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As morbidity and mortality due to malaria continue to decline, the identification of
individuals with a high likelihood of transmitting malaria is needed to further reduce the
prevalence of malaria. In areas of holoendemic malaria transmission, asymptomatically
infected adults may be infected with transmissible gametocytes. The impact of HIV-1 on
gametocyte carriage is unknown, but co-infection may lead to an increase in
gametocytemia. In this study, a panel of qPCR assays was used to quantify
gametocyte stage-specific transcripts present in dried blood spots obtained from
asymptomatic adults seeking voluntary HIV testing in Kombewa, Kenya. A total of
1,116 Plasmodium-specific 18S-positive samples were tested and 20.5% of these
individuals had detectable gametocyte-specific transcripts. Individuals also infected with
HIV-1 were 1.82 times more likely to be gametocyte positive (P<0.0001) and had
significantly higher gametocyte copy numbers when compared to HIV-negative
individuals. Additionally, HIV-1 positivity was associated with higher gametocyte
prevalence in men and increased gametocyte carriage with age. Overall, these data
suggest that HIV-positive individuals may have an increased risk of transmitting malaria
parasites in regions with endemic malaria transmission and therefore should be at a higher
priority for treatment with gametocidal antimalarial drugs.
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INTRODUCTION

In areas of high endemicity for malaria, adults can
asymptomatically maintain Plasmodium falciparum infection
through partial immunity (Druilhe and Khusmith, 1987; Smith
et al., 1999). Chronically infected asymptomatic adults and older
children account for a large proportion of infected individuals,
likely contributing to the sustained presence of the parasite in
regions with declining malaria morbidity and mortality (Owusu-
Agyei et al., 2002; Bousema et al., 2014; Sattabongkot et al., 2018).
Since gametocytes are known to be intermittently present even in
infections characterized by very low parasitemia, asymptomatic
individuals could be a major reservoir for transmission
(Schneider et al., 2007; Ouédraogo et al., 2009; Lindblade et al.,
2013; Lin et al., 2014; Farid et al., 2017). Identifying individuals
with an increased likelihood of transmitting parasites is a high
priority for reducing the prevalence of malaria (Bousema
et al., 2014).

Gametocyte prevalence within a population is known to be
dependent on several factors, including age and malaria
endemicity (Ouédraogo et al., 2007; Stepniewska et al., 2008;
Farfour et al., 2012; Adomako-Ankomah et al., 2017), but
gametocytemia has been difficult to accurately characterize
because immature gametocytes sequester in the bone marrow
(Rogers et al., 2000; Joice et al., 2014) and gametocytes are
underreported by microscopy (Dowling and Shute, 1966; Koepfli
and Yan, 2018). Molecular diagnostic techniques for gametocyte
detection have been developed and are highly effective in
quantifying gametocyte-specific RNA transcripts as a relative
measure for gametocyte carriage (Niederwieser et al., 2000;
Wampfler et al., 2013; Pett et al., 2016). The gene product
pfs25 , which is highly expressed by female stage V
gametocytes, is commonly used as a marker for gametocyte
carriage, as it most accurately reflects the presence of mature
gametocytes that are infective to mosquitoes (Niederwieser et al.,
2000; Schneider et al., 2004). Additional gametocyte-specific
gene markers have been identified, including pfs16, which is
highly expressed in the early stages of gametocyte development
and remains expressed at lower levels throughout subsequent
stages of development (Bruce et al., 1994; Dechering et al., 1997;
Schneider et al., 2004). The gene product pfs48/45 is expressed by
intermediate-stage gametocytes, albeit at a lower level than either
pfs16 or pfs25 (Niederwieser et al., 2000; Eksi et al., 2008; Joice
et al., 2013; Aguilar et al., 2014; Chang et al., 2016; Dinko et al.,
2018). Although the majority of gametocytes appear to sequester
in the bone marrow during development (Rogers et al., 2000;
Joice et al., 2014), low levels of transcripts for early and
intermediate stages can be detected in peripheral blood
(Aguilar et al., 2014).

Despite the large geographical overlap between HIV-1 and
malaria prevalence, the impact of HIV-1 co-infection on malaria
is poorly understood for asymptomatic adults. Much of the prior
work pertaining to HIV-1 co-infection in adults with
asymptomatic malaria used less sensitive methods for parasite
detection, such as microscopy or rapid diagnostic tests (RDTs)
(Onyenekwe et al., 2007; Iroezindu et al., 2012; Omoti et al.,
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2013; Njunda et al., 2016), or have been hindered by relatively
small samples sizes (Berg et al., 2020). To date, co-infection with
HIV-1 has been associated with a reduction in P. falciparum-
specific antibody responses (Weiss et al., 2011; Subramaniam
et al., 2015), which may impair gametocyte-specific antibodies.
Some antiretroviral therapy (ART) drugs have been shown to
have gametocidal properties (Hobbs et al., 2013; Hobbs et al.,
2018), although these effects would not benefit individuals who
are unaware of their HIV status or who are not receiving
potentially gametocidal ART after a diagnosis of HIV-1
infection (Ng’ang’a et al., 2014). The only study to have
examined the functional effects of immunodeficiency virus co-
infection on transmissible gametocytes demonstrated that
gametocytemia and associated parasite transmission to
Anopheles freeborni were significantly increased in Rhesus
macaques co-infected with simian immunodeficiency virus
(SIV) and Plasmodium fragile (Trott et al., 2011). Thus,
there remains a notable gap in the literature concerning
the effect of HIV-1 on malaria transmission in ART-naïve,
asymptomatic adults. In this study, we report on the use of a
panel of gametocyte stage-specific qPCR assays to quantify
gametocyte transcripts in dried blood spots (DBS) from
asymptomatically infected adults seeking voluntary HIV-1
testing in Kombewa, Kenya.
MATERIALS AND METHODS

Sample Collection in Kombewa, Kenya
Samples for this study were collected under the supervision of the
Institutional Review Boards of the Uniformed Services
University of the Health Sciences (USUHS, Bethesda, MD),
Walter Reed Army Institute of Research (WRAIR, Silver
Spring, MD), and the Kenya Medical Research Institute
(KEMRI protocol SSC. No 2600) as part of a cross-sectional
molecular epidemiological study investigating the relationships
between HIV-1 and falciparum malaria in asymptomatic adults.
Informed consent was obtained from all participants; samples
were obtained as DBS from 1,762 healthy adults seeking
voluntary HIV testing at Kombewa County Hospital or
Manywanda Sub-County Hospital. From each patient, one to
five 50 µl blood spots were blotted onto Whatman® 903 Protein
Saver filter paper cards (GE Healthcare Life Sciences, Chicago,
IL, USA) in the outpatient laboratory. Whatman® 903 Protein
Saver filter paper cards have been validated as an effective
method for preservation of Plasmodium nucleic acids when
stored dry and frozen at -80°C (Jones et al., 2012), (Pritsch
et al., 2012). Cards were allowed to air-dry rapidly on the air
intake of a biological safety cabinet and, once dry, were placed
into individual sample storage bags with desiccant packets and
stored frozen at -80°C to minimize RNA degradation. At the
time of sample collection, patients were also tested for HIV using
the Alere Determine™ HIV 1/2 RDT (Abbott Laboratories,
Chicago, IL, USA) and for malaria using Parascreen® RDT
(Zephyr Biomedicals, Verna, Goa, India). Subsequently,
samples were tested for the presence of malaria parasite-
February 2021 | Volume 10 | Article 600106
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specific transcripts using a qPCR assay that detects 18S ribosomal
RNA and DNA for human Plasmodium species (Kamau et al.,
2011). Of the 1,133 samples found to be 18S positive (C. Kifude,
pers. comm.), 1,116 had adequate remaining DBS for gametocyte
transcript analysis by qPCR. Samples collected for this study
were also analyzed for the prevalence of antifolate resistance
makers in the context of HIV-1 co-infection (Torrevillas
et al., 2020).
Nucleic Acid Extraction From DBS and
cDNA Synthesis
DBS were cut out of filter paper cards and minced with a single
use razor blade to eliminate the risk of cross-contamination.
Filter paper pieces were then treated with Buffer AL, Proteinase
K, and Buffer ATL (Qiagen, Hilden, Germany) to rehydrate the
samples, lyse red blood cells and parasites, and degrade
unwanted proteins and enzymes found in human blood. Half
of the resulting lysate was used for RNA extraction using the
RNeasy® Mini Kit (Qiagen, Hilden, Germany), while the other
half was retained for additional studies. A total of 3 µl of each
RNA lysate was treated with DNase, then subjected to cDNA
synthesis using the QuantiTect® Reverse Transcription Kit
(Qiagen, Hilden, Germany) and QuantiTect® oligonucleotide
primers in a 20 µl reaction following the manufacturer’s
protocol. Due to limited volume and low concentration of
RNA in each sample, quality assessment and quantification of
RNA was not conducted prior to cDNA amplification. No-
template controls (NTCs) were included during the reverse
transcription step as negative controls.

Selection of Markers and Primer and
Probe Design
Novel TaqMan™ primer pairs and probes were designed against
P. falciparum gametocyte gene sequences in PlasmoDB (https://
plasmodb.org). Initially, five genes were selected: the sexual
commitment transcription factor pfAP2-G, an early gametocyte
marker pfs16, an intermediate gametocyte marker pfs48/45, a
male-specific marker pfs230p and an abundantly expressed
female-specific marker pfs25 (Supplementary Table 1).
Primers and probes were checked for melting temperature and
lack of predicted hairpin formation using Primer Express™ 3.0
software (Applied Biosystems, Foster City, CA, USA). To ensure
that primer and probe sequences were free of single nucleotide
polymorphisms, sequences were evaluated with NCBI BLAST™

(https://blast.ncbi.nlm.nih.gov/). Sequences for primers
(Integrated DNA Technologies, Coralville, IA, USA) and
probes (Life Technologies, Carlsbad, CA, USA) are listed in
Supplementary Table 2. Primers and probes were tested using
cDNA from asynchronous P. falciparum NF54 gametocyte
culture (data not shown) and samples from 126 18S-positive
volunteers from the study. pfAP2-G was detected in one sample
and pfs230p was not detected in any samples (data not shown).
Because low parasitemias were common among our
asymptomatic volunteers, we chose not to use pfAP2-G and
pfs230p as markers for further analyses of our samples.
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Verification of Gametocyte Gene
Expression Using Cultured P. falciparum
Gametocyte-specific gene expression was validated using the
gametocyte-producing P. falciparum 3D7 strain and the
gametocyte-deficient HB-2 strain (Bhasin and Trager, 1984),
(BEI Resources/MR4, Manassas, Virginia, USA). Parasites were
thawed from liquid nitrogen storage by dropwise addition of
NaCl solutions (Moll et al., 2013) and cultured using a previously
established protocol (Miao et al., 2013) adapted as follows. 3D7
and HB-2 cultures were established with 4% hematocrit. At ~5%
parasitemia, predominantly ring stage parasites were
synchronized using 5% D-sorbitol. This treatment was
repeated after 48 h, then the volume of medium in each flask
was doubled and parasites were maintained in culture for 48 h.
At this point, 20 U/ml heparin (sodium salt from porcine
intestinal mucosa, Sigma Aldrich, St. Louis, MO, USA) was
added to the culture to inhibit merozoite invasion of RBCs
(Boyle et al., 2010; Miao et al., 2013). Medium with added
heparin was exchanged daily. Daily thin smears were used to
monitor parasite growth and daily DBS were prepared using
Whatman® 903 Proteinsaver cards (GE Healthcare Life Sciences,
Chicago, IL, USA) until the appearance of stage V gametocytes
by microscopy or until no parasites could be observed on thin
film. Each DBS was prepared from 200 µl of pelleted parasite
culture that was rinsed twice in complete media to remove
heparin, then resuspended at ~50% hematocrit in a final
volume of 50 µl of complete medium. Whatman® cards were
air dried, then frozen at -80°C as described in Sample Collection
in Kombewa, Kenya.

Daily samples of 3D7 and HB-2 cultures prepared as above
were used to define transcript expression patterns of pfs16, pfs48/
45, and pfs25. Specifically, these transcripts were quantified for 12
days, starting the day before the culture medium was doubled
(Supplementary Figure 1). To control for variation in
parasitemia among DBS samples, gDNA extracted from each
sample (QIAamp DNA Mini Kit, Hilden, Germany) was used to
quantify single copy pfAQP (Vo et al., 2007) and the ring stage
marker pfsbp1 (Farid et al., 2017) for normalization of transcript
expression to genomes per µl and to monitor asexual
parasitemia, respectively, in each sample. Primer and probe
sequences for pfAQP and pfsbp1 are listed in Supplementary
Table 2. For both pfAQP and pfsbp1, qPCR assays were
conducted using TaqMan™ Fast Universal PCR Master Mix
(2X) with AmpErase™ UNG (ThermoFisher Scientific,
Waltham, MA, USA) in optical plates with optical film. Each
20 µl reaction included 1 µl of template with primers and probes
at 312.5 nM for pfAQP and 250 nM for pfsbp1. HB-2 cultures
were discontinued after day 6 because parasites could no longer
be visualized by thin smear, while 3D7 cultures were continued
until day 12, at which point, stage V gametocytes were present
by microscopy.

Creation of Plasmid Standards
To quantify gene expression using qPCR, a plasmid standard was
created for each gene target. The amplicon of interest was
amplified from cultured P. falciparum 3D7 and verified by gel
February 2021 | Volume 10 | Article 600106
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electrophoresis. The PCR product was then cloned into the pCR
2.1-TOPO TA vector and transformed into competent E. coli
using the TOPO® TA Cloning® Kit for Subcloning with
OneShot™ Top10 Chemically Competent E. coli (Invitrogen,
Carlsbad, CA, USA). The QIAprep® MiniPrep kit (Qiagen,
Hilden, Germany) was used to isolate and purify plasmid
DNA, which was then quantified by NanoDrop™2000C
(ThermoFisher Scientific, Waltham, MA, USA). Insertion of
the desired target amplicon into the plasmid was verified by
Sanger sequencing conducted by Genewiz (Frederick, MD,
USA). Plasmid dilutions for qPCR calibration were based on
the mass of the amplicon of interest and the concentration of
plasmid DNA as determined by NanoDrop™.

Quantitative Real-Time PCR (qPCR)
All qPCR reactions were conducted using the Applied
Biosystems 7500 Fast System (Applied Biosystems, Foster City,
CA, USA) and TaqMan™Multiplex Master Mix (ThermoFisher
Scientific, Waltham, MA, USA). All three gametocyte markers
were quantified in a single reaction in which the final
concentrations of each primer and probe were 250 nM. Each
plate included a series of ten-fold dilutions of a mix of the three
amplicon-specific plasmids and a water (no-template) control.
All samples and standards were analyzed in triplicate. Each
reaction included 1 µl of cDNA, 10 µl of master mix, 250 nM
of each primer and probe, and RNase-free water to 20 µl.
Reactions were performed in 96 well optical plates sealed with
optical film for 40–45 cycles with the following cycling
parameters: 50°C for 2 min, 95°C for 10 min (one cycle) and
95°C for 15 s and annealing, extension, and detection of
fluorescence at 60°C for 1 min (40 cycles).

qPCR Assay Validation and Optimization
Ten-fold dilutions ranging from 100,000 copies per µl to 0.1
copies per µl were used to determine the limits of detection and
quantification. Additional two-fold dilutions ranging from 10
copies per µl to 0.625 copies per µl were included to more
accurately determine the lower limits of the assays. For all three
gene markers, the lower limit of quantification was 2.5 copies per
µl of template and the lower limit of detection was 1 copy per µl
of template. Specificity was confirmed using cDNA from
cultured P. falciparum 3D7 parasites (as described in
Verification of Gametocyte Gene Expression Using Cultured P.
falciparum) and uninfected human blood. To verify the absence
of cross-reactivity in each triplex assay, the amplification
efficiency of each target was determined in the presence and
absence of primers, probes, and standards for the other two
targets (data not shown) and determined to be the same as the
single-plex assays (data not shown).

Analysis of qPCR Data
To facilitate comparisons among runs, cycle threshold (Ct)
values were manually adjusted to 0.2 Ct for standards and
were analyzed using semi-logarithmic nonlinear regression in
GraphPad Prism 6 (GraphPad, San Diego, CA, USA). Ct values
for samples were interpolated using a semi-logarithmic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
distribution of standard values to calculate copy number per
µl. Plates were excluded from analysis if NTCs were positive, if
reaction efficiency was below 90% or above 105%, or if the
average Ct value for any plasmid standards differed by more than
two standard deviations from the aggregated Ct average for each
particular dilution. Representative standard curves for all gene
markers are shown in Supplementary Figure 2. Samples were
considered positive if at least two of three replicates were
positive. If only one replicate was positive, the sample cDNA
was re-analyzed by qPCR and positivity was affirmed if at least
three wells were positive from the two assays.

Statistical Analyses
Data were analyzed using GraphPad Prism 6. A sample was
considered to be gametocyte-positive if transcripts for at least
one gametocyte-specific marker were reproducibly detected.
Differences in prevalence between two groups were analyzed
using Fisher’s exact test, while differences among three or more
groups were analyzed using Chi-square. Differences in copy
numbers were analyzed using Mann-Whitney for two groups
or Dunn’s multiple comparisons tests for three or more groups.
RESULTS

Prevalence of Gametocyte-Specific
Transcripts in Samples From Human
Volunteers
Of the 1,116 18S-positive samples tested for the presence of
gametocyte-specific transcripts, 229 (20.5%) were positive for at
least one gametocyte marker (pfs16, pfs48/45, and/or pfs25)
(Table 1). This cohort of 1,116 individuals was comprised
primarily of adults under the age of 30 years and included
slightly more females than males (Table 2, Supplementary
Figure 3). To evaluate effects of age on gametocyte transcript
carriage, study participants were divided into four age brackets
defined by the interquartile ranges for the cohort. For both males
and females, there were significant differences in gametocyte
prevalence between age brackets, as determined by Chi-squared
analysis (Table 2), which resulted in P values of 0.047 and 0.0017
for males and females, respectively. Interestingly, the prevalence
of gametocyte positive individuals was highest in the oldest age
bracket for males (29.9%) but lowest in the oldest age bracket for
females (12.1%, Table 2).
TABLE 1 | Comparison of gametocyte positivity, as measured by detectable
transcripts for one or more gametocyte markers, by HIV-1 status.

Gametocyte
Positive

Gametocyte
Negative

Total

HIV Positive 44 (3.9%) 85 (7.6%) 129 (11.6%)
HIV Negative 185 (16.6%) 802 (71.9%) 987 (88.4%)
Total 229 (20.5%) 887 (79.5%) 1,116 (100.0%)
February
 2021 | Volume 10 |
All 1,116 samples were positive for Plasmodium 18S by qPCR. Data are represented as
numbers of samples and percentages (in parentheses) of the total cohort.
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HIV-Positive Individuals With
Asymptomatic Malaria Were More Likely
to Have Gametocyte-Specific Transcripts
129 individuals (11.6% of this cohort, Table 1) were found to be
HIV-positive by RDT. Gametocyte positivity by any marker was
significantly higher in HIV-positive individuals (44/129 or 34.1%
of all HIV-positive individuals in this cohort; Table 1) than in
HIV-negative individuals (185/987 or 18.7% of all HIV-negative
individuals in this cohort; Table 1). The relative risk of
gametocyte positivity in the HIV-positive group was 1.82 times
higher than that of the HIV-negative group (P<0.0001, Fisher’s
exact test). In addition, the prevalences of pfs16 and pfs25
transcripts were significantly different between HIV-positive
and HIV-negative individuals (P=0.0271 and P<0.0001,
respectively, Supplementary Tables 3 and 4). Given that only
38 samples were positive for pfs48/45, prevalence by HIV-1 status
was not evaluated for this marker.

Prevalence of Individuals With Gametocyte
Transcripts Was Associated With HIV-1
Status, but Age and Gender Had Little
Impact on This Association
Based on the association of HIV-1 status with detectable
gametocyte transcripts (Table 1), we sought to determine
possible effects of age and gender on this association
(Supplementary Table 5). Among all comparisons, the
prevalence of individuals with detectable gametocyte
transcripts differed only between HIV-negative males and
females who were between 31–56 years old (P=0.0005, Fisher’s
exact test), indicating that gender and age had little effect on the
association of gametocyte transcript prevalence with HIV-
1 status.

Because of the small sample sizes for several age brackets
(Table 2), age groups were analyzed independently of gender for
the prevalence of gametocyte transcripts by HIV-1 status and age
(Table 3). For individuals between 31–56 years of age, there was
a significant difference (P=0.0023) in gametocyte transcript
prevalence between HIV-positive and HIV-negative individuals
(Table 3). In this age bracket, the relative risk of gametocyte
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
positivity was 2.21 times higher in HIV-positive individuals
compared to HIV-negative individuals.

HIV-Positive Individuals Had a Higher
Abundance of Gametocyte-Specific
Transcripts
To determine whether HIV-1 status is associated with
abundance of gametocyte transcripts, pfs16, pfs48/45 and pfs25
copy numbers per µl were compared between HIV-positive and
HIV-negative groups. pfs25 copy number per µl was significantly
higher in HIV-positive individuals compared to HIV-negative
individuals (Figure 1A), with a similar trend for pfs16 (Figure
1B). There was no significant difference between HIV-positive
and HIV-negative individuals for pfs48/45, perhaps due to the
small number of individuals positive for these transcripts (data
not shown).

Malaria Positivity by RDT Was Associated
With an Increased Risk of
Gametocyte Carriage
Of the 303 samples that were malaria RDT positive, a total of 104
(34.3%) were also gametocyte positive by qPCR (Table 4) and
this was associated with an increased risk of being gametocyte
positive by any marker (RR=2.23, P<0.0001). By individual
gametocyte marker, there was no difference in gametocyte
copy numbers between malaria RDT positive and malaria RDT
negative individuals for pfs16 (P=0.1157, Mann-Whitney test;
Supplementary Figure 4A) or pfs25 (P=0.4844, Mann-Whitney
test; Supplementary Figure 4B); pfs48/45 was not evaluated
because too few samples were positive for that marker (data not
shown). However, when HIV-1 RDT positivity was included as a
variable, median pfs25 copy numbers were significantly different
between individuals who were malaria RDT and HIV RDT
positive and individuals who were RDT negative for both
infections (Figure 2).
DISCUSSION

This cross-sectional cohort provided a unique opportunity to
analyze prevalence of gametocyte transcript positivity in an
asymptomatic and antiretroviral therapy (ART)-naïve
population in a region of holoendemic malaria transmission.
TABLE 3 | Comparison of gametocyte-positive samples (n) by HIV-1 status
and age.

Age HIV-Positive HIV-Negative P Value RR

n Positive (%) n Positive (%)

18–20 10 2 (20.0) 287 47 (16.4) 0.67 ns
21–24 19 9 (47.4) 237 57 (24.0) 0.052 ns
25–30 48 13 (27.1) 228 40 (17.5) 0.16 ns
31–56 52 20 (38.5) 235 41 (17.4) 0.0023 2.21
Total 129 44 (34.1) 987 185 (18.7) 0.0001 1.82
F
ebruary 2021 | Volume 1
0 | Article 60
Positive (%) volunteers were positive for at least one gametocyte marker. For each age
range, significant differences by HIV-1 status were evaluated by Fisher’s exact test and
relative risk (RR) is indicated for age brackets which were significantly different.
TABLE 2 | Positivity for any gametocyte-specific marker (pfs16, pfs48/45 or
pfs25) by gender and age.

Age
Range

Total n Gametocyte
Positive (%)

Gametocyte
Negative (%)

P Value

Male
18–20 129 22 (17.1) 107 (82.9) 0.047
21–24 101 21 (20.8) 80 (79.2)
25–30 131 25 (19.1) 106 (80.9)
31–56 147 44 (29.9) 103 (70.1)
All Ages 508 112 (22.0) 396 (78.0)

Female
18–20 168 27 (16.1) 141 (83.9) 0.0017
21–24 155 45 (29.0) 110 (71.0)
25–30 145 28 (19.3) 117 (80.7)
31–56 140 17 (12.1) 123 (87.9)
All Ages 608 117 (19.2) 491 (80.8)
P values were calculated for each gender by comparing the number of positive and
negative samples in each age bracket by Chi-square analysis.
0106
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In this population, 20.5% of asymptomatic adults had detectable
gametocyte transcripts (Table 1), and HIV-positive individuals
were 1.82 times more likely to have detectable gametocyte
transcripts (P<0.0001). HIV-positive individuals also had
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
significantly higher gametocyte transcript copy numbers,
suggesting that HIV-positive individuals may be more likely to
harbor gametocytes and to maintain higher gametocytemias than
HIV-negative individuals.

Gametocyte carriage has been reported to decrease with age,
potentially due to the development of gametocyte-specific
immunity (Adomako-Ankomah et al., 2017), but we observed
this trend only in female participants (Table 2). Overall, male
participants had a higher gametocyte prevalence, but
interestingly, prevalence increased with age (Table 2). This
effect appeared to be dependent on HIV-1 status, as separating
groups by HIV-1 status resulted in almost identical gametocyte
prevalence between males and females of each age group
(Supplementary Table 5). Previous research has shown that
gametocyte prevalence is reduced in individuals 35 years of age
or older (Adomako-Ankomah et al., 2017), and yet, individuals
between 31 and 56 years of age who were HIV-positive were at a
significantly higher risk of carrying gametocyte transcripts
(Table 3).

The specific mechanisms of increased gametocyte carriage in
the context of co-infection remain to be elucidated but could be
related to impaired T-cell dependent antibody responses
impacting late-developing transmission blocking immunity. In
particular, the finding of an increased prevalence of gametocyte
transcripts in older adults suggests that HIV infection may
interfere with gametocyte-specific immunity. Co-infection with
Schistosoma haematobium, which is known to impact antibody
development, has been found to be reduce some P. falciparum
gametocyte-specific antibody levels (Ateba-Ngoa et al., 2016).
HIV has been shown to modulate B cell populations and impact
P. falciparum-specific B cells (Frosch et al., 2017), but the impact
of these perturbations on gametocytes has yet to be determined.
Additionally, angiogenic cytokines, including IL-1b, IL-6, and
IL-8, could play a role in the release of mature gametocytes from
the bone marrow (Messina et al., 2018), and these cytokines have
been found to be dysregulated during HIV infection (Kedzierska
and Crowe, 2001), potentially leading to the premature release of
developing gametocytes. However, in the SIV and P. fragile
model of co-infection, systemic immune activation, rather than
immune dysfunction, was implicated as the cause of increased
TABLE 4 | Gametocyte positivity, as measured by detectable transcripts for one
or more gametocyte marker, by positivity of malaria rapid diagnostic test (RDT) in
samples that were Plasmodium 18S-positive by qPCR.

Gametocyte
Positive

Gametocyte
Negative

Total

RDT Positive 104 (9.3%) 199 (17.8%) 303 (27.2%)
RDT Negative 125 (11.2%) 688 (61.6%) 813 (72.8%)
Total 229 (20.5%) 887 (79.5%) 1116 (100.0%)
Data are represented as number of samples in each group and percentage of total cohort
(in parentheses). Individuals who were RDT positive were more likely to be gametocyte
positive, Relative Risk=2.23, P<0.0001, Fisher’s exact test.
FIGURE 2 | pfs25 copy number/µl by combined HIV RDT (H) and malaria
rapid diagnostic test (RDT) (M) status. Data are represented as medians and
interquartile ranges and were analyzed by Dunn’s multiple comparisons test,
*P ≤ 0.05.
A B

FIGURE 1 | Comparison of pfs25 (A) and pfs16 (B) transcript copy number per µl by HIV status for combined genders and age groups. Black lines indicate
geometric means. Transcript copy numbers per µl were significantly different between groups by Mann-Whitney test (pfs25: P=0.0006, pfs16: P=0.0581).
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gametocytemia (Trott et al., 2011). That model, where a
profound increase in gametocyte carriage in co-infected
macaques was first discovered, most closely represents malaria
in a naïve individual who has recently been infected with HIV.
Given that our volunteers were not followed over time,
longitudinal studies to capture early and later stages of co-
infection are needed to understand the potential impacts of
changes in host immunity on gametocyte carriage. Future
studies of CD4+ T cell counts, P. falciparum-specific
antibodies, and cytokine levels, for example, would increase
our understanding of HIV-related immune dysfunction and
increased gametocytemia.

This study provides insight into the utility of various molecular
and clinical diagnostic techniques for measuring gametocyte
carriage. RDTs, which are commonly used in the clinic, remain
useful tools for the diagnosis of clinical malaria but provide little
information on gametocyte carriage, because gametocyte carriage
does not necessarily reflect asexual parasitemia (Koepfli et al., 2015)
andcanoccur in the absenceofhighparasitemias (Faridetal., 2017).
Over half of the gametocyte positive individuals in this study were
malaria RDT-negative despite there being little difference in pfs25
copy number between groups, highlighting the importance of
considering gametocyte carriage and potential transmission
independently of clinical presentation or RDT results. In our
study, 79 samples, or 34.5% of gametocyte positive samples, were
positive for only pfs16 and/or pfs48/45 (data not shown), markers
that are expressed most highly in gametocyte stages sequestered in
the bone marrow but are also expressed in mature gametocytes
(Schneider et al., 2004). This finding might indicate the premature
release of developing gametocytes into the circulation, but in the
absence of detectable immature gametocytes by microscopy, could
also be interpreted as persistent expression of these markers in
circulating mature gametocytes, particularly in samples that were
low-level positives for only pfs16. Although pfs16 transcripts are
present in committed rings (Dechering et al., 1997), we found that
pfs16was mostly highly expressed several days after the addition of
heparin to the culturemedia (Supplementary Figure 1), suggesting
that early committed rings may not be the sole source of detectable
pfs16 transcripts. Interestingly, pfs16 expression, which has been
shown to peak in early gametocytes but is expressed throughout
gametocyte development,was detected at higher levels than pfs25 in
mature gametocytes (Supplementary Figure 5), suggesting that
pfs16 could be useful for detecting mature gametocytes that are too
few to be detected using pfs25 alone.

Potential causes for the absence of gametocytemarker detection
are manifold and, beyond purely technical issues, can include low
levels of circulating parasites and/orparasite sequestration aswell as
truly negative samples. It has been particularly challenging to detect
mature male gametocytes, which tend to be less abundant than
female gametocytes (Annecke, 1927). Mature female gametocytes
are believed to be the primary determinant of transmission to
mosquitoes (Bradley et al., 2018) with the number of male
gametocytes becoming more important as gametocyte density
declines (Mitri et al. , 2009). Although we may have
underestimated gametocytemia because we did not include male-
specificmarkers (Schneider et al., 2015), recent work has suggested,
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based on a high prevalence (88%) of female-biased gametocytemias
among positive carriers, that analysis of pfs25 alone is suitable for
estimating gametocyte prevalence (Gruenberg et al., 2020). Several
promising new targets for the detection of male gametocytes,
however, may improve our understanding of the relevance of
gametocyte sex ratios to transmission (Stone et al., 2017;
Meerstein-Kessel et al., 2018; Wang et al., 2020). Finally, while
some studies have concluded that gametocyte transcript positivity is
positively correlated with mosquito infectivity (Pett et al., 2016;
Adomako-Ankomah et al., 2017; Stone et al., 2017), gametocyte
commitment can occur without maturity to stage V (Schneider
et al., 2004) and gametocytemia is not the only predictor of
mosquito infectivity (Eckhoff, 2012; Beshir et al., 2013;
Nguitragool et al., 2017; Essangui et al., 2019).

The true effects of co-infection on transmission can only be
determined through direct quantification of infectivity to
mosquitoes. In the previously mentioned SIV/P. fragile model,
increased oocyst counts in mosquitoes fed on blood from the co-
infected animals was seen, suggesting that co-infected individuals
may have enhanced infectivity to mosquitoes (Trott et al., 2011).
Future studies should include standard membrane feeding assays
(SMFA) to evaluate this effect in humans. Correlative studies
connecting the infectivity of mosquitoes and immune cell typing
in the context of malaria and HIV-1 co-infection would also be
informative. In spite of the limitations of our study, this work is
among the first to examine the impact of HIV-1 co-infection on
falciparum gametocyte development in asymptomatic adults,
and highlights the potential that asymptomatic adults co-
infected with HIV-1 could serve as reservoirs of transmission
in areas that are holoendemic for malaria transmission. The
identification of individuals at high risk for transmitting malaria
could be used to guide treatment with gametocidal drugs, further
reducing the prevalence of falciparum malaria in support of
ongoing efforts at elimination and eradication.
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