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Mycobacterium tuberculosis (Mtb) is a very successful pathogen, strictly adapted to

humans and the cause of tuberculosis. Its success is associated with its ability to inhibit

host cell intrinsic immune responses by using an arsenal of virulence factors of different

nature. It has evolved to synthesize a series of complex lipids which form an outer

membrane and may also be released to enter host cell membranes. In addition, secreted

protein effectors of Mtb are entering the host cell cytosol to interact with host cell proteins.

We briefly discuss the current model, involving the ESX-1 type seven secretion system

and the Mtb lipid phthiocerol dimycoserosate (PDIM), of how Mtb creates pores in the

phagosomal membrane to allow Mtb proteins to access to the host cell cytosol. We

provide an exhaustive list of Mtb secreted proteins that have effector functions. They

modify (mostly inhibit but sometimes activate) host cell pathways such as: phagosome

maturation, cell death, cytokine response, xenophagy, reactive oxygen species (ROS)

response via NADPH oxidase 2 (NOX2), nitric oxide (NO) response via NO Synthase 2

(NOS2) and antigen presentation via MHC class I and class II molecules. We discuss the

host cell targets for each lipid and protein effector and the importance of the Mtb effector

for virulence of the bacterium.

Keywords: Mycobacterium tuberculosis, effector, cell death, lipids, cytokines, phagosome maturation, NOX2,

ESX-1

INTRODUCTION

Mtb is the bacterium responsible for the highest number of deaths annually caused by an infection
disease. Its success as human pathogen is at least partially due to the ability of Mtb to evade the host
immune response (Liu et al., 2017; Queval et al., 2017; Upadhyay et al., 2018; Bussi and Gutierrez,
2019; Sia and Rengarajan, 2019). On the other side there was intense selective pressure on humans
to develop immune responses that could drive active tuberculosis infections into latent ones in
order for the host to survive (Moreira-Teixeira et al., 2018; Olive and Sassetti, 2018; Simmons
et al., 2018; Correa-Macedo et al., 2019). Ever since the first observation that intracellular Mtb
inhibits the normal progression of phagosome maturations in the 1970s (Armstrong and Hart,
1971), the “How” and “What” of Mtb-mediated host cell manipulation have been under intense
investigation. The translational research potential to exploit this knowledge, either for directly
targeting Mtb effectors or for developing host targeted therapeutics, is important due to the urgent
need of novel drugs to treat tuberculosis. Nevertheless, progress was limited for a long time due to
the absence of genetic tools to modify Mtb. This changed in the early 1990s when pioneering work
established the first tools to allow foreign gene expression inmycobacteria (Jacobs et al., 1987; Ranes
et al., 1990) and to create a specific gene deletion mutant (Bardarov et al., 2002). Recently, ORBIT
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and CRISPRi technologies have been developed to simplify
gene deletion/suppression approaches in Mtb (Rock et al.,
2017; Murphy et al., 2018). The genetic toolbox was quickly
expanded to include high-throughput gene disruption capacity
via transposon (Tn)-mediated approaches which allowed for loss-
of-function genetic screens (Camacho et al., 1999; Cox et al.,
1999). The transposon approach was improved and combined
with advances in gene sequencing technology to generate the
TnSeq approach which allows for loss-of-function screens on
a population basis (Long et al., 2015). Furthermore, shuttle
cosmids were developed to be able to express large regions
of the Mtb genome in non-tuberculoid mycobacteria in order
to execute gain-of-function genetic screens (Bange et al., 1999;
Velmurugan et al., 2007). Similarly, the genetic modification
of host cells via siRNA and CRISPR/Cas9 allows for genome-
wide genetic screens that can be combined with high-throughput
readouts in order to identify host cell genes involved in
specific host responses to Mtb infections (Kumar et al., 2010).
The Collaborative Cross collection of mouse strains was used
to identify host susceptibility and resistance genes following
Mtb infections (Smith et al., 2019). These breakthroughs in
experimental approaches have already led to seminal findings
on Mtb lipid and protein effectors and their host cell targets.
The goal of this review is to provide an overview of the current
knowledge of secreted Mtb proteins and lipids, their mechanisms
of action and their importance for virulence of Mtb.

MTB EFFECTOR PROTEINS AND THEIR
TARGETS IN THE HOST CELL

What are some of the important characteristics of Mtb proteins
that interact with the host cell? Many effectors need to be secreted
by the bacterium and hence the secretion system for which
they are a substrate is an important feature of the effector.
The Mtb genome encodes for five type-seven secretion systems
(T7SS), ESX-1 to ESX-5. Theymediate the secretion of two family
of proteins, EsxA-like proteins which are part of the Trp-X-
Gly (WXG) family, and proteins harboring a Pro-Glu (PE) or
Pro-Pro-Glu (PPE) N-terminal motif. The main substrates of
ESX-1 are EsxA and EsxB. The ESX-3 system transports the
EsxA/B paralogues EsxG/H. There is very little information on
the substrates of the ESX-2 and ESX-4 systems. Finally, ESX-
5 is responsible for secretion of a large number of proteins
many of which are part of the PE/PPE superfamily (Gröschel
et al., 2016; Bosserman and Champion, 2017). The heterologous
expression of PE/PPE proteins in M. smegmatis (Msme) is a
commonly used approach to characterize these proteins since
they are absent in this mycobacterial species. Nevertheless, Msme
also does not express an ESX-5 system, so the transport of these
heterologously-expressed Mtb proteins is unknown. In order to
focus the scope of this review we have decided to not include a
discussion of Mtb PE/PPE effectors expressed in Msme, unless
there is additional experimental evidence derived from Mtb
deletion mutant or ectopic expression of the Mtb protein in a
host cell. Furthermore, we also decided to limit the review to
proteins that are secreted and released by Mtb which excludes

many PE/PPE family proteins because they remain associated
with theMtb cell wall (e.g., PE-PGRS33).We point the reader to a
current and exhaustive review on PE/PPEMtb proteins (DeMaio
et al., 2020). In the absence of experimental data, we used SignalP
5.0 (Almagro Armenteros et al., 2019) to predict the presence of
a signal peptide which indicates secretion via the SecA1/2 or Tat
secretion systems.

Another important characteristic is the function of the
effector. Protein tyrosine phosphatases A and -B (PtpA, PtpB)
and the secreted acid phosphatase of Mtb (SapM) are the only
three phosphatases known to be secreted by Mtb (Koul et al.,
2000; Saleh and Belisle, 2000) (for more detailed review see
Wong et al., 2013). TheMtb genome encodes 11 serine/threonine
protein kinases of which 9 have a single transmembrane domain,
an extracellular sensor domain and the intracellular kinase
domain (Av-Gay and Everett, 2000; Prisic and Husson, 2014).
PknG and PknK have no transmembrane domain but only
PknG has been shown to be secreted (Prisic and Husson, 2014).
In addition, Mtb encodes for the tyrosine kinase PtkA which
phosphorylates and activates the phosphatase PtpA (Zhou et al.,
2015; Jaiswal et al., 2019). In addition to kinases and phosphatases
there is a wide range of other enzymatic activities reported for
effectors (Table 1) but these are not always associated with their
function in host cell manipulation but rather with their primary
function in Mtb homeostasis (e.g., echA2 Truong and Penn,
2020). Finally, for many effectors no specific activity has been
determined yet.

One of the most interesting feature of a secreted effector
is its host cell target (Table 1). The identification of a target
can be fairly straight forward if there is a strong binding
affinity which allows for co-immunoprecipitation or column-
based enrichment approaches. Interactions that are of low
affinity are much harder to characterize which is probably one
reason that for many Mtb effectors their host cell targets have
not been identified yet (Table 1). Related to the targeted host
cell protein is the impact of the Mtb effector on the host
cell signaling pathways. The manipulation of proinflammatory
cytokine responses, phagosome maturation, autophagy and host
cell death are the major pathways targeted by Mtb that have
been identified today (Table 1). Since these host cell pathways
are interconnected (for example, proinflammatory cytokine
signaling may affect host cell death) a specific Mtb effector may
affect more than one host cell signaling pathway.

Finally, what is the contribution of a given Mtb protein
effector to the virulence of the bacterium? The answer to that
question is complicated by many factors. One of them being
the redundancy of Mtb effector proteins for a given host cell
signaling pathway. For example, many proteins and some lipids
target the maturation of the Mtb phagosome (Tables 1, 2). So,
studying their individual effect on phagosome maturation will
show meaningful differences but when taken into context of an
infected mouse lung these differences observed during ex vivo
infections may not be important enough to affect the overall
survival of Mtb in the mouse lung. An approach to overcoming
this hurdle would be by generating double or even triple Mtb
gene deletion mutants. Another complicating factor is how to
be sure if the observed in vivo effect of a given Mtb mutant
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FIGURE 1 | Model of the mechanism of membrane lysis by the cooperation of ESX-1 and PDIM. ESX-1 secretes EsxA and EsxB in a 1:1 heterodimer. This dimer is

separated upon pH decrease and / or post-translational modifications, and free EsxA can induce pore formation. PDIM can potentiate EsxA membranolytic activity by

either synergizing the pore forming activity of EsxA or by acting on the EsxA/B heterodimer complex separation.

is actually due to the lack of manipulation of the specific host
cell signaling pathway and not instead due to some secondary
function of the Mtb protein during in vivo infections. In the
most extreme cases of moonlighting, Mtb effector proteins such
as echA2 (Truong and Penn, 2020) this is obvious because of
the known function of echA2 in bacterial homeostasis, but it
is actually a concern for any Mtb deletion mutant used during
in vivo infections. One way to address this question is to use a
genetic approach by infecting wild type mice but also a knock-
out mouse strain that is deficient in the host cell signaling
pathway that the Mtb effector is targeting. If the knock-out
mouse strain rescues the virulence of the Mtb mutant strain
when compared to wild-type Mtb, it is fair to assume that the
in vivo attenuation (or hypovirulence for that matter) is due
to the specific host cell signaling pathway that the Mtb effector
protein targets.

HOW DO MTB PROTEINS GAIN ACCESS
TO THE HOST CELL CYTOSOL?

In order for secreted Mtb proteins to reach host cell targets
they have to overcome at least two barriers: the first one
being the double membrane of Mtb (Hoffmann et al., 2008;
Zuber et al., 2008) and the second one being the phagosomal
membrane (Figure 1). The protein secretion systems of Mtb have
been extensively reviewed elsewhere (Ligon et al., 2012; Majlessi
et al., 2015). ESX-1 is arguably the most extensively studied
member of T7SS in Mtb as its crucial importance in pathogenesis
was described in numerous studies and reviewed extensively
(Gröschel et al., 2016; Bosserman and Champion, 2017; Vaziri
and Brosch, 2019). It is likely that the tremendous importance of
ESX-1 for the virulence of Mtb is due to the fact that it allowsMtb
effectors to gain access to the host cell cytosol by permeabilization
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of the phagosomal membrane (Figure 1). Gaining access to the
cytosol via phagosomal membrane permeabilization in order to
target host cell targets with bacterial effectors is a successful
strategy shared with many other intracellular pathogens (Kumar
and Valdivia, 2009). The crucial virulence factor secreted by
ESX-1 for the permeabilization process is EsxA (also named
ESAT-6), which is secreted as a 1:1 heterodimer with EsxB (also
named CFP-10) (Renshaw et al., 2005). EsxA membranolytic
activity was first observed by Hsu et al. (2003). Since then
numerous studies aimed to dissect the mechanism of action
leading to membrane lysis (reviewed elsewhere Peng and Sun,
2016). But recently a study cast a doubt on published EsxA
in vitro studies suggesting that traces of detergent left from
the purification process were responsible for the membranolytic
activity observed (Conrad et al., 2017). Nevertheless, some
studies were performed with detergent-free purification process
and showed an EsxA pore-forming activity on membranes (de
Jonge et al., 2007; Ma et al., 2015; Zhang et al., 2016; Ray et al.,
2019; Aguilera et al., 2020; Augenstreich et al., 2020). Regardless
of this confounding issue, there is good agreement that one
crucial step for the lytic activity of EsxA is the separation of
EsxA from EsxB after the secretion of the heterodimer through
the ESX-1 system. That process can be mediated through an
acidification that can lead to EsxA release andmembrane binding
(de Jonge et al., 2007). In contrast, other reports show that the
membrane lysis process seem to happen at a mildly acidic pH
and Mtb could rupture the phagosomal membrane even after
a bafilomycin treatment which inhibits phagosome acidification
(Simeone et al., 2015; Augenstreich et al., 2017). Hemolysis
studies also suggested that a RD1-mediated lysis can happen at
pH7 (Smith et al., 2008; Conrad et al., 2017; Augenstreich et al.,
2020). Thus, the separation of the EsxA/EsxB complex seems
to take place at neutral pH. A new study started to unravel
this mechanism by showing EsxA undergo acetylation through
secretion that increases EsxA/EsxB separation by decreasing
the complex stability and contributes to M. marinum (Mm)
phagosome escape (Aguilera et al., 2020). The lipidic virulence
factor PDIM also showed to be essential for phagosomal escape
during macrophages infection by Mtb (Augenstreich et al., 2017;
Barczak et al., 2017; Quigley et al., 2017; Lerner et al., 2018). It
is tempting to hypothesize that PDIM might also play a part in
this process, that would explain the membrane lysis observed
at neutral pH and that the lysis occurs at the contact point
between the bacteria and the target membrane. But this will
require additional studies to finally resolve the exact molecular
mechanism of EsxA-mediated membrane lysis. Finally, even if
EsxA is themain factor responsible for the lysis, other factorsmay
be participating in the process, like the sphingomyelinase SpmT
of Mtb (Speer et al., 2015) or uncharacterized ESX-1 associated
factor(s) in Mm (Lienard et al., 2020).

It was long thought that the EsxA/ESX1-dependent
phagosomal rupture was restricted to Mtb and Mm, since
Msme despite encoding an ESX-1 system fails to escape the
phagosome in macrophages. But recently it was described
that M. abscessus was also able to rupture the phagosome, but
through the use of ESX-4 (Laencina et al., 2018). Interestingly,
eccB4 deficient M. abscessus strains failed to inhibit phagosome

acidification and to induce phagosomal rupture. It is linked to
a secretion defect of the EsxA/EsxB-like complex EsxT/EsxU
and one might speculate they act like their ESX-1 counterparts
(Laencina et al., 2018). Thus, for M. abscessus that lacks an
ESX-1 system, ESX-4 seems to perform the functions associated
with ESX-1 in Mtb. In a potentially analogous mechanism to
the EsxA/PDIM synergy described for Mtb, a new glycolipid
was characterized in M. abscessus and its transport to the
mycobacterial surface is required for phagosomal rupture
(Dubois et al., 2018).

ROLE OF MTB PROTEINS IN HOST
MANIPULATION (TABLE 1)

Phagosome Maturation
The uptake of Mtb by phagocytes generates a phagosome, the
Mtb-containing vacuole (MCV). The normal maturation process
of a phagosome is to fuse with early endosomes, then late
endosomes and finally lysosomes to gradually acidify its lumen,
acquire acidic protease and hydrolase in order to destroy the
phagosomal bacterium (Upadhyay et al., 2018). One of the
first immune evasion mechanisms assigned to Mtb was its
capacity to prevent the fusion of lysosomes with the MCV
(Armstrong and Hart, 1971). These excellent recent reviews
provide additional information of Mtb-mediated inhibition
of phagosome maturation (Upadhyay et al., 2018; Bussi and
Gutierrez, 2019).

EsxH: The ESX-3 secretion system has a limited set of
substrates comprised by EsxG-EsxH, PE5-PPE4, and the PE15-
PPE20 heterodimers (Tufariello et al., 2016). EsxG and EsxH are
EsxA and EsxB-like proteins respectively, which resolved in a
1:1 heterodimer structure is very similar to the EsxA/B complex
but with a different function (Ilghari et al., 2011). A yeast two-
hybrid (Y2H) screen identified the interaction of Mtb but not
Msme EsxH with HRS (Hepatocyte Growth Factor-Regulated
Tyrosine Kinase Substrate) (Mehra et al., 2013). HRS is important
in the initial assembly of the ESCRT machinery which functions
in transport of endosome to lysosomes for certain receptors
and cargo (Szymanska et al., 2018). This interaction could be
confirmed by co-immunoprecipitation experiments in HEK293
cells expressing EsxH and EsxG (Mehra et al., 2013). Importantly,
the overexpression of EsxG/EsxH in Mtb increased the capacity
of the bacteria to inhibit phagosome maturation (Mehra et al.,
2013). The knock-down of HRS as well as downstream effector
Tsg101 (one component of the ESCRT machinery) both resulted
in a decreased MCV maturation showing that the host cell
target of EsxH is functionally important (Mehra et al., 2013).
It was subsequently shown that the inhibition of ESCRT by
EsxH also reduced the capacity of macrophages and dendritic
cells to present Mtb antigens and prime T-cells ex vivo and in
vivo (Portal Celhay et al., 2016). Finally, ESCRT is recruited to
the site of minor membrane damage and since Mtb, via ESX-
1 and PDIM, permeabilizes the phagosomal membrane it was
consistent with an ESX-1 dependent recruitment of ESCRT to
the MCV (Mittal et al., 2018). Mtb is required to permeabilize
the phagosomal membrane in order to manipulate the host cell.
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TABLE 1 | Summary overview of Mtb protein effectors.

Name Gene ID Secretion pathway Function Host target Host cell process Impact of gene deletion on

Mtb virulence

PtpB Rv0153c ? Phosphatase ? ? Attenuated ex vivo and in vivo

(guinea pig)

HBHA Rv0475 ? ? Apoptosis (A) No effect in vivo

SodA Rv3846 SecA2 Superoxide dismutase Phagosomal

Superoxides

Apoptosis (I) Attenuated in vivo

Rv3654c Rv3654c Predicted TAT ? PSF Apoptosis (I) Attenuated ex vivo

Rv3033 Rv3033 Predicted SecA1/2 SP ? ? Apoptosis (I) Attenuated ex vivo but no data

for in vivo

GroEL2/HSP65 Rv0440 ? Chaperone Mortalin Apoptosis (I) ?

Eis Rv2416c ? lysine

Nε-acetyltransferase

activity

JNK Apoptosis (I),

Xenophagy (I), Cytokine

response (I)

Not attenuated in vivo

MPT53/DsbE Rv2878c Predicted SecA1/2 Disulfide oxidoreductase Tak1 Cytokine response (A) Hypervirulent in vivo

PPE13 ESX-5 ? NLRP3 Cytokine response (A) ?

EchA1 Rv0222 ? Probable enoyl-CoA

hydratase

SHP1, TRAF6 Cytokine response (I) Attenuated in vivo

EsxA Rv3875 ESX-1 ? TLR-2, SR-B1, B2M Cytokine response (I),

Antigen presentation(I),

Invasion(A), Pore

formation (A)

Attenuated ex vivo and in vivo

Hip1 Rv2224c Predicted SecA1/2 Esterase and Protease

activity

GroEL2 (a secreted

Mtb protein!)

Cytokine response (I),

Apoptosis (I)

Attenuated ex vivo and in vivo

LpqN Rv0583c Predicted SecA1/2 ? CBL Cytokine response (M) Attenuated ex vivo and in vivo

CpnT/TNT Rv3903c ? hydrolyses NAD+ NAD+ Necrosis (A) Not attenuated in vivo

PPE2 Rv0256c ESX-5? Transcriptional repressor inos gene promotor,

p67phox

NO and ROS

production (I)

Attenuated ex vivo

SapM Rv3310 SecA2 Phosphatase Phosphatidyl-inositol-

3-phosphate

Phagosome maturation

(I)

Attenuated ex vivo and in vivo

(guinea pig)

PknG Rv0410c SecA2 Serine/Threonine kinase Rab7L1/Rab29 Phagosome maturation

(I)

Attenuated ex vivo and in vivo

CpsA Rv3484 ? ?: contains LCP and

LytR domains

?: inhibits NOX2

activation

Phagosome maturation

(I)

Attenuated ex vivo and in vivo

(mouse and zebrafish model)

TlyA Rv1694 ? rRNA methylase,

hemolysin

? Phagosome maturation

(I)

Attenuated ex vivo and in vivo

LpdC Rv0462 SecA2 Lipoamide

dehydrogenase

Coronin-1 Phagosome maturation

(I)

Attenuated in vivo (probably due

to role on metabolism)

EsxH Rv0288 ESX-3 ? HRS Phagosome maturation

(I)

Attenuated ex vivo and in vivo

PE_PGRS30 Rv1651c ESX-5 ? ? Phagosome maturation

(I)

Attenuated ex vivo and in vivo

NdkA Rv2445c SecA2 GTPase Activation

Protein (GAP)

Rab5, Rab7, Rac1 Phagosome maturation

(I), Apoptosis (I)

Attenuated ex vivo and in vivo

(SCID mouse model only)

PtpA Rv2234 ? Phosphatase VPS33B, Subunit H of

V-ATPase, ubiquitin,

GSK3

Phagosome maturation

(I), Cytokine Response

(I), Apoptosis (I)

Attenuated ex vivo not in vivo

Rv3364c Rv3364c ? ? Cathepsin G Pyroptosis (I) ?

PE_PGRS47 Rv2741 ESX-5 ?, Predicted

SecA1/2

? ? Xenophagy (I) Attenuated ex vivo and in vivo

All listed proteins have been shown to be secreted. If data is available, the secretion mechanisms is indicated. If the secretion pathway is not yet determined, we used SignalP-5.0 to

check for signal peptide prediction. The parentheses behind the host cell process indicate Activation (A), Inhibition (I) or Modulation (M). If not stated explicitly the virulence impact refers

to mouse studies.
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This damage can be recognized by the host cell ESCRTmachinery
which could result in increased phagosome maturation and
antigen presentation. Hence, the bacterial adaptation to inhibit
ESCRT-recruitment via secretion of its own effector EsxH. The
importance of this system forMtb virulence was demonstrated by
the strong attenuation of an esxH deletion mutant in the mouse
model with a 3–4 log reduction of CFU in the lungs (Portal
Celhay et al., 2016; Tufariello et al., 2016).

PE_PGRS30: The ortholog of this Mtb gene in Mm (mag 24-
1) is highly upregulated in bacteria present in the granuloma
and its deletion results in loss of bacterial virulence ex vivo and
in vivo (Ramakrishnan et al., 2000). Mag 24-1 is important for
the capacity of the bacteria to inhibit phagosome maturation and
exclusion of the vacuolar H+-ATPase from the MCV is a likely
mechanism (Hagedorn and Soldati, 2007). The investigation
of Mtb PE_PGRS30 led to very similar findings in regard to
virulence and the importance of this gene for the capacity to
inhibit phagosome maturation (Iantomasi et al., 2012).

TlyA: The TlyA protein has been shown to have rRNA
methylase activity which functions in the methylation of 16S
and 23R rRNA nucleotides (Johansen et al., 2006). Nevertheless,
TlyA of Mtb also showed hemolysin activity when expressed in
Msme (King et al., 1993;Wren et al., 1998). Consistently, purified
TlyA can form oligomers on purified phagosomes and red blood
cells leading to lysis (Rahman et al., 2010). TlyA peptides were
identified in the culture filtrate of Mtb via mass spec analysis
(Kelkar et al., 2011). The secretion of TlyA to the cell membrane
does not require Tat or SecA2 secretion systems and TlyA is
also included in membrane vesicles secreted by Msme (Kumar
et al., 2015). In two gain-of-function approaches by expressing
Mtb TlyA in Msme or coating latex beads with purified TlyA
it could be demonstrated that TlyA mediates the inhibition
of phagosome maturation by reducing Rab5, EEA1, and Rab7
recruitment to the phagosome but increasing Rab14 (Mittal et al.,
2014). What the actual target of TlyA in the host cell is or how
the phagosomal lytic activity connects to phagosome maturation
inhibition remains to be determined. The Mtb TlyA mutant is
attenuated in ex vivo infectedmacrophages and in vivo in BALB/c
mice after aerosol infection but this study did not include a
complemented mutant strain (Rahman et al., 2015).

LdpC: Is a lipoamide dehydrogenase which has an important
function in the metabolization of branched-chain amino acids
(Venugopal et al., 2011). Nevertheless, besides its cytosolic
location and function, LdpC is also secreted via the SecA2
pathway (Zulauf et al., 2018). As such it was identified in the
host cell cytosol to bind to host cell coronin-1 protein (Deghmane
et al., 2007). This binding resulted in the retention of coronin-1
on the MCV membrane which inhibits phagosome maturation
(Deghmane et al., 2007). The ldpC Mtb mutant is attenuated
in the mouse model but this might be due to its function in
Mtb metabolism which affects bacterial growth (Venugopal et al.,
2011).

PtpA: PtpA is one of the three secreted phosphatases of Mtb
(Koul et al., 2000; Saleh and Belisle, 2000). The tyrosine kinase
PtkA of Mtb phosphorylates and activates cytosolic PtpA (Zhou
et al., 2015; Jaiswal et al., 2019). Secreted PtpA affect three
different host cell response pathways: (1) It binds to host cell

ubiquitin which activates its phosphatase activity and leads to
dephosphorylation of the host cell kinases JNK and p38 which
reduces the pro-inflammatory cytokine response of the host cell
(Wang et al., 2015a). (2) PtpA binds to and dephosphorylates
host cell GSK3α which leads to less active caspase-3 and thus
reduced host cell apoptosis (Poirier et al., 2014). (3) Mtb is
able to inhibit recruitment of the host cell vacuolar-H+-ATPase
(V-ATPase) to the MCV (Sturgill-Koszycki et al., 1994). PtpA
binds subunit H of the V-ATPase (Wong et al., 2011) and it
also binds to and dephosphorylates VPS33B (Bach et al., 2008),
a protein enabling endosome to lysosome trafficking (Galmes
et al., 2015). How these two capacities of PtpA are linked is not
known but binding of PtpA to V-ATPase is a prerequisite for
the dephosphorylation of VPS33B (Wong et al., 2011). The PtpA
Mtb mutant is deficient in its capacity to inhibit the acidification
of the MCV, inhibit phagosome maturation and growth in ex
vivo infected macrophages (Bach et al., 2008; Wong et al., 2011).
Nevertheless, the absence of PtpA does not alter growth ofMtb in
the mouse model (Grundner et al., 2008). PtpA is phosphorylated
on two tyrosines by the tyrosine kinase PtkA of Mtb which leads
to activation of the phosphatase activity of PtpA (Zhou et al.,
2015; Jaiswal et al., 2019). Consistently, the deletion of PtkA in
Mtb leads to growth reduction in infected macrophages (Wong
et al., 2018).

SapM: This phosphatase was identified via an elegant screen
of Mtb culture filtrate fractions for acid phosphatase activity
(Saleh and Belisle, 2000). It is secreted via the SecA2 pathway
(Zulauf et al., 2018). SapM, unlike PtpA, has phosphatase activity
on the lipid phosphatidylinositol-3-phosphate (PI3P) in addition
to its tyrosine phosphatase activity (Vergne et al., 2005). The
PI3P phosphatase activity of SapM is required to reduce the
accumulation of PI3P on the MCV membrane which is key to
inhibiting phagosome maturation (Vergne et al., 2005; Koliwer-
Brandl et al., 2019). A point mutation abolishes phosphatase
activity of SapM and the mutated protein is unable to mediate
inhibition of phagosomematuration (Zulauf et al., 2018). A SapM
deletion mutant is attenuated for ex vivo growth in macrophages
(Saikolappan et al., 2012; Puri et al., 2013; Koliwer-Brandl et al.,
2019) and in vivo growth in guinea pigs (Puri et al., 2013).

PknG: Mtb genome encodes 11 serine/threonine protein
kinases of which 9 have a single transmembrane domain, an
extracellular sensor domain and the intracellular kinase domain
(Av-Gay and Everett, 2000; Prisic and Husson, 2014). PknG and
PknK have no transmembrane domain but only PknG has been
shown to be secreted (Prisic and Husson, 2014). The cytosolic
location of PknG reflects the location of its many intracellular
substrates (Baros et al., 2020) but PknG is also secreted via
the SecA2 pathway (van der Woude et al., 2014; Zulauf et al.,
2018). After infection of macrophages PknG can be found in the
host cell cytosol where it mediates the inhibition of phagosome
maturation and survival of bacteria (Walburger et al., 2004;
van der Woude et al., 2014; Zulauf et al., 2018). The human
RabGTPase protein Rab7L1 (Rab29 in mouse) is the host cell
target of PknG (Pradhan et al., 2018). At the Golgi apparatus to
PknG blocks the transition of inactive GDP-associated Rab7L1
to the active GTP-associated Rab7L1. This leads to the lack
of recruitment of Rab7L1-GTP to the MCV which helps to
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inhibit phagosome maturation (Pradhan et al., 2018). The pknG
Mtb mutant is attenuated in immunodeficient SCID mice and
immunocompetent BALB/c mice after intra venous injections
but not in the lungs of CD-1 mice after aerosol delivery (Cowley
et al., 2004).

NdkA: The nucleoside diphosphate kinase A is secreted
(Chopra et al., 2003; Målen et al., 2007) via the SecA2 pathway
(Zulauf et al., 2018) and it seems to be an essential gene since
it was not possible to generate deletion mutants neither in Mtb
nor BCG (Sun et al., 2010, 2013). NdkA has GTPase activation
protein activity which means that it accelerates the transition
of small GTPase proteins from the GTP-bound (active) state to
their GDP-bound (inactive) state (Chopra et al., 2004; Sun et al.,
2010, 2013). Rab5 and Rab7 are small GTPase involved in vesicle
trafficking and therefore also in the maturation process from
early phagosome to late phagosome (Rab5) and late phagosome
to phagolysosome (Rab7). Interestingly, NdkA isolated fromMtb
but not NdkA from Msme can bind to Rab5 and Rab7 and
dephosphorylate associated GTP. The NdkA knock-down strain
of BCG is unable to inhibit the maturation process of the MCV
(Sun et al., 2010). Another target of NdkA is the small GTPase
Rac1 (Chopra et al., 2004; Sun et al., 2013). The inactivation
of Rac1 results in a deficiency of the macrophages to assemble
the functional NADPH oxidase (NOX2) complex on the MCV
(Sun et al., 2013). The NdkA knock-down Mtb strain is inducing
higher levels host cell ROS and host cell apoptosis. The strain is
also attenuated for growth in ex vivo infected macrophages and
in immunodeficient SCID mice (Sun et al., 2013).

Cell Death
There are many different ways that a cell may die but for the
purpose of this reviewwewant to focus on apoptosis, necroptosis,
and pyroptosis (Galluzzi et al., 2018). In the case of Mtb the
current working model is that host cell apoptosis is detrimental
for the virulence of Mtb, whereas host cell necrosis favors the
pathogen (Behar et al., 2010; Srinivasan et al., 2014). It is thus
not surprising that Mtb inhibits extrinsic and intrinsic apoptosis
signaling pathways and has developed effectors to induces host
cell necrosis (Moraco and Kornfeld, 2014; Srinivasan et al., 2014;
Mohareer et al., 2018). The overall role of pyroptosis during the
course of Mtb infections is not yet determined.

Pyroptosis
Rv3364c: The Rv3361c-Rv3365c operon is upregulated in Mtb
after infection of macrophages and then the secreted Rv3364c
can enter the host cell cytosol. Rv3364c binds to and inhibits
expression and activity of Cathepsin G which leads to a reduced
activation of the inflammatory caspase-1 and consequently less
pyroptosis (Danelishvili et al., 2011).

Apoptosis
Rv3654c: This gene is expressed in an operon (Rv3654c-Rv3660c)
which is upregulated after Mtb infection of macrophages.
Rv3654c can reach the host cell cytosol where it binds to PSF
(protein-associated splicing factor) (Danelishvili et al., 2010).
The binding of Rv3654c to PSF leads to cleavage of the protein
and reduced expression which results in reduced expression
of caspase-8, a protease essential for signaling in the extrinsic

apoptosis pathway (Danelishvili et al., 2010). Consequently, the
Rv3654c Mtb mutant induced higher levels of TNF-mediated
apoptosis and showed less survival during ex vivo infection of
macrophages (Danelishvili et al., 2010).

Rv3033: A genome-wide screen for Mtb transposon mutants
that have reduced survival in macrophages identified Rv3033 as
important for survival in resting macrophages and macrophages
treated with IFN-γ after infection (Rengarajan et al., 2005).
Overexpression of Rv3033 in Msme conferred a reduction in
host cell apoptosis (Zhang et al., 2018). The anti-apoptotic
capacity of Rv3033 could be confirmed by expressing Rv3033 in a
macrophage cell line and challenging with Mtb H37Ra infection
(Zhang et al., 2018). Mtb Rv3033 targets the intrinsic, caspase-9
dependent, apoptosis pathway (Zhang et al., 2018). The deletion
of Rv3033 reduces viability in ex vivo infected macrophages but
no in vivo data is available (Rengarajan et al., 2005).

SodA: Superoxide Dismutase A is secreted via the SecA2-
system andmight be involved in the neutralization of superoxides
generated in the MCV by the NOX2 phagocyte oxidase
(Braunstein et al., 2003). The SodA gene is essential but an
antisense inhibition of SodA expression in Mtb led to an
important attenuation of the strain in vivo, marked by a high
induction of apoptosis in the lungs of mice (Edwards et al., 2001).
Later it was demonstrated that the absence of secreted SodA and
the increase in host cell apoptosis in vivo leads to an increase in
the presentation of Mtb-derived antigens (Hinchey et al., 2007).

Eis: The Enhanced Intracellular Survival protein was first
identified in a gain-of-function screen of Mtb genes expressed in
Msme that would increase survival of the bacteria after infection
of macrophages (Wei et al., 2000). Eis is secreted by Mtb but
it is unclear via which secretion pathway (Dahl et al., 2001)
and it is able to reach the host cell cytosol (Samuel et al.,
2007). The deletion of eis in Mtb causes an increase in host
cell JNK kinase activation which leads to increased NOX2-
mediated ROS generation, causing increased pro-inflammatory
cytokine secretion, autophagy and host cell death (Samuel et al.,
2007; Shin et al., 2010) The Mtb and Msme Eis proteins both
have aminoglycoside N-acetyltransferase activity which confer
resistance to antibiotics but on Mtb Eis also has lysine Nε-
acetyltransferase activity (Kim et al., 2012). The latter activity
of Mtb Eis targets acetylation of the host cell phosphatase
DUSP16/MKP-7 which potentially increases its binding to JNK
and inhibits its activation (Kim et al., 2012). The deletion of eis
in Mtb does not reduce its virulence in mice (Samuel et al., 2007;
Shin et al., 2010).

Hip1 and GroEL2: he Hip1 protein is likely cell membrane
associated since it has a predicted lipoprotein signal peptide
but one transmembrane domain predicted (Krogh et al., 2001;
Almagro Armenteros et al., 2019) but was found in membrane
and culture filtrate fractions (Målen et al., 2010; de Souza et al.,
2011). Hip1 has esterase and protease activity (Naffin-Olivos
et al., 2014) and GroEL2 is anMtb chaperon that interacts among
others with Mtb DnaK protein. GroEL2 is found in the cytosol
and cell wall of Mtb and is one substrate for proteolytic cleavage
by Hip1 which results in the release of a shorter protein into the
supernatant (Rengarajan et al., 2008; Naffin-Olivos et al., 2014).
New data shows that after Mtb infection GroEL2 gets released
from the cell wall and can actually enter the host cell cytosol
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where ultimately it binds to the mitochondrial protein mortalin
which has homology to Mtb DnaK protein (Joseph et al., 2017).
Surprisingly, GroEL2 can access the host cell cytosol even in
cells infected with the M. bovis BCG vaccine strain which lacks
a functional ESX-1 system (Joseph et al., 2017). The interaction
of GroEL2 with host cell mortalin mediates the inhibition of host
cell apoptosis. There is no data available on the impact of GroEL2
deficiency on Mtb virulence, which is difficult to assess because
GroEL2 is essential for in vitro growth of Mtb (Dejesus et al.,
2017).

HBHA: eparin-binding hemagglutinin (HBHA) of Mtb is
found in the cell wall and culture filtrate and is important
of bacterial adhesion to epithelial cells but not macrophages
(Menozzi et al., 1996). The deletion of hbha in Mtb results
in a mutant strain that has similar virulence in the lungs of
mice after intranasal infection but strongly reduced the ability
for extrapulmonary dissemination as measured via CFU in the
spleen (Pethe et al., 2001). Either heterologous expression of
HBHA in Msme or the hbhaMtb deletion mutant demonstrated
that this protein may lead to the increase in host cell apoptosis
(Sohn et al., 2011). HBHA localizes to host cell mitochondria
where it leads to increased activation of the pro-apoptosis protein
BAX and increased levels of mitochondrial reactive superoxide
generation (Sohn et al., 2011). The impact of increased host cell
apoptosis during the context of in vivo infection in the lung is not
significant (Pethe et al., 2001).

Necrosis
Mtb needs to escape its intracellular niche at some point in order
to disseminate and infect other cells. Host cell necrosis favors
pathogenesis of Mtb as has been shown by modulating host
factors that tip the cell death modality toward necrosis instead
of apoptosis (Behar et al., 2010). Host cell necrosis can actually
stimulate the growth of Mtb (Dallenga et al., 2017; Lerner et al.,
2017). In addition, the deletion of a transcriptional repressor
(Rv3167c) resulted in an Mtb mutant strain that induced higher
levels of host cell necrosis due to increased PDIM expression
and was also hypervirulent in mice (Srinivasan et al., 2016).
Despite its importance for virulence very little is known about
Mtb effectors that induce host cell necrosis.

CpnT/TNT: The N-terminal domain of CpnT has pore
forming capacity which is involved in uptake of small molecules
through the mycomembrane (Danilchanka et al., 2014). The
C-terminal domain (Tuberculosis necrotizing toxin, TNT) can
be release after proteolytic cleavage and will target host
cell coenzyme NAD+ for hydrolysis (Sun et al., 2015). The
host cell depletion of NAD+ leads to necroptosis via the
RIPK3/MLKL pathway but without activation of upstream
signaling components such as RIPK1 (Pajuelo et al., 2018).
The cpnT Mtb deletion mutant is not attenuated in mice
(Danilchanka et al., 2014), suggesting that Mtb has redundant
pathways for inducing host necrosis and most likely additional
secreted effectors.

Xenophagy
Xenophagy is a specialized form of canonical autophagy which
results in the encapsulation pathogens by a double membrane

autophagosome (Upadhyay and Philips, 2019). Xenophagy is a
cell intrinsic defensemechanism againstMtb infection (Gutierrez
et al., 2004). The ubiquitination of Mtb is dependent on the
ESX-1 system and extracellular Mtb DNA (Watson et al.,
2012). Ubiquitinated Mtb gets recognized by cytosolic autophagy
receptors p62 and NDP52 which initiates autophagosome
formation (Watson et al., 2012). The ubiquitin ligase Parkin 2 and
Smurf1 are of critical importance for the ubiquitination of Mtb
and host resistance to Mtb in the mouse (Manzanillo et al., 2013;
Franco et al., 2016). Interestingly, Mtb expresses surface protein
(Rv1468c) containing a eukaryotic-like ubiquitin-associated
domain that binds ubiquitin and recruits p62 facilitating the
xenophagic clearance ofMtb (Chai et al., 2019). Importantly, Mtb
has yet to be defined mechanisms to inhibit host cell clearance
via xenophagy as described for an ESX-1 dependent inhibition
of autophagic flux (Romagnoli et al., 2012; Chandra et al., 2015;
Cardenal-Muñoz et al., 2017). Please refer to following review for
more background information (Khaminets et al., 2016; Upadhyay
and Philips, 2019).

PE_PGRS47
This protein was identified in a gain-of-function screen using
Msme for Mtb genes that mediated the inhibition of antigen
presentation (Saini et al., 2016). Expression of PE_PGRS47 in
Msme demonstrated that transport of the protein to the cell
wall fraction (Saini et al., 2016) although EM studies in infected
cells showed a location of PE_PGRS47 in the host cell cytosol
(Saini et al., 2016). Msme does not express an ESX-5 secretion
system and hence if it secretes PE_PGRS47 it has to be via a
different secretion system which is somewhat surprising since
ESX-5 is the major system for secretion of PE_PGRS proteins
(Abdallah et al., 2009). The ability of PE_PGRS47 to limit antigen
presentation is most likely indirect via its capacity to inhibit
xenophagy and associated phagosome-lysosome fusion which
results in the generation of Mtb peptides that can be presented at
the cell surface (Saini et al., 2016). The PE_PGRS47 Mtb mutant
is attenuated in immunodeficient and immunocompetent mice
(Saini et al., 2016). The molecular mechanism and host target of
PE_PGRS47 remain to be characterized.

Cytokine Response
Host cell cytokines have important functions in host defense
as demonstrated by the increased susceptibility of tnf−/− and
ifn-γ−/− mice to Mtb infections (Flynn et al., 1993, 1995). In
contrast, IFN-β, a cytokine associated with anti-viral immunity,
is exacerbating Mtb infections in mice and humans (Antonelli
et al., 2010; Berry et al., 2010). Extracellular pattern recognition
receptors such as TLRs and intracellular PRR such as NLRs are
the sensors for pathogen associated molecular patterns (PAMPs)
and after binding of a PAMP initiate a signaling cascade that
leads to the production of cytokines. The importance of cytokines
for host immunity to Mtb is reviewed in more detail in these
excellent reviews (Mayer-Barber and Sher, 2015; Domingo-
Gonzalez et al., 2016; Sia and Rengarajan, 2019).
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Hip1and GroEL2
The interaction of Hip1 and GroEL2 have already been described
in a previous section. The hip1 Mtb deletion mutant induces
increased pro-inflammatory cytokine production (TNF, IL-
1β, IL-18, IL-6) in macrophages and dendritic cells via a
TLR2/MyD88 signaling pathway (Madan-Lala et al., 2011, 2014).
Importantly, just the overexpression of the cleaved and secreted
GroEL2 fragment in the hip1 Mtb mutant reverts the phenotype
of the mutant back to wild-type Mtb, suggesting that the GroEL2
fragment is blocking the host cell TLR2/MyD88 signaling
pathway (Naffin-Olivos et al., 2014). The hip1 Mtb mutant is
attenuated in ex vivo infected macrophages and in vivo infected
mice (Rengarajan et al., 2008; Vandal et al., 2009) it is unclear to
date though, if the attenuation in vivo is only due to the observed
effect on GroEL2 or also due to the general susceptibility of the
hip1mutant to low pH and ROS (Vandal et al., 2009).

PPE13
This member of the PE/PPE protein family contains a NxGxNxG
motif which is characteristic for the major polymorphic tandem
repeat (MPTR) subfamily of PPE proteins (Hermans et al.,
1992). PPE13 does not contain a signal peptide and is
secreted via the ESX-5 secretion system (Abdallah et al., 2009).
Heterologous expression of PPE13 inMsme or ectopic expression
in eukaryotic cells demonstrate that PPE13 activates the NLRP3
inflammasome leading to increased IL-1β secretion (Yang et al.,
2020). Furthermore, PPE13 binds to NLRP3’s NACHT and LRR
domains via its MPTR domain (Yang et al., 2020). The PPE13-
NLRP3 interaction facilitates homodimerization of NLRP3 and
recruitment of the NLRP3 activator protein NEK7 (Yang et al.,
2020). There is no data available on the impact of Mtb PPE13 on
bacterial virulence.

LpqN
The lipoprotein has a signal peptide suggesting secretion via
the SecA1/2 pathway and was found in the culture filtrate of
Mtb (Målen et al., 2007). It was identified to bind CBL during
a screening of 105 secreted Mtb proteins for host cell binding
partners (Penn et al., 2018). CBL is a ubiquitin ligase that is
increasingly phosphorylated after Mtb infections (Penn et al.,
2018). The Mtb lpqN deletion mutant is growing less efficiently
in ex vivo infected macrophages and in vivo (Penn et al., 2018).
Importantly, the growth deficiency of themutant inmacrophages
could be rescued by the deletion of host cell Cbl gene (Penn
et al., 2018). The study shows data in support of CBL being a
regulatorwhich suppresses anti-viral but supports anti-bacterial
host cell intrinsic defense pathways; for example, cbl−/− derived
BMDMs are intrinsically more resistant to viral infection when
compared to wild-type BMDMs. It is proposed that Mtb, by
inhibiting CBL, induces an anti-viral host response which favors
its own survival because anti-bacterial defense mechanisms are
not induced (Penn et al., 2018).

EchA1
The enoyl-CoA hydratase A1 is involved in the lipid metabolism
of Mtb but is also secreted via an unknown mechanism (no
predicted signal peptide) and reaches the host cell cytosol (Wang

et al., 2020). After ubiquitination of EchA1 by host cell ubiquitin
ligase ANAPC2, EchA1 binds TRAF6 and SHP1 which prevents
activation of TRAF6 and thus reduces the production of pro-
inflammatory cytokines (Wang et al., 2020). The echA1 deletion
mutant of Mtb is attenuated in the mouse model after aerosol
infection (Wang et al., 2020).

PtpB
This is a broad-spectrum phosphatase that dephosphorylates
phosphotyrosine, -serine and -threonine substrates in addition
to various phosphoinositides (Beresford et al., 2007). Ectopic
expression of PtpB in RAW264.7 murine macrophages conveyed
inhibition of IFN-γ-mediated activation of the ERK1/2 and
p38 signaling pathway toward increased IL-6 production and
inhibition host cell apoptosis (Zhou et al., 2010). Nevertheless,
these findings need to be confirmed via infection of cells withMtb
and a specific PtpBMtb mutant. The deletion of PtpB resulted in
a mutant that was less virulent in ex vivo macrophages infection
models (Singh et al., 2003; Beresford et al., 2009; Koliwer-Brandl
et al., 2019). Furthermore, the Mtb deletion mutant had an
approximative 100 fold reduction in lung CFUs in the guinea pig
model when compared to Mtb (Singh et al., 2003).

MPT53/DsbE
The protein is found in the culture filtrate (Målen et al., 2007)
and has a predicted signal peptide (Almagro Armenteros et al.,
2019) and is a disulfide bond-forming (Dsb)-like protein. In a
screen of 208 secreted Mtb effectors expressed in HEK293T cells
that changed NF-κB activation, DsbE was found to activate the
NF-κB reporter gene (Wang et al., 2019). DsbE was found to
bind to TGF-β-activated kinase 1 (TAK1) which is an important
signaling molecule downstream of the TLR/TRAF6/TAB2 or
TAB3 signaling pathway (Wang et al., 2019). TAK1 may activate
NF-κB and the kinases JNKs and p38 which leads to the
biosynthesis of pro-inflammatory cytokines (TNF, IL-6, IL-12).
The binding of DsbE to TAK1 increased its phosphorylation
which is required for activation (Wang et al., 2019). The
enzymatic activity of DsbE is required for binding since a
disulfide-oxidoreductase inactive mutant of DsbE fails to activate
TAK1 (Wang et al., 2019). Consistent with this data the dsbE
Mtb deletion mutant induced less TNF and IL-6 production in
ex vivo infected macrophages and in the lungs of aerosol infected
mice. The mutant was also hypervirulent in the mice with a 10
to 100-fold increase in lung CFUs after 21 d of infection (Wang
et al., 2019). The fact that the secreted DsbE actually activates
protective host responses suggest that its recognition by TAK1
is actually a host defense mechanism and the data that other
Mtb and E. coli proteins with disulfide-oxidoreductase activity
may also activate TAK1 supports this model (Wang et al., 2019).
Thus, the sensing of bacterial disulfide-oxidoreductase activity in
the host cell cytosol maybe a case of effector-triggered immunity
(Lopes Fischer et al., 2020).

NOX2/NOS2
The production of phagosomal ROS by the activated NOX2
and cellular NO by NOS2 are associated with cell intrinsic host
defense (Bedard and Krause, 2007; Bogdan, 2015). Mtb is relative
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resistant to direct killing by ROS but the increase in phagosomal
ROS observed after infection with nuoG and secA2Mtb mutants
leads to an increase in host cell apoptosis which attenuates these
mutants and leads to increased host cell antigen presentation
(Hinchey et al., 2007; Velmurugan et al., 2007; Miller et al., 2010).
The proteasome of Mtb is important for resistance of Mtb to
killing via NO-derived reactive nitrogen intermediates (Darwin
et al., 2003). Nevertheless, a more complex role for NOX2 and
NOS2 during in vivo infections has emerged which associates
them with a role in host immune tolerance (Olive and Sassetti,
2018).

CpsA
The protein was found in the culture filtrate (Målen et al.,
2007) but has no predicted signal peptide sequence (Almagro
Armenteros et al., 2019). A Y2H screen showed that CpsA
binds to TAX1BP1 and NDP53 which are two proteins involved
in xenophagy (Mehra et al., 2013), and SMCO1 (Penn et al.,
2018). The use of knock-out host cells deficient in xenophagy,
LC3-associated phagocytosis (LAP; see this reference for review
Upadhyay and Philips, 2019) or both demonstrated that Mtb
CpsA is involved in the inhibition of LAP (Koster et al., 2017).
The precise host cell target of CpsA has not been determined
but the exclusion of activated NOX2 from the nascent MCV is
clearly an important aspect of themolecularmechanism of CpsA-
mediated host cell manipulation (Koster et al., 2017). Overall, the
end result is that a CpsA deletion mutant ends up in an MCV
that fuses with lysosomes which results in decreased intracellular
survival (Koster et al., 2017). The Mtb CpsA mutant is also
attenuated in the mouse model (Koster et al., 2017; Malm et al.,
2018) and deletion of the Mm homolog attenuated this pathogen
in the zebrafish model (Wang et al., 2015b). The CpsA mutant
induces increased ROS due to the activated NOX2 and it is thus
likely that host cell apoptosis levels are also increased as this was
shown before for several Mtb mutants that results in increased
phagosomal ROS (Hinchey et al., 2007; Miller et al., 2010; Sun
et al., 2013).

PPE2
This protein is secreted (Bhat et al., 2013) and since it is a
member of the PE/PPE family it most likely is a substrate of
the ESX-5 secretion system. PPE2 is targeted to the host cell
nucleus via a nuclear location signal and binds to the promotor
of the Nos2 gene (Bhat et al., 2017). Consequently, infection
of macrophages with the Mtb Ppe2 deletion mutant and Msme
overexpressing Mtb PPE2 result in increased or decreased NOS2
protein expression (Bhat et al., 2013, 2017). This activity resulted
in increased survival of the Msme-PPE2 strain compared to
Msme in ex vivo infected macrophages or in vivo infected mice
(Bhat et al., 2017). PPE2 contains an SH3-like domain that allows
for binding of the host cell p67phox NOX2 subunit. The binding
inhibits p67phox recruitment to the phagosomal membrane and
subsequent NOX2 assembly and activation (Srivastava et al.,
2019). The overall result is that less ROS will be produced in the
MCVwhich helps survival of bacteria during ex vivomacrophage
infections (Srivastava et al., 2019).

Multiple Host Cell Targets of Mtb EsxA
EsxA
Due to the already discussed importance of EsxA on phagosomal
membrane permeabilization it is challenging to experimentally
dissociate phenotypes of the Mtb esxA mutant that are mediated
by a direct effector activity of EsxA and those due to a lack of
phagosomal membrane permeabilization and thus lack of access
of other effectors to their host cell targets. Consequently, we
focused this discussion on pathways in which a direct binding
of EsxA to an effector protein could be shown (Figure 2),
while acknowledging that other observed phenotypes of the
Mtb esxA mutant might still be due to direct activity of EsxA.
At the macrophages surface, EsxA inhibits TLR2 signaling by
antagonistic binding to the receptor (Pathak et al., 2007). The
inhibition of the downstream NF-κB pathway was also observed
after incubation of cells with EsxA protein alone or in complex
with EsxB (Ganguly et al., 2008). Both of these inhibitions lead to
a decreased cytokine response by the infected host cell (Figure 2).
EsxA can also interfere with antigen presentation to cytolytic T-
cells by binding to the β2-macroglobuline which is associated
with MHC class I. The binding of EsxA decrease the capacity of
the MHC class I to present peptides due to decreased cell surface
expression (Sreejit et al., 2014). A recent study found that EsxA
can physically bind to the scavenger receptor B1 (SR-B1) and
allow Mtb to cross the pulmonary epithelium through M cells
(Khan et al., 2020). An Mtb-human protein-protein interactome
screen identified several additional potential host cell binding
proteins for EsxA but they require further validation (Penn et al.,
2018). There have been many studies showing an impact of
deletion of Mtb esxA on the host cell death response (apoptosis,
necrosis, and pyroptosis) but in these studies it is difficult to
discriminate between a direct or an indirect effect of EsxA.

MTB LIPIDS AS EFFECTOR MOLECULES

Mtb produces a wide variety of unique lipids which are important
for host cell manipulation and virulence of Mtb (Neyrolles
and Guilhot, 2011; Arbues et al., 2014; Gago et al., 2017;
Queiroz and Riley, 2017). These lipids are localized in the
mycobacterial envelope and have a very unique structure and
role for pathogenesis (reviewed in Vincent et al., 2018; Dulberger
et al., 2020, Figure 3). Briefly, the envelope consists of: (1) a
plasma membrane which is mainly composed of phospholipids,
(2) a superstructure made up of a layer of peptidoglycan
covalently linked to arabinogalactan, and (3) a mycomembrane
which as its inner leaflet has mycolic acids that are esterified with
the underlying arabinogalactan (Figure 3). The outer leaflet of
the mycomembrane is made up of a wide variety of lipids and
almost all of them are involved in the host immune response
manipulation by Mtb (Vincent et al., 2018; Daffe and Marrakchi,
2019; Dulberger et al., 2020) (Figure 3).

HOW DO MTB LIPIDS GET INTO THE HOST
CELL?

Mtb lipids are able to reach other organelles and the plasma
membrane during infection providing evidence that some of
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FIGURE 2 | Host cell targets of EsxA and/or the EsxA/B complex. EsxA can antagonistically bind MHCI and TLR2, while it can bind to SR-B1 to enhance invading the

lung epithelium. EsxA targets the phagosomal membrane for pore formation.

the Mtb surface lipids could be released (Beatty et al., 2000;
Rhoades et al., 2003). Mtb lipids are also found incorporated into
exosomes and can thus reach uninfected bystander cells (Beatty
et al., 2000; Athman et al., 2015). Thus, studying the way lipids
are released by Mtb and their impact on the host is crucial to
understand the pathogeny ofMtb. The section below summarizes
the advances in the study of release of lipids by Mtb (Figure 3).

Passive Release of Mtb Lipids
The first potential release mechanism is through direct contact
of the bacteria with the host membranes, or by mild shedding
of the capsular layer to which many lipids are loosely associated
(Ortalo-Magné et al., 1996; Chiaradia et al., 2017). Indeed, in
some phagosomes, mycobacteria are tightly surrounded by the
phagosomal membrane and this feature was associated with the

ability of M. avium to inhibit phagosome lysosome fusion (de
Chastellier et al., 2009). Recent work showed an IFN-γ and
Rab20 dependent increase of MCV volume which correlated
with increased phagosome maturation (Schnettger et al., 2017).
Moreover gold immunolabeling of Lipoarabinomannan (LAM)
and phosphatidylinositol mannosides (PIM) suggested a transfer
of these lipids fromMtb to the macrophages membranes through
contact and/or release from the bacterial surface as the cryo
sections did not show any vesicles emission (Beatty et al.,
2000). Supporting these results, another structural study of
Mtb found that the capsular layer can be removed through
agitation of Mtb (Sani et al., 2010). A passive secretion followed
by an insertion and diffusion supports their major impact
on the immune response by also affecting bystander cells.
PDIM, another major virulence lipid of Mtb, was found in
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FIGURE 3 | Models of mycobacterial envelope and lipid transfer. (Left) Simplified model of the organization of the mycobacterial envelope with the main virulence

lipids highlighted. (Right) Representation of the different potential mechanisms of lipid release and transfer to the host cell membrane. Lipids can be release by

emission of membrane vesicles, or by shedding of the capsular layer into the phagosome lumen or due to close physical contact directly into the phagosome

membrane. SL, Sulfolipids; PDIM, Phthiocerol Dimycerosates; TDM, Trehalose Dimycolates; MA, Mycolic Acid; LAM, Lipoarabinomannan.

macrophages membranes during infection (Augenstreich et al.,
2019). Preliminary results on Mm coating with fluorescent
modified PDIM indicated a transfer and a diffusion of these lipids
upon contact with macrophages (Cambier et al., 2020). These
results also support a passive transfer of PDIM upon contact of
the bacteria with host cells. Such transfer by contact has also
been observed for another bacterial species, Borrelia burgdorferi,
where bacterial cholesterol-glycolipids were observed being
transfer from the bacterial surface to the host cells plasma
membrane (Crowley et al., 2013). Interestingly, the contact-
mediated transfer accounted for 50% of lipid transfer, while the
other part happened through membrane vesicles (MV) secretion
by the bacteria (Crowley et al., 2013). Therefore, it is conceivable
that for Mtb both contact dependent and independent transfers
of lipids occur during infection (Figure 3).

Active Release of Mtb Lipids
The second mechanism of lipid release that has been recently
described is through the release of MV (Prados Rosales et al.,
2011) (for extensive review on this topic Brown et al., 2015;
Layre, 2020) (Figure 3). These vesicles of ≈ 150 nm of diameter
are apparently emitted by budding from the bacterial surface
mostly observed in culture (Prados Rosales et al., 2011, 2014b;
Athman et al., 2015), but production is also observed by bacteria
localized in the host cell phagosome (Prados Rosales et al.,
2011). Proteomics analysis indicated that some characterized
antigenic factors were associated to the MVs also known for
their inflammatory properties (Prados Rosales et al., 2011) and
subsequent immunization of animals with Mtb MVs induced a
protective immune response (Prados Rosales et al., 2014a). The
lipid composition of the MVs is still only partially characterized,
but phosphatidylinositol mannosides (PIM), lipoarabinomannan
(LAM), poly-acyltrehaloses (PAT), and phenol glycolipids (PGL)

(Prados Rosales et al., 2011). In addition, MVs include hundreds
of Mtb proteins as determined by the host antibody responses
to injected MVs (Prados Rosales et al., 2014a) and proteomics
analyses (Prados Rosales et al., 2011). The PIM and LAM in MVs
were associated to the lipid induced dampening of the acquired
immune response by inhibiting T-cell activation (Athman et al.,
2017). In contrast, some of these lipids were originally described
as pro-inflammatory by activating TLR2 signaling in the case of
lipomannan (Quesniaux et al., 2004). PGL are also present in
MVs and they are also known as antagonist inhibition of TLR2
signaling (Arbues et al., 2016). The abundance of virulence lipids
mainly present at the surface of the bacteria might indicate the
other lipids like PDIM and trehalose dimycolate (TDM) that
can diffuse out from the bacteria, may be present in the MVs
but further investigations will be needed to attest of that. Also,
the suggested lipid transfer from MV emission by Mtb to host
cell membranes (Athman et al., 2015), still need to be formerly
determined. The Mtb-produced MVs could potentially mediate
immune modulatory effects beyond the site of infection and
this might be of particular importance during the extracellular
replication of Mtb within necrotic regions of human granulomas.

Role of Mtb Lipids in Host Manipulation
(Table 2)
The main effect described so far of the lipid panoply produced
by Mtb is as inflammatory regulators (Table 2). An interesting
“lipidic immunostat” model was proposed in which lipids are
separated into pro- and anti-inflammatory (Queiroz and Riley,
2017). Indeed, the majority of the lipids produced are glycolipids
whose sugar moieties are recognized by a wide range of pattern
recognition receptors (PRR) (Ishikawa et al., 2017; Queiroz and
Riley, 2017).
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TABLE 2 | Summary overview of Mtb lipid effectors.

Name Known release

mechanism

Host target Host cell process Impact of gene deletion on Mtb

virulence

PIM, LM, LAM, ManLAM Extracellular vesicles,

shedding

TLR4, TLR2-TLR1-6,

MR, DC-SIGN, Dectin-2

Cytokine response (A/I),

Phagocytosis (A), phagosome

maturation (I), cell death (A)

Essential, variability in acylations and

LAM capping sugar moiety linked to the

degree of virulence

TMM / TDM Shedding Mincle Cytokine response (I),

phagosome maturation (I)

Essential, but inability to form “cords”

which is dependent on TDM attenuates

the strains.

DAT/PAT Extracellular vesicles,

shedding

? Cytokine response (I),

phagosome maturation (I), cell

death (A)

Decreased persistence in vivo in

PDIM-deficient strains, decreased

growth in human macrophages.

PGL Extracellular vesicles,

shedding

TLR2 Cytokine response (I) Attenuation in vivo

PDIM Shedding ? Cytokine responses (I)

phagocytosis (A), phagosome

maturation (I), phagosome

escape (A), autophagy (A)

apoptosis (A), necrosis (A)

Attenuation ex vivo and in vivo

SL-1 Shedding TLR-2 Cytokine reponse (I),

Phagosome maturation (I),

autophagy (I), cell death (A)

No attenuation in vivo, lack of coughing

and transmission in guinea pigs

1-TbAd Shedding ? Phagosome acidification (I) Attenuation in human macrophages

The parentheses behind the host cell process indicate Activation (A), Inhibition (I) or Modulation (M). If not stated explicitly the virulence impact refers to mouse studies.

PIM, LM, LAM
This group of lipids is composed of lipids synthesized
from phosphatidylinositol to generate the phosphatidylinositol
mannosides (PIM) intermediates followed by the lipomannan
(LM) and finally lipoarabinomannan (LAM) (Briken et al., 2004;
Guerin et al., 2010; Sancho-Vaello et al., 2017). PIM (Gilleron
et al., 2003) and to a lesser extent LAM/ManLAM (Nigou
et al., 2008) are TLR2 ligands with PIM species acting as
agonists, and LAM species acting as anti-inflammatorymolecules
(Quesniaux et al., 2004). LM is also a TLR2 agonist leading to cell
signaling that induces IL-12 production and apoptosis (Dao et al.,
2004). These lipids can therefore regulate TLR2/MyD88/NF-κB
dependent production and secretion of numerous inflammatory
cytokines such as TNF, IL12p40 or IL-8. Amannose-capped LAM
(ManLAM) dampens the immune response through binding
and inhibition of DC-SIGN signaling (Maeda et al., 2003).
Alternatively, ManLAM can bind to Dectin-2 receptor, inducing
an inflammatory response that appeared to be detrimental for
mycobacteria in mice (Yonekawa et al., 2014). The mannose
moieties of LAM can bind to the mannose receptor and stimulate
the phagocytosis of Mtb (Maeda et al., 2003; Torrelles et al.,
2006). Once in the bacteria are internalized, PIM (Vergne et al.,
2004) and LAM (Fratti et al., 2001, 2003) contribute to the
capacity of Mtb to inhibit phagosome maturation. PIM actually
stimulates the fusion of the MCV with early endosomes which
helps to avoid fusion with late endosomes (Vergne et al., 2004).
The recruitment of the early endosome autoantigen (EEA1)
protein to early phagosomes is an essential step in phagosome
maturation that Mtb LAM is able to inhibit (Fratti et al., 2001).
These excellent reviews provide a more in-depth overview on the
activity of PIM/LM/LAM Mtb glycolipids (Vergne et al., 2014;
Garcia-Vilanova et al., 2019).

TDM, DAT/PAT, SL-1
This group of Mtb lipids is composed of the trehalose-containing
lipids (Garcia-Vilanova et al., 2019). Probably the best known
lipid within this group is the essential lipid trehalose dimycolate
(TDM), also called “cord factor” because it is required for the
cording phenotype of Mtb which was originally described by
Robert Koch in 1882 (Glickman et al., 2000). TDM binds to the
host cell receptor Mincle and leads to macrophage and dendritic
cell activation (Ishikawa et al., 2009; Ostrop et al., 2015) and also
to the TDM-induced granuloma formation in the lungs of mice
injected with TDM (Ishikawa et al., 2009). Inside macrophages,
TDM contributes to enhance the survival of Mtb, as they are
involved in phagosome maturation inhibition (Indrigo et al.,
2003) and intracellular cording was recently associated to an
inhibition of cytosolic detection of Mtb in endothelial cells, thus
favoring persistence in lymphoid tissues (Lerner et al., 2020).
Accordingly, Mtb mutants which have a deficiency of cycloprane
modification in the mycolic acid chains of TDM show a defect
in cording and a decrease in the granulomatous response in vivo,
as well as the persistence in the host (Glickman et al., 2000; Rao
et al., 2005).

A second group of compounds are the di- / poly-acyltrehaloses
(DAT/PAT) (Garcia-Vilanova et al., 2019). They have no effect on
virulence of Mtb in the mouse and guinea pig model (Rousseau
et al., 2003a; Chesne-Seck et al., 2008; Passemar et al., 2014) but
in the absence of PDIM a role in virulence could be detected for
DAT/PAT in the mouse model (Passemar et al., 2014). At the
cellular level DAT/PAT stimulate binding and entry of Mtb into
macrophages and epithelial cells (Rousseau et al., 2003a). Mtb
DAT/PAT are also important for the Mtb-mediated phagosome
maturation inhibition (Brodin et al., 2010; Passemar et al.,
2014).
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The last member of this group is the Sulfoglycolipid-1 (SL-1)
is only synthesized by Mtb and M. canetti and characteristically
contains sulfated trehalose. Several studies demonstrated a role
of SL-1 in the phagosome-lysosome fusion inhibition by Mtb
(Goren et al., 1976; Brodin et al., 2010; Passemar et al., 2014). A
Tn-mutagenesis genetic screen in Mtb identified Mtb mutants in
genes involved in SL-1 biosynthesis to show increased activation
of NF-κB after THP-1 cell infection when compared to Mtb
(Blanc et al., 2017). Purified and synthetic SL-1 has antagonistic
binding activity to TLR-2 which mediates decreased NF-κB
activation, reduced pro-inflammatory cytokine production and
costimulatory molecule expression (Blanc et al., 2017). In the
same fashion, a report found that SL can inhibit autophagy
through MyD88 signaling (Bah et al., 2020). SL-1 have no
effect on virulence of Mtb in the mouse and guinea pig model
(Rousseau et al., 2003b; Chesne-Seck et al., 2008). Recently, a
study found a crucial role of SL-1 in the transmission process
of Mtb by stimulating cough in guinea pigs (Ruhl et al., 2020).
Indeed, SL-1 activates nociceptive neurons which triggers the
coughing reflex and consistently, guinea pigs infected with a SL-
1-deficient Mtb strain do not cough and do not transmit bacteria
to uninfected guinea pigs (Ruhl et al., 2020).

PDIM, PGL
Another group is composed of the lipid DIM/PDIM and its
glycosylated form the phenol glycolipids (PGLs). PDIM are only
produced by pathogenic mycobacteria in the MTB complex
(Goren et al., 1974; Vincent et al., 2018). PDIM-deficient strains
are attenuated in the Guinea pig model (Goren et al., 1974),
and these findings could be confirmed, two decades later,
after a screening of a transposon mutant library of H37Rv
for loss of in vivo virulence in the mouse model (Camacho
et al., 1999; Cox et al., 1999). The attenuation of Mtb PDIM-
deficient strains is more remarkable during the first weeks after
infection suggesting a function in defense against the innate
immune response (Rousseau et al., 2004; Murry et al., 2009;
Kirksey et al., 2011; Day et al., 2014). At the cellular level,
PDIM are anti-inflammatory lipids since a PDIM-deficient Mtb
strain causes increased proinflammatory cytokines responses
such as TNF and IL-6 in macrophages and dendritic cells
(Rousseau et al., 2004). Consistent with this anti-inflammatory
effect a PDIM-deficient Mm strain shows an increase in MyD88-
dependent recruitment of macrophages to the granuloma in
the zebrafish model (Cambier et al., 2014). Their presence
also stimulates Mtb phagocytosis mediated by CR3 (Astarie-
Dequeker et al., 2009), contributes to the phagosome maturation
inhibition (Astarie-Dequeker et al., 2009; Passemar et al., 2014),
modulates autophagic response (Bah et al., 2020), is required
for phagosomal escape and cell death induction (Augenstreich
et al., 2017; Barczak et al., 2017; Quigley et al., 2017). Studies
of infection of human endothelial cells also showed that PDIMs
are required for phagosomal escape (Lerner et al., 2018) and
intracellular cording (Lerner et al., 2020). Presently, no host
cell receptor for PDIM was identified, as the effect PDIM
on CR3-mediated phagocytosis did not reveal any binding
(Arbues et al., 2016).

PGLs are a glycosylated form of PDIM, with sugar
moieties varying depending on the mycobacterial strain that
produces the PGL (Arbues et al., 2014). The Mtb Beijing
strains that are highly prevalent in Asia (Huet et al., 2009),
M.leprae (Hunter and Brennan, 1981), Mm and M. ulcerans
produce PGL lipid species (Daffé and Lanéelle, 1988). Mtb-
or Mm-derived PGL have mostly an anti-inflammatory role
by inhibiting inflammatory cytokines secretion (Reed et al.,
2004; Robinson et al., 2008) and also contribute to phagosome
maturation inhibition (Robinson et al., 2008). More recently
it was found that Mtb PGL or its trisaccharide domain
can bind to TLR2 and inhibit the NF-κB pathway (Arbues
et al., 2016). Interestingly, in the zebrafish model the PGL
of Mm are associated with a CCR2-mediated recruitment of
permissive macrophages in order to increase virulence of Mm
(Cambier et al., 2014).

1-TbAd
The 1-tuberculosinyladenosine (1-TbAd) was discovered using
an HPLC–mass spectrometry (MS)-based lipidomics approach
and by comparing lipid profile of H37Rv and theM. bovis-derived
vaccine strain BCG (Layre et al., 2014). This is a di-terpene
linked adenosine lipid which was detected both associated on
the bacteria and in the culture supernatant, suggesting a release
of the lipid by shedding (Layre et al., 2014; Buter et al., 2019).
This lipid was found in the vast majority of clinical isolates
tested and appeared highly abundant (Buter et al., 2019). More
interestingly, this lipid can act as an antacid when Mtb resides
in a phagosome, so it can counter the decrease in pH due to
phagosomal maturation (Buter et al., 2019). 1-TbAd can also
diffuse out of the phagosome and induce swelling in lysosomes,
thus inhibiting their fusion to the mycobacterial phagosome
(Buter et al., 2019).

Mtb Lipids as Modifiers of Host Membrane
Biophysical Properties
In general, the role of lipids was mainly described as
pathogen associated molecular pattern (PAMP). Nevertheless,
their ability to transfer from the bacteria mycomembrane to
the host cell macrophages membranes during the infection
led to study their potential impact on host cell membrane
structure and organization. For example, Mtb-derived ManLAM
can disrupt microdomain (often called Raft) in artificial
membranes and vesicles fusion (Hayakawa et al., 2007).
They were also observed in these domains in ManLAM-
treated cells and associated with a defect in phagosomes-
lysosomes fusion (Welin et al., 2008). This property was also
observed during Mtb infection of macrophages (Fratti et al.,
2003). More recently, ManLAM was also found to bind to
lactosylceramide in rafts at the plasma membrane and the
phagosomal membrane, to induce phagocytosis and to inhibit
phagosome-lysosome fusion, respectively (Nakayama et al.,
2016).

An alteration of the membrane biophysical properties
were also found with TDM inserted into artificial and
isolated mitochondria (Sut et al., 1990; Harland et al.,
2008) and they were able to decrease membrane fusion
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in liposomes model (Spargo et al., 1991). SL-1 increases
membrane polarity on THP-1 treated with the purified lipid
and that was associated with its autophagy inhibitory properties
(Mishra et al., 2019; Dadhich et al., 2020).

PDIM lipids may not have a host cell receptor that mediates
their effects because of their purely lipidic nature and it is thus
conceivable their broad effects on macrophage responses are
due to alterations in the membrane organization. Indeed, PDIM
were found to decrease membrane polarity in macrophages
infected with BCG (Astarie-Dequeker et al., 2009). Moreover,
it was recently characterized that PDIM can adopt a conical
shape in membranes that is responsible for an increase curvature
of artificial membranes (Augenstreich et al., 2019). PDIM
treatment of macrophages prior of infection can also rescue the
phagocytosis level of PDIM deficient strain of Mtb. Interestingly,
treating macrophages with the conical lipid Palmitoyl-Oleoyl
Phosphatidylethanolamine can restore the phagocytosis of a
PDIM-deficient strain of Mtb at the same level as a PDIM
treatment (Augenstreich et al., 2019). This strongly suggested
a tight link between PDIM conical shape and its effect on
macrophages responses. All these observations on PDIM reveal
that the biophysical impact of the insertion of Mtb virulence
lipids into the host cells membranes is potentially underestimated
for the other virulence lipids such as TDM, PGL, DAT/PAT or SL-
1, and could explain part of the crucial importance the lipids play
in Mtb virulence.

DISCUSSION

The knowledge of how Mtb effectors interact with the host
cell has increased tremendously over the last decade and the

successful application of system biology approaches to identify
effector-host cell interactions has already revealed many new
potential interactions that will certainly generate compelling
new findings in the years to come (Mehra et al., 2013; Penn
et al., 2018; Wang et al., 2020). We focused this review on
proteins and lipids of Mtb that are secreted and released
by the bacterium and affect host cell defense pathways. We
certainly did not intend to diminish the importance of the other
strategies of Mtb to manipulate the host cell: (1) Interactions
of cell wall-anchored Mtb proteins and host cell membrane
receptors (e.g., PE_PGRS33), (2) Mtb secretes nucleotides [c-
di-AMP (Dey et al., 2015, 2017), Mtb DNA (Watson et al.,
2012, 2015; Collins et al., 2015; Wassermann et al., 2015) and
RNA (Cheng and Schorey, 2018)] that clearly interact with
the host cell to; for example, induce IFN-β production in the
case of secreted Mtb DNA (Collins et al., 2015; Wassermann
et al., 2015; Watson et al., 2015) and (3) Mtb secretes
membrane vesicles that contain cargo and include membrane
bound lipids and proteins that will interact with the host cell
(Prados Rosales et al., 2011; Brown et al., 2015; Lee et al.,
2015).
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