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Campylobacter spp. are the leading global cause of bacterial colon infections in humans.
Enteropathogens are subjected to several stress conditions in the host colon, food
complexes, and the environment. Species of the genus Campylobacter, in collective
interactions with certain enteropathogens, can manage and survive such stress
conditions. The stress-adaptation mechanisms of Campylobacter spp. diverge from
other enteropathogenic bacteria, such as Escherichia coli, Salmonella enterica serovar
Typhi, S. enterica ser. Paratyphi, S. enterica ser. Typhimurium, and species of the genera
Klebsiella and Shigella. This review summarizes the different mechanisms of various
stress-adaptive factors on the basis of species diversity in Campylobacter, including their
response to various stress conditions that enhance their ability to survive on different types
of food and in adverse environmental conditions. Understanding how these stress
adaptation mechanisms in Campylobacter, and other enteric bacteria, are used to
overcome various challenging environments facilitates the fight against resistance
mechanisms in Campylobacter spp., and aids the development of novel therapeutics to
control Campylobacter in both veterinary and human populations.
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GRAPHICAL ABSTRACT | Overall flow chart on Stress Tolerance in Campylobacter jejuni at different environment condition 1. Source of transmission of
Campylobacter species, 2. Human contact and throughout contaminated food, 3. Survival mechanism in entric-bacterial pathogens, 4. Differental environmental
adverse condition, 5. Stimulation of stress related genes involved in sustainability, 6. Up regulation (over expression) of virulence genes, 7. Growth rate and survival of
Campylobacter species enhanced.

Kim et al. Stress Tolerance in Campylobacter
INTRODUCTION

Campylobacter are a Gram-negative, slender, microaerophilic
bacteria with a spiral or curved shape (0.2–0.8 mm × 0.5–5 mm).
All species of the genus Campylobacter, with the exception of
Campylobacter gracilis (nonmotile) and Campylobacter showae
(peritrichous flagella), have a single, polar, unsheathed flagellum
on one or both sides of the cell. Infection with Campylobacter in
humans predominantly occurs through handling and ingestion
of Campylobacter-contaminated raw or undercooked meat, raw
milk, tap water, chicken salad, and various chicken-containing
dishes (Zhao et al., 2003; Jang et al., 2007; Pedersen et al., 2018;
Ovesen et al., 2019; The et al., 2019) as illustrated in Figure 1.
Most Campylobacter infections involve a mild and self-limiting
gastroenteritis, with one to three days of fever and vomiting,
followed by abdominal pain with watery or bloody diarrhea for
three to seven days (Negretti et al., 2019).

The species Campylobacter jejuni is a zoonotic pathogen that
frequently causes acute gastrointestinal infections in humans
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
when undercooked or raw meat or other products are consumed.
Fever, vomiting, abdominal pain, and diarrhea are the prevalent
symptoms of campylobacteriosis (Altekruse et al., 1999; Gaynor
et al., 2005). In some cases, C. jejuni is associated with bacteremia
and several post-infectious complications in humans, including
immunoreactions and chronic and life-threatening paralysis,
such as Guillain–Barré syndrome (GBS) and Miller Fisher
syndrome (MFS) (Humphrey et al., 2007; EFSA, 2011).

C. jejuni possesses novel regulatory factors for stress resistance
that enable the organism to cause foodborne infections (CDC,
2013). In most pathogens, sigma factor RpoS plays a key role in
the stress-resistance mechanisms, but this factor has been
reported to be absent in C. jejuni (Allen et al., 2018; Cain et al.,
2019). Campylobacter is a foodborne pathogen with high
incidence with norovirus, enteropathogenic Escherichia coli, and
Salmonella in South Korea (Kim et al., 2017; Wang et al., 2020).

The prevalence of thermophilic Campylobacter for poultry is
C. jejuni (6.3%), C. upsaliensis (5.9%), and C. coli (0.7%). Globaly
20.9% C. jejuni are resistant to (fluoro)quinolones. Poultry
February 2021 | Volume 10 | Article 596570
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become colonized shortly after birth; commercial broilers are
often particularly colonized with C. jejuni (EFSA, 2010), the
major transmission of C. jejuni occurs in small intestinal crypts
of poultry within 24 hours (Coward et al., 2008). Campylobacter
can reach densities as high as 1 × 108 colony-forming units
(CFU/g) in the infected bird ’s intestinal mucosa are
asymptomatic (Meade et al., 2009). C. jejuni spreads to a
small intestine of the gastrointestinal tract, sometimes
asymptomatically, after human consumption. The onset of
illness is affected by the immune status of the host and the
virulence of the Campylobacter strain.

The pathogenesis of C. jejuni foodborne illness involves
adhesions, gut-wall invasion, colonization, and ultimately the
release of toxins (Bang et al., 2003; Bolton, 2015; Pedersen
et al., 2018). Motility of this pathogen is a key factor
influencing colonization and survival in the acidic gut
environment (Guerry, 2007; Mehat et al., 2018; Negretti et al.,
2019). Flagella-oriented genes such as flaA and flaB, and fliF, fliM,
and fliY are associated with motility-engaged C. jejuni
(Nachamkin et al., 1993; Wassenaar et al., 1993; Carrillo et al.,
2004; Sommerlad and Hendrixson, 2007; Lertsethtakarn et al.,
2011). Some Gram-negative bacteria secrete a cytolethal
distending toxin (CDT) heat-labile exotoxin and able to induce
the distension and death of eukaryotic cells, and this has been
demonstrated in Campylobacter (Bolton, 2015; Scuron et al., 2016;
Pedersen et al., 2018; El-Tawab et al., 2019), which synthesizes
this toxin using the genes cdtA, cdtB, and cdtC (Linton et al.,
2000; Asakura et al., 2007; Wieczorek et al., 2018). Motility,
adherence, invasion, and toxin production are required for cell
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
lysis (Bang et al., 2003). The flagellar guidance of the motility
scheme and a chemosensory mechanism that activates flagellar
motion result in transmission from the environment to the small
bowel (O’Sullivan et al., 2018). Campylobacter has extraordinary
motility, particularly in gelatinous or viscous material, as
indicated by its single or bipolar flagella and helical filamentous
structures. The polar flagellum delivers driving torque and
rotating metabolic signals, while corkscrew rotation is possible
due to the helical form (Ferrero and Lee, 1988). Mucins and
glycoproteins, the predominant components of mucus, are the
primary chemical attractants during propagation (Hugdahl et al.,
1988; Wadhams and Armitage, 2004; Wuichet et al., 2007;
Ellström et al., 2016). Iron acquisition also plays a key role in
infection with Campylobacter (Baillon et al., 1999; Bang et al.,
2003; Eucker and Konkel, 2012).

The purpose of this review was to examine the mechanisms
that enable Campylobacter spp. to survive outside the host
environment and remain a threat to public health. A summary
of specific survival-based resistance genes is also provided. This
information helps identify future pathways to eradicate and
control outbreaks of C. jejuni.
GENERAL SURVIVAL MECHANISMS IN
ENTERIC BACTERIA: MICRO-ORGANISM
CROSS-PROTECTION

An extraordinary characteristic of bacteria is their ability to
tolerate extreme environmental conditions or stressors. They
FIGURE 1 | Modes of transmission for C. jejuni.
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not only tolerate ecological stress, but also adapt to different
situations such as pressure, temperature, acidity, ultraviolet
radiation, dehydration, susceptibility to antibiotics, and
salinity. These characteristics raise some questions. Why and
how do microbes in these environments survive? What biological
mechanisms can we observe from these unique lifestyles? How
can we use our understanding or resources to address these
conditions, such as pH or temperature, to enhance or slow the
growth of microbes?

Micro-organisms commonly face stress or shock during food
processing (Ma et al., 2014). Microbes can survive in stressful or
adverse environments, and can then tolerate other comparable
stressors following the initial stress conditions (Isohanni et al.,
2013). Cross-protection capabilities have been identified
in Salmonella spp., E. coli, Listeria monocytogenes, and
Cronobacter sakazakii (Kim et al., 2012; Spector and Kenyon,
2012; Lapierre et al., 2016; Wieczorek et al., 2018). For C. jejuni, a
higher resistance to stress was observed following exposure to
previous stressful environments. C. jejuni displayed tolerance or
resistance to acid due to acquaintance with acid-aerobic, acidic,
and nutrition-deprived stress (Oh et al., 2017), as well as showing
oxidative stress cross-protection resulting from acid disturbance
(Xu et al., 2019). However, Isohanni and Lyhs (Isohanni et al.,
2013) stated that after exposure to heat and cold, C. jejuni did not
have any cross-protection capacity, as shown in Figure 2.

Evidence indicates that antimicrobial agents are not used or are
used incorrectly for the production of resistance Campylobacter
spp. (Pedersen et al., 2018). Patients generally recover from
campylobacteriosis without antimicrobial therapy, with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
treatment based on electrolyte substitution and rehydration.
Severe cases can be managed with antibiotics such as
tetracycline and macrolides (fluoro) or quinolones, but increases
in antibiotic resistance in C. jejuni and C. coli has jeopardized the
effectiveness of these therapeutics (Alfredson and Korolik, 2007;
Bolinger et al., 2018).

Early in the food supply chain, C. jejuni is exposed to
oxidative and desiccation stresses. Campylobacter are especially
susceptible to the former as a processing technique (Humphrey
et al., 1995), and in slaughter facilities, survival of Campylobacter
in pig, and chicken meat decreases significantly by air-chill-
drying the carcass surface (Oosterom et al., 1983). No
comparable technique is used during the processing of poultry,
and the chilling method initiates the formation of a moist surface
that helps bacteria thrive (Butzler and Oosterom, 1991). Due to
incomplete oxygen reduction, aerobic respiration generates
reactive oxygen species (ROS), including superoxide anions
(O2–2) and hydrogen peroxide (H2O2), which can lead to the
formation of the extremely poisonous hydroxyl radical (HO).
Campylobacter in the chicken or human body can also be
subjected to H2O2 or O2 by the immune system to kill the
microbes (Melo et al., 2019). The range of enzymes such as
catalase, glutathione, cytochrome, peroxidases, peroxiredoxin
alkyl hydroperoxide reductase, superoxide dismutase, and
other peroxiredoxins are activated in Campylobacter exposed
to ROS and these then facilitate long-term aerobic adaptation of
the bacteria (Storz and Imlay, 1999) to facilitate long-term
aerobic adaptation (Jones et al., 1993; Klancnik et al., 2009). C.
jejuni has one catalase, KatA, which supports this process when
FIGURE 2 | Influencing factors for foodborne pathogens.
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the cytoplasmic level of H2O2 is high (Bingham-Ramos and
Hendrixson, 2008; Melo et al., 2019).

Thermophilic species of Campylobacter, like C. jejuni,
multiply at 37 to 42°CC and are unable to grow at
temperatures below 30°CC (optimal growth is at 41.5°CC). At
different stages of food processing, Campylobacter are exposed to
chilled (0–4°CC) and elevated (>37–42°CC) temperatures.
Evidence has shown that the response of Campylobacter to
colder conditions (Hazeleger et al., 1998; Park, 2002) results in
the slowest growth at 30°C. Low temperatures, freezing, and
thawing impact different kinds of wastewater (particularly those
concerning public health) and their long-term survival of enteric
microbes (Zhang et al., 2009; Dasti et al., 2010; Hazeleger et al.,
1998). Differences in at least 15 distinct genes were recorded
between bacterial-cell and human-body temperatures of 37–42°CC,
which is within the range of chicken-body temperatures. Around
48.1% of C. jejuni isolates showed resistance to tetracycline, and
subsequent resistance to nalidixic acid (5.5%), ciprofloxacin (5.5%),
azithromycin (1.78%), and erythromycin (1.78%) (Narvaez-Bravo
et al., 2017). Dasti et al. (2010) reported ciprofloxacin resistance
ranging from 4 mg to 32 mg/ml for the minimal inhibitory
concentration. Most ciprofloxacin-resistant strains were divided
into three major clonal complexes (ST-21, 48, and 353) by
multilocus assessment, whereas both antibiotic-resistant strains
were uniquely grouped into ST-45.
OTHER GENERAL SURVIVAL
MECHANISMS

The food matrix is one environmental factor that can influence
micro-organism survival in the food system (all processes of
production, processing, transport, and consumption) (de
Oliveira et al., 2019; Farfán et al., 2019). After exposure to
stress in the food system, expression of virulence and survival
genes increased in Listeria monocytogenes (Olesen et al., 2009;
Farfán et al., 2019). Day and Hammack (2019), reported
enhanced gene expression under stress tolerance in L.
monocytogenes in processed foods like meat and sausage juices
compared with a laboratory setting. In contrast, stress-tolerance
genes of Lactobacillus sakei were decreased in meat products
(Prechtl et al., 2018), chicken meat and juice (Birk et al., 2004).
Meat exudate, such as that from poultry meat, contains enzymes,
myogens, myoglobin lactic acid, and amino acids (Wang et al.,
2013). ‘Chicken juice’ can be used as a food-based model system
for investigation of microbial survivability. Birk et al. (2004)
recommended using the system to enhance understanding of C.
jejuni viability on poultry products. C. jejuni survived longer in
chicken juice (due to increased biofilm formation) stored at 5°C
and 10°C (Brown et al., 2014). Ligowska et al. (2011) reported
that expression of the gene luxS was increased in C. jejuni
cultured in chilled poultry-meat juice. This highly conserved
gene encodes the enzyme LuxS (S-ribosylhomocysteine lyase),
which forms part of a quorum sensing system with autoinducer-
2 (AI-2) and regulates gene expression. Differences in the
recovery and identification of Campylobacter spp. between
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
meat exudate and carcass rinse sampling methods in poultry
have been demonstrated (Simmons et al., 2008; Duffy, 2019), as
shown in Figure 3.

Previous research has shown that microbes form biofilms
during food processing, such as in meat exudate conditions.
Species of the genus Salmonella created a biofilm on the surface
of stainless steel when cultured in laboratory media or meat
exudate (Wang et al., 2013). Differences in the shape and cell
density of mature biofilms were observed between food
processing and laboratory environments. Longo and Spano
(2019) reported the formation of biofilm in L. monocytogenes
and species of the genera Pseudomonas and Staphylococcus on
meat-treated surfaces, such as polyvinyl chloride, polyurethane,
and steel. C. jejuni was more prone to forming biofilms in
chicken juice than in a laboratory environment due to high
nutrient availability (Brown et al., 2014). Thus, processed foods
that contain many macronutrients are easily contaminated by
microbes; these foods include the meat juice of chicken and beef,
milk protein, and dairy products (Kusumaningrum et al., 2003;
Healy et al., 2010).
VIABLE BUT NON-CULTURABLE
(VBNC) STATE

Some microbes can endure unfavorable environments, such as
nutrient deprivation, desiccation, inadequate pH, and
temperature changes (Blanco-Lizarazo et al., 2018; Jin and
Riedel–Kruse, 2018). Few microbes are capable of living in
these unfavorable environments, but some organisms may
enter a VBNC state for subsistence. Microbes in the VBNC
state are unable to multiply, and their morphology is
transformed into a coccoid shape (Poursina et al., 2018; Jin
and Riedel-Kruse, 2018). Bacteria decrease their metabolism in
the VBNC state but may retain the virulence capacity to infect a
host and cause disease (Oliver, 2010; Fakruddin et al., 2013;
Poursina et al., 2018). The VBNC state has been found in several
micro-organisms, such as C. jejuni, V. parahaemolyticus,
Salmonella ser. Typhi, and Helicobacter pylori (Azevedo et al.,
2007; Zeng et al., 2013; Otigbu et al., 2018; Yoon and Lee, 2020).
In an unfavorable environment, C jejuni can survive by using the
VBNC tactic (Gangaiah et al., 2010; Zeng et al., 2013; Otigbu
et al., 2018; Yoon and Lee, 2020). C. jejuni entered the VBNC
state when cultured for 18–28 days at 4°C (Jones et al., 1991).
Magajna and Schraft (2015) studied the VBNC status of
planktonic cells and biofilm cells at 4°C and found that biofilm
cells converted to VBNC status quicker than planktonic cells in
nutritionally deprived and hostile-temperature environments.
The VBNC form of C. jejuni affects CadF expression at 4°C
(Otigbu et al., 2018). CadF protein is one of the elements
influencing microbial invasion. The VBNC form of
Campylobacter has been categorized based on reduced
metabolism, augmented production of the degrading enzymes
and substrates, and (Chaveerach et al., 2003; Upadhyay et al.,
2019). Consequently, microbes can live for longer periods in
hostile conditions (Kovacs et al., 2019).
February 2021 | Volume 10 | Article 596570
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ADAPTATION TO MAJOR
ENVIRONMENTAL STRESSES BY
CAMPYLOBACTER SPP.

Adaptation by Campylobacter spp. to various stresses such as
acidic environment, salt tolerance, thermotolerance (heat and
cold), UV stress, osmotolerance, desiccation, biofilm formation,
and antibiotic resistance, are explained in detail in Table 1.
Genes Involved in Stress Sensing/
Adaptation
Acid-tolerance mechanisms: The adaptive tolerance response
(ATR) was identified as the initiator of cross-protection for the
survival of microbes under various stressful or unfavorable
conditions (Oh et al., 2015), and was also found in foodborne
pathogens (Li et al., 2018; Cariri et al., 2019; Mayton et al., 2019).
Murphy et al. (2003) discovered an ATR in C. jejuni and a
comparable result in the initiation of ATR was observed between
stress-exposed and nonexposed organisms when the organism at
the mid-exponential stage (8 h) was unable to start an ATR
under air- and acidic-stress conditions. Conversely, stationary-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
phase (48 h) organisms could initiate ATR at pH 4.5 under air
and acidic status compared to nonexposed organisms. They
displayed acidic cross-protection, which initiated ATR under
oxygen or air status. In addition, the ATR initiation of microbes
at pH 4.5 varies according to the culture media; this might be due
to the different nutrient compositions of the various culture
media (Kovacs et al., 2019), -. C. jejuni demonstrated an ATR
capacity at pH 4.5 when exposed to aerobic conditions with
acidic and nutritional deprivation (Oh et al., 2017). Acidic stress
initiated the upregulation of perR genes to counter
oxidative disturbance.

Acid shock has a significant biological impact in situations of
acidic pH and low (organic) acids. Fatty acids are carboxylic acids
generated by fermentation, and include propionate, butyrate, and
acetate (Luo et al., 2015; Eguchi and Utsumi, 2016). The fatty acids
cause toxicity in their unloaded, protonated form because they may
penetrate the plasma membrane, dissociate a proton, and create a
lower intracellular pH.

An adaptive tolerance response to aerobic + acid conditions
in C. jejuni (Oh et al., 2019) was shown to induce a global stress
response mechanism (S.H Kim, unpublished data). An adaptive
tolerance response (ATR) produced as a result of sub-chronic
FIGURE 3 | Summary of C. jejuni responses to stresses. The chromosome of C. jejuni NCTC11168 is represented by a black circle on which the location of genes,
involved in different stress responses, are shown as colored lines. Genes are colored according to their role; gene names shaded in grey are involved in multiple
stress responses.
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stress adaptive response and offers protection against subsequent
lethal stress exposure (Noreen, 2019). We have defined an ATR
in C. jejuni previously. The mediation of acid and oxygen
concentration, makes them to adopt improved survival
mechanism against lethal pH (Taylor et al., 2017). De novo
protein synthesis was necessary for the initiation of ATR in
C.jejuni, which implies enhanced protein synthesis occurred
during the induction phase. During the induction of an ATR
to acid stress, analysis of protein expression profiles
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
demonstrated a global cellular response (S.H Kim, unpublished
data). Based on MALDI-TOF mass spectrometry different
Protein expressed during induction of the ATR in C.jejuni,
which revealed that the majority of proteins were involved in
modification, repair and biosynthesis.

The ATR in C. jejuni has been shown to incorporate up-
regulation of generic stress proteins involved in protein defense
or breakdown, such as the heat-shock response based on
universal chaperones DnaK and GroEL, which are among the
TABLE 1 | Cluster of genes involved in the multiple stress responses of C. jejuni.

Sr. No Target Mechanism Gene Stress tolerant Gene Reference

1 Nitric Oxide and Nitrosative Stress in
Campylobacter jejuni and Campylobacter coli

nrfA Nitrite reductase, formate-dependent Mühlig et al., 2014;
Einsle (2011)

cgb Single-Domain Hemoglobin in Mediating Resistance to
Nitric Oxide and Nitrosative Stress

Elvers et al., 2004;
Pittman et al., 2007

nssR Single-Domain Hemoglobin in Mediating Monk et al., 2008; Avila-
Ramirez et al., 2013

2 Heat shock efficiency htrB Promotes Abiotic and Biotic Stress Tolerance in
Transgenic Arabidopsis thaliana

Svensson et al., 2008; Poli
et al., 2012

htrA high-temperature requirement A (HtrA)-like protease and
chaperones in the cell envelope,

Svensson et al., 2008

groES/groEL Chaperonin Laranjo and Oliveira, 2011
dnaK Chaperonin
clpP Two promoters; roteolytic component of the Clp or Ti

protease
Gerth et al., 1998

grpE Nucleotide
sequence of a Bacillus subtilis gene homologous to the
grpE gene

Völker et al., 1992

dnaJ Arabidopsis DnaJ (Hsp40) contributes to NaCl-stress
tolerance

Zhichang et al., 2010

hslU Proteomics Analysis of Drought Stress-Responsive
Proteins

Xu et al., 2009

hrcA Conserved ATP-dependent proteases of C. jejuni to stress
tolerance and virulence

Chon et al., 2007

racRS Salinity stress tolerance - ascorbate-glutathione Kang et al., 2013
clpB lon Protease ATP-dependent (E. coli ClpA) • ATPase activity Parsell and Lindquist, 1993

3 Nutrition Depletion/Starvation ppk1 Quorum sensing genes/inhibiting polyphosphate kinase Sarabhai et al., 2015
Gangaiah et al., 2010spoT cytosolic ascorbate peroxidase/peroxiredoxins

ppk2 The adenylate cyclase gene MaAC/membrane location of
the protein

cstA Arabidopsis genes Auesukaree et al., 2009
4 Osmotic Tolerance htrB ATP binding cassette transporter components PaqP and

PaqQ in bacterial salt stress tolerance
Lin et al., 2009a

ppk1 Inhibiting polyphosphate kinase Sarabhai et al., 2015
cj1226c Influences biofilm formation Svensson et al., 2008;

Svensson et al., 2009
5 Low pH/Acid Tolerance htrB ATP binding cassette transporter components PaqP and

PaqQ in bacterial salt stress tolerance
Lin et al., 2009b

6 Oxidative Stress/Oxygen Stress spoT Quorum sensing genes/inhibiting polyphosphate kinase Sarabhai et al., 2015
hspS Proteomics Analysis of Drought Stress-Responsive Parsell and Lindquist, 1993
htrA
fdxA stress-responsive cyclophilin gene Chen et al., 2007
sodB Resistance to peroxynitrite and stage-specific survival in

macrophages
Master et al., 2002

dcuA
dps
katA
perR
ahpC
sodB-sdh
cj1556 Additionally Influences biofilm formation Svensson et al., 2009
cj1546
cj1556-cj1386
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most highly conserved protein-coding genes known to be
involved (Tang et al., 2017). Chaperone proteins may be
involved in aerobic + acid denaturation or damage repair of
proteins. Chaperone based GroEL and DnaK heat shock protein
(HSPs) have been described as caused under acid conditions in
Salmonella typhimurium (Ghazaei, 2017), which plays a major
role after mild stress, either in the prevention of subsequent DNA
damage or in the repair of already damaged DNA. The reported
protein response were found to be closely associated with
following pathogens such as S. typhimurium (Ghazaei, 2017),
Escherichia coli (Burt et al., 2007) and Acinetobacter baumannii
(Cardoso et al., 2010). This global reaction, in C. jejuni, which
induced various mechanisms of survival and offers an initial
insight into mechanisms that contribute to resistance of aerobic
+ acid susceptibility.

ATR-related RpoS: Transcription controller ss, encoded by
the rpoS gene (RNA polymerase sigma factor), is a replacement
sigma factor, the amount of which increases dramatically during
any permanent stage of the microbes. The increase in ss
concentration and gene expression is known to influence acid-
shock proteins, such as high osmolality, low pH, hydration, and
oxidation in cell survival (Ferreira et al., 2001). Sudden increases
in cell acidification also cause strong increases in rpoS levels.
Mutants that are defective in rpoS or that generate low
concentrations of rpoS are highly susceptible to acidic conditions.

Salt-Tolerance Mechanisms
Sodium chloride (NaCl) is one of the most used preservatives in
the food industry. C. jejuni is highly responsive to high
osmolarity compared to most other enteric microbes (Feng
et al., 2018; Kovacs et al., 2019). C. jejuni is unable to multiply
with ≥2% NaCl at 42°C, but can multiply in the presence of 0.5%
to 1.5% NaCl at 42°C (Gomes et al., 2018). Lake et al. (2019)
reported that C. jejuni could tolerate 7.5% sodium chloride
(NaCl) in media at 4°C better than at 22–30°C as measured
using bioluminescence. In microarray analysis, Zhao et al. (2019)
found that C. jejuni had augmented expression of oxidative-
stress genes and heat-shock genes after exposure to
hyperosmotic conditions.

Genetic Regulation by Sigma Factors
C. jejuni has a genome size of 1.4 Kbp, coding for approximately
1731 genes. In contrast to other environmental and food
pathogens that have several gene-regulation processes
occurring via sigma factors, C. jejuni has only three sigma
factors (Wösten et al., 1998; Parkhill et al., 2000; Carrillo et al.,
2004), and no recorded extracytoplasmic-function (ECF) sigma
factors. The three sigma variables account for most operations
related to gene regulation. Sigma 70 or RpoD is the housekeeping
sigma factor that regulates most C. jejuni promoters. The other
two sigma factors, sigma 28 (FilA, Filament A) and sigma 54
(RpoN), regulate 44 different genes that are mostly related to
flagellar synthesis and protein secretion (Studholme and Dixon,
2003; Porcelli et al., 2013). The regulatory mechanisms and
nucleic-base composition of the sigma-factor promoters were
detailed by Petersen et al. (2003). Major promoters recognized by
C. jejuni sigma subunits have the –10 element, whereas there is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
no consensus for the –35 element. The regulatory roles of RpoN
in C. jejuni under various stress conditions were shown were
shown using RpoN mutation and complementation in a study by
Hwang et al. (2011). FilA is thought to regulate motility as well as
the virulence of C. jejuni (Carrillo et al., 2004). Thorough
genomic research into these mutant strains is required to
elucidate the intricacies of gene regulation among the three
sigma variables in this uncommon pathogen. Furthermore,
how the lack of conservation of the –35 element contributes to
optimal transcription in vivo remains to be determined.
Morphological differences may exist, such as the conversion of
a spiral bacterium to a coccus-/rod-shaped bacterium under
osmotic and cold stress (Carrillo et al., 2004; Hwang et al.,
2011). Even if C. jejuni is regarded as a pathogen transmitted
viameat and poultry, it is not very tolerant to several nonoptimal
conditions, particularly desiccation and osmotic stress.

Role of Osmolytes in Cryotolerance
Compared with Salmonella spp. and E. coli-like enteric bacteria,
little is known about the mechanisms that enable survival of
Campylobacter spp. under various environmental and stress
conditions. A previous study found that C. jejuni’s ability to
influence gene expression after exposure to environmental stress
was a barrier to comparison with other bacteria (Park, 2002). Rapid
temperature decreases cause bacteria to express a distinct set of
proteins, and this response is known as cold shock. These proteins
are predominantly nucleases, helicases, and ribosome-related
elements that communicate with and bind to RNA and DNA.
Cold-shock proteins induce a membrane adaptation, cold signal
sensing, and translation-device alteration (Ultee et al., 2019). Ultee
et al. (2019) reported motility for oxygen consumption, protein
synthesis, and C. jejuni survival capacity at 4°C. Lu et al. (2011)
revealed that C. jejuni survive at in low-temperature. This indicates
that C. jejuni may produce a cold-shock effect that influences low-
temperature gene expression to 4°C. CspA is the main cold-shock
protein in C. jejuni, and functions as an RNA chaperone to enhance
more effective cold-shock protein translation (Parkhill et al., 2000;
Giuliodori et al., 2010). It is not yet clear how C. jejuni respond to or
regulate the expression of genes during cold shocks. Based on
documented studies, the cold-shock reaction is presented as a
complex system of genes that are regulated by the same stimulus,
where post-transcriptional conditions are essential. C. jejuni poses
problems to food security and public health in the food-processing
industry, since it survives for several months at 4°C. C. jejuni
declined by about 1 log cfu/ml when stored at 4°C for seven days
(Guévremont et al., 2015; Lake et al., 2019). Oxidative stress can
upregulate cold-shock protein expression, which can extend the life
span of C. jejuni in hypothermal conditions (Karki et al., 2019).

Survival During Ultraviolet (UV) Stress
VBNC refers to a state in which conventional culture on enhanced
agar media does not detect microbial cells, although it remains
feasible to resuscitate the microbes under preferential
circumstances. This unique survival strategy has been shown to
exist in nature (Salma et al., 2013). More than 60 different bacterial
species have been found to be VBNC, including both Gram-
negative (e.g., E. coli, S. enterica, C. jejuni, H. pylori, Pseudomonas
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aeruginosa, and species of the genera Legionella and Vibrio) and
Gram-positive (e.g., species of the genus Enterococcus, Micrococcus
luteus, and L. monocytogenes) species (Salma et al., 2013). Following
a severe dose of UV (0.192 J/cm2), no viable Campylobacter cells
were identified from the original level of 7 log cfu/ml in the liquid
media (skimmed milk exposed to UV and diluted 1:4 with extreme
rehabilitation diluents) (Xiong, 2009). Substantial variability of up to
4 log cfu/ml was observed in the susceptibility of Campylobacter
isolates following UV treatment. In UV-treated (0.192 J/cm) fresh
chicken fillet, C. jejuni, was decreased by 0.76 cfu/g, whereas, a
reduction in C. jejuni of up to 3.97 log cfu/cm was attained with UV
treatment of packaging and surface materials. These data indicated
that Campylobacter is UV-prone, but concerning differentials
occurred among the studied isolates. Overall, UV application
could help improve the microbiological quality of raw chicken
and remove contamination of related surfaces and packaging
(Haughton et al., 2011).

Investigations were conducted concerning organism survival in
rivers, coastal waters, and sewage to investigate the natural and
artificial habitats of C. jejuni with UV-B light (280–315 nm)
(Hénault-Ethier et al., 2016; Garcıá-Peña et al., 2017; Otigbu et al.,
2018). Another research project in conjunction with these revealed
thatC. jejuniwas susceptible to UV-C light (254 nm). UV sensitivity
was greater than that of other microbes (Butler et al., 1987). The
application of UV-C radiation to decreaseC. jejuni in chicken breast
also attracted interest (Rodrigues et al., 2019), as well as in broiler
meat (Zhuang et al., 2019) and ready-to-eat ham (Yang et al., 2017).
UV-light techniques have been extensively explored for reducing
micro-organisms, including Campylobacter, in foodstuffs
(Rodrigues et al., 2019; Zhuang et al., 2019).

UV irradiation achieved a maximal reduction of C. jejuni on
broiler meat and broiler skin of 0.7 and 0.8 log, respectively. The
maximal decrease by UV irradiation on broiler carcasses (254
nm, 32.9 m W/s per square inch) was 0.4 log, and the
combination of UV and activated oxygen also achieved a 0.4
log reduction in C. jejuni. The primary sanitation method for C.
jejuni in broiler carcasses cannot rely on UV irradiation alone or
in conjunction with activated oxygen. However, application of
these methods in conjunction with other sanitization techniques,
as well as the adequate processing and sanitation of processing
plants, may be more efficient than the use of these processes to
reduce C. jejuni on broiler carcass surfaces (Isohanni and Lyhs,
2009). UV irradiation was less efficient at removing C. jejuni on
broiler meat and skin than on agar plates. It reduces C. jejuni on
grilled skin a little more effectively than on meat. Dry meat
undergo ultraviolet radiation has low invasive capacity, and the
cutting edges of food perhaps produced shade that interfered
with UV irradiation (Rodrigues et al., 2019). The fibers could be
isolated by swabbing the surfaces and allowing the swabs to
absorb humidity from below the meat layer. After flaming, the
skin did not appear to have changed much, and bacteria could
not have crossed the threshold skin into the meat. Wong et al.
(1998) also indicated that gram positive bacteria were more
efficiently reduced by UV irradiation. However, the effects of UV
irradiation can differ considerably in C. jejuni isolates from
different origins and at different growth stages (Yaun et al., 2003).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
Oxidative Stress and Aerotolerance
Campylobacter does not usually grow in environments of
atmospheric oxygen (air) due to it being microaerophilic and
requiring 5–10% carbon dioxide (CO2) (Frirdich et al., 2019).
Campylobacter can tolerate oxidative stress even after exposure
towards aerobic conditions (Kim et al., 2015). Microaerophilic
environment generates favorable growth conditions for C. jejuni
(Geng et al., 2019). Karki et al. (2019) found that subcultures of
C. jejuni could develop colonies on blood agar at 4, 37, and 42°C
in air conditions. This exposure to aerobic conditions leads to the
transformation of both the cell morphology and the pattern of
the external membrane proteins. Their results indicated that the
bacterial cells had high survivability in aerobic conditions
compared to microaerobic conditions. Geng et al. (2019)
reported that subcultures of C. jejuni from both sterile chicken
mince and stream water developed colonies at 5, 25, and 37°C on
blood agar, and that cells were more likely to survive when
cultured in a microaerophilic than an aerobic environment.

In comparison with microaerobic conditions owing to
oxidative pressure, C. jejuni showed external structural changes
in the form of coccoid morphology (Oh et al., 2015), and the
inner ATP synthesis of C. jejuni decreased with oxidative stress
(Cain et al., 2019). Under microaerophilic environments, C.
jejuni may develop better than under oxygenic conditions at a
cell concentration of <105 cfu/ml (Kaakoush et al., 2007).

C. jejuni Heat-Shock Response
Heating is one of the sanitizing techniques used for food
preservation in the food sector. Heat treatment readily reduces
the survival of C. jejuni relative to other enteric micro-organisms.
For C. coli, decimal reduction times (D-values) were 381, 89, 21.9,
and 5.7 s at 49.9, 55.4, 60.0, and 62.5°C, respectively, in phosphate
buffer saline (PBS) (Habib et al., 2010; Upadhyay et al., 2019).
Treatment ofC. jejuni at 55°C for 3min, decreased the density by 2–
3 log cfu/ml (Kovacs et al., 2019). Heat treatment caused C. jejuni to
lose its invasion capacity, and upregulate transcriptional factor
HrcA for acid shock (Xu et al., 2019).

Desiccation Tolerance
Tolerance to desiccation in Campylobacter spp. was first reported by
Fernandez et al. (1985) in several biotypes of C. coli and C. jejuni
subjected to 2–8 hours of exposure. The RpoN sigma factor does not
significantly contribute to the tolerance to osmotic shock or
desiccation, whereas tolerance of cold or refrigeration
temperatures can be directly correlated with bacterial survival
capacity in cold environments (Burgess et al., 2016). The extreme
sensitivity to desiccation and poor tolerance to heat and drying
established that blowing hot air was an efficient method to prevent
carrying dormant C. jejuni from poultry to human hosts in
commercial settings (Berrang et al., 2011). Such methods could be
applied to farms to prevent pathogenic carriers through poultry.

Biofilm Formation and Stress Adaptation
Extracellular polysaccharide (EPS) accumulation leads to biofilm
formation by microbes, biofilm formation could allow additional
species to accumulate on surfaces (Simoes and Simões, 2013;
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Maes et al., 2019). EPSs compressed of nucleic acids, polysaccharides,
proteins, phospholipids, and teichoic acids to form biofilms (Miao
et al., 2019). Many factors stimulate biofilm formation, including
temperature, NaCl, pH, compounds of food, and type of surface
(Arnold and Silvers, 2000; Nguyen et al., 2006; Speranza et al., 2011;
Vázquez-Sánchez et al., 2013; Mavri et al., 2016; Whitehouse et al.,
2018; Longo and Spano, 2019; Xu et al., 2019). Biofilms can form on
dairy-product-handling machinery and nutrition-handling surfaces
(Miao et al., 2019), and can therefore contribute to the occurrence of
foodborne diseases and create a public health issue (Maes et al., 2019;
Miao et al., 2019). There are numerous reports on foodborne diseases
in relation tobiofilmdevelopment (Metselaar et al., 2015;Mavri et al.,
2016; Whitehouse et al., 2018; Ma et al., 2019). Microbes in biofilms
are more resistant to antibiotics than plankton cells are (Stewart and
Costerton, 2001; Olsen, 2015). C. jejuni preconditions define their
environment for growth, and Surface attachment and biofilm
generation are vital tools for environmental stability (Dykes et al.,
2003), as shown in Figure 4.

C. jejuni can generate biofilms in liquid media as a
monospecies (Sałamaszyńska-Guz et al., 2018) in aerobic
conditions (Ovesen et al., 2019) C. jejuni can form biofilms
both as a monospecies and as a combination of microbes (The
et al., 2019) and nutritional components (Bronnec et al., 2016).
Sałamaszyńska-Guz et al. (2018) showed that the aggregating
and pellicle form of C. jejuni that forms at 30–37°C in a
microaerobic environment allows the bacteria to survive under
aerobic conditions. Ovesen et al. (2019) demonstrated that C.
jejuni easily creates biofilms, and that flagellar motility
aggravated biofilm production. It currently reads as though it
is the report of Ovesen et al., 2019 stated that C. jejuni could
acclimate to develop a biofilm linked to CsrA under aerobic
conditions (Askoura et al., 2016; Ye et al., 2019). Therefore, CsrA
mutation leads to inhibition of biofilm formation (Fields and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
Thompson, 2008). C. jejuni can also contribute to biofilm
formation in combination with other microbes under a
microaerobic environment, but the combination is specific to
the microbes and the environment (The et al., 2019), for example
the poultry environment is an example of this specific
environment/microbe combination. The biofilm formation
capacity of C. jejuni depends on culture media, oxidative
stress, temperature, and interspecies composition (Bronnec
et al., 2016). Protein generation, quorum sensing, and flagellar
sensing also influence the capacity of C. jejuni to generate
biofilms, as shown in Table 1.

Antibiotic Susceptibility of C. jejuni
Antibiotics are typically used to fight against bacterial infections
(Pedersen et al., 2018), and possess different mechanisms to kill
or inhibit bacteria. For example, quinolones, such as nalidixic
acid, dysregulate DNA synthesis in microbial cells (Jacoby, 2005),
whereas macrolides, including erythromycin, bind to ribosomes
in the microbes, blocking elongation of the peptide loop (Arsic
et al., 2018). Severe cases of campylobacteriosis require adequate
treatment with antibiotics (Wieczorek and Osek, 2013), usually a
fluoroquinolone and macrolide combination (Devi et al., 2019).
Improper and frequent antibiotic use has led to increased
antibiotic resistance in Campylobacter, which is a public health
issue. Consequently, the fluoroquinolone and macrolide efficacy
can fail to overcome the antibiotic resistance of Campylobacter
(Pedersen et al., 2018; Bolinger et al., 2018; Silvan et al., 2018;
Devi et al., 2019). The continuous usage of antibiotics such as
tetracycline, ciprofloxacin, and erythromycin leads to the
development of resistance in enteropathogens; specific
resistance genes to these antibiotics were identified in C. jejuni
isolates (Wirz et al., 2010), and comparable trends in C. coli were
reported in Canada (Devi et al., 2019). Zwe et al. (2018) found
FIGURE 4 | Process of biofilm formation.
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that C. jejuni isolated from ducks in Singapore was resistant to
ciprofloxacin (86.7%), nalidixic acid (84.4%), and erythromycin
(11.1%) (Devi et al., 2019). The development of antibiotic
resistance in Campylobacter means the treatment regime of
campylobacteriosis will involve other antibiotics, like
gentamycin (Aarestrup and Engberg, 2001; Pedersen et al., 2018).
CONCLUSION

Campylobacter use a range of approaches for environmental and
genomic survival, and molecular studies have facilitated a better
understanding of these processes. Genetic modifications within
the species C. jejuni have been significantly targeted, and genome
sequencing for this species has been completed. Epidemiological
studies and phenotypical analyses found variations in the
incidence of strains of C. jejuni, or environmental circumstances
between strains of C. jejuni. It has been easier to understand
mechanisms that affect C. jejuni persistence by examining the
transformation of this important pathogen in natural settings,
such as soil and water, and combining connections with
environmental changes. However, the reported differences in
various strains of C. jejuni highlight the constraints of drawing
generalized conclusions from individual strain research.

The multiple stress responses of Campylobacter spp. may
facilitate survival in extreme environmental conditions, in
addition to increasing resistance to subsequent traumatic
conditions, which might enhance acquisition of virulence genes.
Our review demonstrates the contribution of stress-tolerance
responses to the resistance and pathogenicity of C. jejuni. Minor
factors involved in stress management based on stress-responsible
protein production are also involved in the activation and up- or
down-regulation of virulence genes, and may contribute to the
pathogenesis of C. jejuni. This finding is based on reported studies
validated in different isolates of C. jejuni in response to stress
adaptation, therefore caution should be taken in segregating and
characterizing strains of C. jejuni. Gram-negative microaerophilic
bacteria like H. pylori and C. jejuni are extremely common, and are
human gastrointestinal pathogens. Only by combining these
separate strands can the role of environmental survival in
transmitting these important pathogens be fully understood.

Required Future Research to Fill Current
Knowledge Gaps
Major gaps in current research on stress responses on C. jejuni, so
far, researchers have predominantly focused on antibiotic resistance
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and oxidative stress in C. jejuni. However, various other stress
conditions and specific survival-mechanism-based evolutionary
adaptation methods exist to overcome modern preservative
conditions, such as acidity, alkalinity, osmotic imbalance, freezing,
high temperatures, UV light, and dryness (reduced water content).
Future research should concentrate on understanding the genetic
make-up of C. jejuni that helps this organism survive various
environmental conditions. Identification of these evolutionary
adaptive mechanisms and specific signaling pathways will assist
future researchers in developing effective methods to overcome the
adaptive mechanism(s) of C. jejuni. Furthermore, understanding C.
jejuni stress-oriented genes and their specific expression
mechanisms based on environmental stressors have implications
in biofilm interactions and their signaling mechanism(s), and in
practical terms this could help with current technological hurdles in
the food system.
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et al. (2019). Capacity to adhere to and invade human epithelial cells, as related
to the presence of virulence genes in, motility of, and biofilm formation of
Campylobacter jejuni strains isolated from chicken and cattle. Can. J.
Microbiol. 65, 126–134. doi: 10.1139/cjm-2018-0503

Feng, J., Ma, L., Nie, J., Konkel, M. E., and Lu, X. (2018). Environmental stress-induced
bacterial lysis and extracellular DNA release contribute to Campylobacter jejuni
biofilm formation. Appl. Environ. Microbiol. 84, e02068–e02017. doi: 10.1128/
AEM.02068-17

Fernández, H., Vergara, M., and Tapia, F. (1985). Dessication resistance in
thermotolerant Campylobacter species. Infection 13, 197. doi: 10.1007/BF01642813

Ferreira, A., O’Byrne, C. P., and Boor, K. J. (2001). Role of ςB in heat, ethanol, acid, and
oxidative stress resistance and during carbon starvation in Listeria monocytogenes.
Appl. Environ. Microbiol. 67, 4454–4457. doi: 10.1128/AEM.67.10.4454-4457.2001

Ferrero, R. L., and Lee, A. (1988). Motility of Campylobacter jejuni in a viscous
environment: comparison with conventional rod-shaped bacteria. J. Gen.
Microbiol. 134, 53–59. doi: 10.1099/00221287-134-1-53

Fields, J. A., and Thompson, S. A. (2008). Campylobacter jejuni CsrA mediates
oxidative stress responses, biofilm formation, and host cell invasion.
J. Bacteriol. 190, 3411–3416. doi: 10.1128/JB.01928-07

Frirdich, E., Biboy, J., Pryjma, M., Lee, J., Huynh, S., Parker, C. T., et al. (2019). The
Campylobacter jejuni helical to coccoid transition involves changes to
peptidoglycan and the ability to elicit an immune response. Mol. Microbiol.
112, 280–301. doi: 10.1111/mmi.14269

Gangaiah, D., Liu, Z., Arcos, J., Kassem, I. I., Sanad, Y., Torrelles, J. B., et al. (2010).
Polyphosphate kinase 2: a novel determinant of stress responses and
pathogenesis in Campylobacter jejuni. PloS One 5, e12142. doi: 10.1371/
journal.pone.0012142

Garcıá-Peña, F. J., Llorente, M. T., Serrano, T., Ruano, M. J., Belliure, J., Benzal, J.,
et al. (2017). Isolation of Campylobacter spp. from three species of antarctic
penguins in different geographic locations. EcoHealth 14, 78–87. doi: 10.1007/
s10393-016-1203-z

Gaynor, E. C., Wells, D. H., MacKichan, J. K., and Falkow, S. (2005). The
Campylobacter jejuni stringent response controls specific stress survival and
virulence-associated phenotypes.Mol. Microbiol. 56, 8–27. doi: 10.1111/j.1365-
2958.2005.04525.x

Geng, Y., Liu, G., Liu, L., Deng, Q., Zhao, L., Sun, X. X., et al. (2019). Real-time
recombinase polymerase amplification assay for the rapid and sensitive
detection of Campylobacter jejuni in food samples. J. Microbiol. Methods
157, 31–36. doi: 10.1016/j.mimet.2018.12.017
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
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