
corticosteroids being responsible of delayed cerebral
thrombosis after initial good recovery (Schut et al., 2009;
Gallegos et al., 2018). Thus, studying the efficacy of alternative
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
therapeutic candidates for PM is important for the improvement
of clinical outcome following infection and the identification of
new treatment modalities.

In this study, we assessed the anti-inflammatory and
neuroprotective effects of JWH-133 administration. Previous
studies have shown the protective properties of administering
specific endocannabinoid receptor type 2 agonists in various
disease models. JWH-133 has a very high affinity and specificity
for CB2 (Ki CB2 3.4 nM/Ki CB1 680 nM) (Huffman et al., 1999)
when compared to other CB2 agonists, like JWH-015 (Ki CB2:
13.8 nM/Ki CB1: 383 nM) (Pertwee, 1999). Importantly, JWH-
015 has been reported to have seven off-target receptors, while
JWH-133 had none (Soethoudt et al., 2017). As a consequence,
JWH-015 may act independently from CB receptors, for example
through the glucocorticoid receptor (Fechtner et al., 2019).

So far, few studies have addressed the use of CB2 agonists in
infectious diseases (Hernandez-Cervantes et al., 2017). These
studies have mostly used non-selective agonists, including
tetrahydrocannabinol (THC), cannabidiol (CBD) or marijuana
extracts. For bacterial infection, a model of sepsis using cecal
ligation and puncture (CLP) demonstrated that the selective CB2
agonist Gp1, given shortly after CLP induction, decreased
neutrophil recruitment, while increasing neutrophil activation
A

B

D

E

FC

FIGURE 3 | Quantitative phenotypic analysis of microglial activation state on Iba-1 immuno-stained sections. Brain sections of animals from each experimental
group, were immuno-stained for microglia using Iba-1 (pictures on the left, A–D). The digital image was skeletonized (pictures on the right, (A–D) and endpoints/cell
(E) or summed branch length (F) were determined. In infected animals with ceftriaxone treatment (PM+ CRO), both parameters were significantly reduced compared
to the others groups. In contrast, no differences between infected animals treated with JWH-133 (PM+ CRO/JWH133) and uninfected animals (PM-) could be
observed. (PM- CRO, n = 3; PM- CRO/JWH133, n = 5; PM+ CRO, n = 11; PM+ CRO/JWH133, n = 6; one-way ANOVA with Tukey’s multiple comparison test:
***p < 0.001; ****p < 0.0001).
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at the site of infection. Further, it decreased pulmonary damage
(Tschop et al., 2009). Non-selective inhibitors have also been
investigated in paradigms of viral infections. A beneficial effect
was found in viral infections where inflammation participates in
viral spread and is detrimental. For example, CB2 agonists have
the potential to reduced HIV-associated neurocognitive
disorders (Purohit et al., 2014). JWH-133 was shown to reduce
lung inflammation and damage in experimental respiratory
syncytial virus infection in mice (Tahamtan et al., 2018). Very
recently, therapy using CB2 agonist has been proposed to control
the cytokine storm observed during acute cases of SARS-CoV-2
infection (Rossi et al., 2020)

Since CB2 agonists are general ly considered as
immunosuppressive, the timing of application is critical.
Inactivation of CB2 prior to infection or using knockout
models may be detrimental. CB2 deficiency may prolong host
exposure to pathogens, decrease viral clearance, and broke down
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
immune cell crosstalk, such as neutrophil migration. This way,
treatment with CB2 agonists may render individuals more
susceptible to infections (Hussain et al., 2019). Evidence for a
role of CB2 deficiency as a risk factor for bacterial infection of the
CNS is lacking so far. A review paper by Gowin and colleagues
(Gowin and Januszkiewicz-Lewandowska, 2018) inventoried
SNPs involved in bacterial meningitis, but CB2-related SNPs
were not reported.

Here, the efficacy of a very specific CB2 agonist is evaluated
for its ability to reduce neuroinflammation during the acute
phase of bacterial meningitis, with a special focus on microglia.
Our results indicate that JWH-133 exerts anti-inflammatory
effects on glial cells in vitro and that its administration as
adjuvant therapy in vivo modulates microglia activity in the
CNS, thus also exerting an anti-inflammatory effect.

Our in vitro data with mixed glial cell cultures demonstrate
anti-inflammatory properties of JWH-133 in both LPS and live
A

B DC

FIGURE 4 | Classification of microglia based on their morphology on Iba-1 immuno-stained sections. Significance differences in the proportion of the microglia
classified in the categories “resting” and “reactive” were found between the experimental groups (A). Examples of microglia classified into the three different
categories: resting = round, oval body with thin, long, and radially projecting processes (B); hypertrophied = enlarged and darkened cell bodies with thick processes
and less branching (C); reactive = enlarged, darkened cell bodies with little to no processes observed (D). PM- CRO, n = 3; PM- CRO/JWH133, n = 4; PM+ CRO,
n = 8; PM+ CRO/JWH133, n = 4; one-way ANOVA with Tukey’s multiple comparison test: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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S. pneumoniae serotype 3-stimulated cells. JWH-133 reduced IL-
6, IL-1, and TNF-a, all of which have been shown to play an
important role in upregulating neuroinflammation in PM
(Coutinho et al., 2013). Thus, attenuating the levels of these
cytokines may have significant neuroprotective effects in PM,
and improve outcomes. We have also shown that NO
concentrations were significantly reduced in cultures treated
with either LPS or living S. pneumoniae. NO is a signaling
molecule released by macrophages and is involved in
inflammatory processes, including vasodilation (Sharma et al.,
2007). During infection, microglial cells are a major source of
inflammatory cytokines (Hanisch, 2002), including IL-1b,
IL-6-a, and TNF-a (Lee et al., 1993; Hanisch, 2002). Thus, the
attenuated production of these cytokines and of NO by mixed
glial cell cultures in vitro suggests that the agonist JWH-133
drives microglia toward an anti-inflammatory state.

In vivo, we administered a concentration of JWH-133 (1mg/kg)
in line with different models of brain injuries (Murikinati et al.,
2010; Gamal et al., 2015; Fujii et al., 2016; Cakir et al., 2019). As
previously described, microglia serve as the primary immune
cells of the brain, releasing various pro-inflammatory cytokines
(Hanisch, 2002). We were able to determine differences in
microglia morphology by measuring endpoints per cell and
branch length per cell. These measurements are relevant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
because previous studies have shown that activation states of
microglia cells are associated with branching (Davis et al., 1994;
Karperien et al., 2013; Gomez-Nicola and Perry, 2015). Activated
microglia possess a round amoeboid shape, with little to no
branching. These characteristics are indicative of “active”
microglia, which function as macrophages in response to
injury, and secrete several pro-inflammatory cytokines like IL-
1, IL-6, and TNF (Davis et al., 1994; Smith et al., 2012; Davis
et al., 2017). Pro-inflammatory functions of active microglia have
been shown to directly contribute to neuronal death and
neurodegeneration (Vezzani et al., 1999; Takeuchi et al., 2006).
Thus, upon infection, we expect microglia to have significantly
fewer endpoints per cell and smaller branch lengths than in
healthy animals. After infection with S. pneumoniae and
treatment with CRO, Iba-1+ cells indeed possessed
significantly fewer endpoints and smaller branch lengths than
other experimental groups. Due to the bacteriolytic and pro-
inflammatory nature of antibiotics like CRO (Grandgirard et al.,
2007b; Muri et al., 2018), the increase in microglia activation
could be the result of both bacterial infection and antibiotic
treatment. Following adjuvant treatment with JWH-133, the Iba-
1+ cells demonstrated significantly increased endpoints and
branch lengths, suggesting modulation towards a resting and/
or intermediate hypertrophied state. In contrast, JWH-133 was
A

B

FIGURE 5 | Analysis of inflammatory parameters in the brain parenchyma of infected animals. At 24 hpi (A) and 42 hpi (B), the protein levels of several inflammatory
parameters were significantly decreased in infected animals treated with CRO/JWH-13 (blue bars) compared to animals treated with CRO only (orange bars). Only
few inflammatory parameters could be detected in uninfected animals (white bars). (PM+ CRO, n = 6; PM+ CRO/JWH133, n = 6; PM-, n = 4; Multiple t test with
Holm-Sidak correction; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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not able to influence overall microglial density in the
parenchyma. Further, we did not observe differences between
uninfected and infected animals. A significant difference upon
infection was demonstrated by Dörr and colleagues in an
experimental model of pneumococcal meningitis in mice (Dorr
et al., 2015). However, their analysis focused on the hippocampal
formation, which was not the case in our study. In conjunction
with data from in vitro glial cells, our analysis suggests that JWH-
133 is effective in modulating microglia phenotype away from a
reactive state with phagocytotic activity, and through this
pathway, reduces neuroinflammation in PM.

The acute phase of PM is characterized by significantly
increased levels of inflammatory cytokines released by
resident brain immune cells and infiltrating leukocytes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
(Mook-Kanamori et al., 2011). We measured cytokine levels in
the brain parenchyma of infected animals to further understand
how adjuvant JWH-133 treatment modulates neuro-
inflammation. Our results showed that at 24 and 42 hpi,
adjuvant JWH-133 therapy significantly reduced neutrophil
chemoattractants CINC-1, CINC-2a/b, and CINC-3. Massive
neutrophils infiltration to the CNS is observed in acute PM,
forming neutrophil extracellular traps (NETs) in the CSF, which
have been shown to trap pneumococcal bacteria and hinder
bacterial clearance (Mohanty et al., 2019). Invading leukocytes
act also as sources of pro-inflammatory mediators, such as
reactive oxygen species and matrix-metalloproteinases (Meli
et al., 2003). In these cells, CB2 activation also result in anti-
inflammatory effects (Murikinati et al., 2010; Kapellos et al.,
2019). The specific involvement of neutrophils was not the
primary focus of the present study. The reduction in the
production of chemoattractants in brain parenchyma by JWH-
133 may attenuate the recruitment of neutrophils. This has been
proposed as a mechanism for JWH-133-mediated attenuation of
brain damage following ischemia in rats subjected to middle
cerebral artery occlusion (MCAO) (Murikinati et al., 2010). This
would merit further investigation in our experimental model. In
addition, JWH-133 also down-regulates MIP-1a and MIP-3a in
our model. Macrophage inflammatory proteins are secreted by
brain-resident macrophages, and have been shown to be up-
regulated in pneumococcal meningitis, where they are involved
in the recruitment of leukocytes into the CNS (Driscoll, 1994;
Coutinho et al., 2013). Pro-inflammatory interleukins such as IL-
6 and IL-1a were also down-regulated by JWH-133
administration. Microglia function has been described as one
of the primary mediators of immune response in the brain
following infection (Barichello et al., 2016; Thorsdottir et al.,
2019), and the attenuation of inflammatory responses in brain
tissue following administration of JWH-133 further corroborates
that JWH-133 may be a promising neuro-protective therapy
targeting microglial cells.

Acute inflammation in the subarachnoid space and the
ensuing vasculitis, as well as cerebral thrombosis, are believed
to be the causes of cortical damage in PM (Leib et al., 1996; Nau
and Bruck, 2002). Adjuvant JWH-133 therapy didn’t reduce
brain damage in rats infected with PM. This is in contrast to the
neuroprotective effect of JWH-133 observed in experimental
models of okadaic acid-induced neuroinflammation and
damage (Cakir et al., 2019) or MCAO-induced ischemia
(Murikinati et al., 2010). However, in these models, JWH-133
was applied at the time or shortly before surgery. In our model,
JWH-133 was given as adjuvant therapy to antibiotics, a
paradigm more relevant to clinical application. This may
explain the lack of effect observed on brain damage, although
the anti-inflammatory effect on microglia is demonstrated. In
previous studies from our group, decrease in inflammatory
parameters by different adjunctive therapies was associated
with improved neuroprotection and attenuation of cortical
damage (Grandgirard et al., 2007b; Liechti et al., 2014; Muri
et al., 2018). In particular, the attenuation of cortical damage was
consistently associated with a reduction of MMP-9 activity
A

B

FIGURE 6 | Levels of brain damage. No significant differences for cortical
damage (A) nor for hippocampal apoptosis (B) could be detected between
infected animals treated with CRO alone (orange dots) or CRO/JHW133 (blue
dots). (PM + CRO, n = 19; PM+ CRO/JWH133, n = 16; Mann-Whitney test:
cortical damage, p = 0.62; hippocampal apoptosis, p = 0.13).
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(Liechti et al., 2015). In the present study, the expression of
parenchymal MMP-9 was not reduced by JWH-133, in line with
its inability to decrease cortical damage.

JWH-133 therapy was shown to improve outcome in term of
neurofunctional behavior in different experimental models. In
particular, it attenuated the impairment of Morris watermaze
performance induced by okadaic acid treatment in rats (Cakir
et al., 2019). In the present study, we only focused on the acute
phase of the disease and didn’t investigate a possible effect of the
chronic application of JWH-133 on later neurofunctional
parameters. Such a study was performed on adult rats with
pneumococcal meningitis using cannabidiol for treatment
(Barichello et al., 2012). A reduction in the host immune
response and a prevention of cognitive impairments were
documented. However, therapy was initiated at the time of
infection. Further, in contrast to JWH-133, the effects of CBD
are very unspecific, which makes a direct comparison between
the two treatments subject to caution. Specific endocannabinoid
modulation of microglia drives their polarization toward a
phenotype warranting therapeutic functionality, with not only
anti-inflammatory and neuroprotective effect, but also tissue-
remodeling or regenerative capacity. This is the fundament
proposed for the treatment of different neuropathologies by
endocannabinoids (Tanaka et al., 2020). Cannabinoids are
potent regulators of neural stem cell (NSC) biology (Rodrigues
et al., 2019). JWH-133 has been shown to increase NSC
proliferation in the subventricular zone (Goncalves et al.,
2008), and another CB2 agonist, AM1241, enhanced cell
proliferation in the hippocampus of mice displaying deficits in
neurogenesis (Avraham et al., 2014). Based on these
observations, chronic application of JWH-133 during
experimental pneumococcal may hold more potential to
support regeneration and improve the neurofunctional
outcome of infected animals than influencing the acute
reaction, when used in a clinically relevant therapeutic modality.

Our study has several limitations: 1) by using a primary
mixed glial culture, the effect of JWH-133 was not specifically
investigated on microglia, but more on a general glial population
consisting of astrocytes and microglia. Astrocytes are likely to
also be regulated by CB2 agonists (Kozela et al., 2017). This could
however better reflect the in vivo situation in the parenchyma. 2)
Neutrophils participate in the hyperinflammatory state during
pneumococcal meningitis. Unfortunately, the effect of JWH-133
treatment on the recruitment of these cells in the CSF couldn’t be
determined, given the limited quantity of CSF that could be
harvested from infant rats.

In conclusion, we could demonstrate both in vitro and in vivo
the ability of JWH-133 to modulate microglial behavior to a non-
inflammatory phenotype. When applied as adjuvant therapy, this
was however not effective in improving clinical outcome and
brain damage in the acute phase. Given the proven effect on
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
microglia and its potential to support neuronal regeneration,
JWH-133 may hold promise in a chronic application.
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