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Transfection With Plasmid Causing
Stable Expression of a Foreign Gene
Affects General Proteome Pattern in
Giardia lamblia Trophozoites

Manfred Heller', Sophie Braga', Norbert Miiller?* and Joachim Miiller®*

" Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern,
Switzerland, 2 Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Parasitology, University of
Bern, Bern, Switzerland

Giardia lamblia is an important causative agent of persistent diarrhea in humans, domestic
animals, and cattle. Basic research is usually performed with the strain WBC6 and
includes genetic manipulations such as transfections. Here, we investigate how
transfection with a plasmid causing stable expression of a foreign gene affects the
whole proteome pattern. Using shotgun mass spectrometry, we compare the
proteomes of untransfected trophozoites to trophozoites transfected with Escherichia
coli glucuronidase A (GusA). Besides GusA, which is detected in the transfected
trophozoites only, the proteomes of untransfected and transfected trophozoites differ
by 132 differentially expressed proteins. In particular, transfection induces antigenic
variation. Since transfection causing stable expression affects the proteome pattern,
transfection experiments should take into account this effect. Due to a unique peptide
panel, GusA is an example for a suitable internal standard for experiments involving
transfected cells. Data are available via ProteomeXchange with identifier PXD022565.

Keywords: model organisms, reverse genetics, untargeted proteomics, experimental proteomics, controls
and standards

INTRODUCTION

The diplomonadid Giardia lamblia (syn. G. duodenalis, G. intestinalis), is an early diverging,
anaerobic eukaryote (Miiller and Miiller, 2016; Cernikova et al., 2018) causing persistent diarrhea,
especially in regions with low hygienic standards (Hemphill et al., 2019). After stomach passage,
ingested cysts transform into trophozoites colonizing the duodenum. Hosts in good physical
condition face the strongest symptoms of giardiasis 1 week post infection, and recover within two to
three weeks. Rarely, the infection becomes chronical causing severe damage of the intestinal
epithelium, which may result in the development of irritable bowel syndrome (Allain et al., 2017;
Litleskare et al., 2018). Giardiasis can be regarded as a zoonosis since it occurs in humans as well as
in other mammals (Thompson, 2004).

The largest part of laboratory research is based on the strain WBC6, cloned from an isolate
obtained from a patient (with the initials W.B.) suffering from chronical giardiasis (Nash et al., 1985;
Campbell and Faubert, 1994). WBC6 is amenable to reverse genetics via transfection with
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double-stranded RNA (Furfine and Wang, 1990) or DNA
(Singer et al., 1998; Sun et al., 1998), respectively. The genome
of WBC6 (Morrison et al., 2007) and of other strains have been
sequenced so far (see www.giardiadb.org). One unique feature of
the Giardia genome is the presence of more than hundred open
reading frames encoding cysteine-rich surface proteins, the so-
called “variant-specific surface proteins” (VSPs), the “cysteine-
rich proteins”, and the “high cysteine membrane proteins”
(HCMPs). In a recently published chromosome-scale reference
genome, 133 genes encoding for VSPs, as well as other highly
repetitive genes such as 184 never-in-mitosis gene a (NIMA)
related kinases and 305 ankyrin-repeat proteins (formerly
annotated as proteins 21.1), are distributed over all five
chromosomes (Xu et al., 2020). VSPs are considered as the
predominant surface antigens of G. lamblia trophozoites
(Adam et al, 2010). According to a generally admitted
hypothesis, one single trophozoite expresses only one VSP at
any one time (Nash et al., 2001). The switching from one VSP to
another is called “antigenic variation” (Nash, 2002). Antigenic
variation depends on epigenetic and post-transcriptional
mechanisms, as evidenced by various studies (Kulakova et al.,
2006; Prucca et al., 2008) and reviewed elsewhere (Prucca et al.,
2011; Lagunas-Rangel and Bermudez-Cruz, 2018).

Shotgun mass spectrometry proteome studies have revealed
that WBC6 trophozoite populations and trophozoite populations
from other strains express an impressive number of VSPs at the
same time (Emery et al., 2014; Emery, Lacey et al., 2015a; Emery
et al,, 2015b). Moreover, strain-dependent antigenic variation
occurs upon drug pressure, concomitantly to large changes in
expression patterns of other proteins (Emery et al., 2018; Miiller
et al., 2019).

As for many other model organisms, reverse genetics based
on transfection with suitable plasmids or RNA viruses leading to
transient or stable overexpression of genes of interest constitute
an important research tool for Giardia (Davis-Hayman and
Nash, 2002). In current protocols, transfectants are selected via
a resistance marker encoded by the transfected plasmid, in
particular neomycin phosphotransferase (Sun et al., 1998) and
puromycin acetyltransferase (Singer et al., 1998; Jiménez-Garcia
et al., 2008). Since exposure to drugs and selection of resistance
causes marked changes in gene expression patterns, it is logical to
ask which side effects the transfection procedure has on gene
expression in the transfected cells, independently of the
transfected gene. In one of the first studies addressing this
topic on the transcriptional level, neomycin and puromycin
selection affected the expression patterns of various genes (Su
et al., 2007).

Based on these findings, we contend that stable transfection of
G. lamblia based on puromycin selection induces changes in
proteome patterns to the same extent as differences amongst
strains from different genotypes and differences between drug
resistant and susceptible strains of the same background. Using
shotgun mass spectrometry, we compare the proteomes of G.
lamblia WBC6 trophozoites transfected with a plasmid
containing Escherichia coli glucuronidase A (GusA) and
Streptomyces alboniger puromycin_N-acetyltransferase (Pac) as

a resistance marker (Singer et al., 1998) with untransfected
trophozoites. The GusA transfection plasmid has been used by
our group as a standard control in previous experiments (Nillius
et al, 2011; Miller et al.,, 2013) involving transgenic Giardia.
GusA-transfected trophozoites are not affected in growth (Miiller
et al, 2009) and have a metabolomics profile similar to
untransfected trophozoites (Miiller et al., 2020b). Here, we
investigate the impact of transfection on the proteome pattern
with a major focus on antigenic variation. Furthermore, we ask
the question whether the transfected transgenes, i.e. the
resistance marker Pac, GusA, or both can be used to estimate
the expression level of the transgene in comparison to
“housekeeping” proteins.

MATERIALS AND METHODS

Chemicals

If not otherwise stated, all biochemical reagents were from Sigma
(St Louis, MO, USA). Puromycin was obtained from Invivogen
(Toulouse, France).

Axenic Culture, Harvest, and Storage of
Giardia lamblia Trophozoites

Trophozoites from G. lamblia WBC6 were grown under
anaerobic conditions in 10 ml culture tubes (Nunc, Roskilde,
Denmark) on modified TYI-S-33 medium as previously
described (Clark and Diamond, 2002). Subcultures were
performed by inoculating 100 pl of cells from a confluent
culture detached by incubation on ice for 15 min to a new
tube containing 10 ml culture medium (Miiller et al., 2006).
Trophozoites were harvested by incubation on ice for 15 min
followed by centrifugation (300xg, 10 min, 4°C).

Transfection of Giardia lamblia
Trophozoites

Transfection with the plasmid pPAC-V-GusA (Miiller et al.,
2009) and selection of transgenic trophozoites were performed as
previously described (Yee and Nash, 1995; Singer et al., 1998).
Briefly, prior to transfection, 1 pg of pPAC-V-GusA (in 20 pl
digest mix) were linearized by digestion with Swal (New England
Biolabs, Ipswitch, MA) according to the instructions by the
manufacturer. Then, 107 trophozoites from a confluent culture
were mixed with the digested plasmid DNA and incubated on ice
for 5 min. Electroporation of trophozoites with linearized
plasmid DNA was done in a 0.4 cm cuvette using an ECM 600
(BTX, San Diego, CA) at setting 350 V, 1000 uF, and 720 Q.
Electroporated trophozoites were immediately transferred to
10 ml medium in a plastic tube and incubated overnight at
37°C before puromycin was added to a final concentration of
100 uM. After 4 days, the medium was replaced by fresh medium
containing 100 uM puromycin and drug-resistant cells visible
after about 8 days post transfection were grown to confluence
and then passaged once in the same medium. Before shotgun
mass spectrometry analysis, the untransfected cultures were
routinely passaged two times, the GusA-transfected cultures in
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absence of puromycin. Pellets were washed three times with ice-
cold PBS, counted, and stored at —-80°C for subsequent
proteomic analysis or for enzymatic assays, respectively.

Proteomics

Cell pellets were lysed in 100 pL 8M urea/100 mM Tris/HCI
pH8/cOmplete™ protease inhibitor cocktail (Roche Diagnostics,
Rotkreuz, Switzerland) by incubation for 15 min at room
temperature followed by 15 min in an ultrasonic water bath.
Protein concentration was determined by BCA assay, followed
by reduction and alkylation of proteins with 10 mM DTT for
30 min at 37°C and 50 mM iodoacetamide for 30 min at 37°C in
the dark. Proteins were precipitated at —20°C by addition of 5 vol
cold acetone and incubation at —20°C overnight. All liquid was
carefully removed and the pellet dried in ambient air for 15 min
before reconstitution of proteins to a concentration of 1mg/ml in
8 M urea, 50 mM Tris-HCI pH 8.0. An aliquot corresponding to
10 ug protein was digested by trypsin (1:50 trypsin/protein ratio)
for 6 hours at 37°C after dilution of urea concentration to 1.6M
with 20 mM Tris-HCI pH 8.0 and 2 mM CaCl,. The digests were
acidified with TFA (1%) and analyzed by LC-MS/MS. Three
repetitive injections of an aliquot corresponding to 500 ng
protein digest were analyzed on an EASY-nLC 1000 coupled to
a QExactive HF mass spectrometer (ThermoFisher, Reinach,
Switzerland). Peptides were trapped on an Acclaim
PepMap100 C18 pre-column (3um, 100 A, 300 um x 5 mm,
ThermoFisher, Reinach, Switzerland) and separated by backflush
on a C18 column (3pm, 100 A, 75um x 15 cm, Nikkyo Technos,
Tokyo, Japan) by applying a 60 min gradient of 5% acetonitrile to
40% in water, 0.1% formic acid, at a flow rate of 400 nl/min.
Peptides of m/z 400-1,400 were detected with resolution of
60,000 applying an automatic gain control (AGC) target of
1E06 and a maximum ion injection time of 50 ms. A top
fifteen data dependent method for precursor ion fragmentation
with a stepped 27% normalized collision energy was applied with
the following settings: precursor isolation width of 1.6 m/z,
resolution 15,000, AGC of 1E05 with a minimum target of
1E03, maximum ion time of 110 ms, charge exclusion of
unassigned and 1+ ions, peptide match on, and dynamic
exclusion for 20 s, respectively. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE (Perez-Riverol et al., 2019) partner
repository with the dataset identifier PXD022565.

Statistics

The MS data for each strain consisted of three biological replicates,
with three technical replicates each. All MS data were processed by
MaxQuant (version 1.6.14.0) with matching between runs for the
same strain activated, but not between different strains, in order
to avoid over-interpretation of the data. Fragment spectra were
interpreted against a recent Giardia protein sequence database
in FASTA format (GiardiaDB-47_GintestinalisAssemblage
AWB_AnnotatedProteins), supplemented by the two protein
sequences of GusA and Pac from Swissprot database (accession
numbers P05804 and P13249). The trypsin cleavage rule
allowed amide bond cleavage after lysine and arginine but not if a
proline follows and up to three missed cleavage sites, fixed

carbamidomethylation modification of cysteine residues, variable
oxidation of methionine and acetylation of protein N-termini.
Precursor and fragment mass tolerances were set to 10 and 20
ppm, respectively. Peptide spectrum matches, peptide and protein
group identifications were filtered to a 1% false discovery rate (FDR)
based on reversed database sequence matches, and a minimum of
two razor or unique peptides were required to accept a protein
group identification.

Protein identifications considered as contaminations (e.g.
trypsin) as well as proteins identified only by site were
removed for statistical validation. The normalized label-free
quantification (LFQ) protein group intensities as calculated by
MaxQuant and a top3 approach were used for relative proteome
quantifications. For top3, peptide intensities were median-
normalized to the global median, then missing peptide
imputation was done per sample by drawing values from a
Gaussian distribution of width 0.3x sample standard deviation
centered at the sample distribution mean minus 1.8x sample
standard deviation if there were at least two peptide intensities in
a group, otherwise a Maximum Likelihood Estimation (MLE)
method was applied, followed by summation of the three most
intense peptides per protein group to a surrogate of the real
protein abundance, named iTop3. For LFQ values, we imputed
with the same left-censored method as for peptides if there was a
single missing protein LFQ value in the three biological
replicates. Any remaining missing values were again imputed
by the MLE method. In order to perform statistical tests, missing
iTop3 or LFQ values were further imputed at the protein level
using the MLE method, and the final imputed LFQ or iTop3
values were called iLFQ or iiTop3, respectively.

Differential expression tests were performed by applying the
(Welch-) Student’s t-test (unequal variance). Log2-fold changes
and adjusted p-values (FDR-controlled Benjamini and Hochberg
correction) were reported. Furthermore, a check was performed
by repeating the imputation cycle and significance testing 20
times. Protein groups with a persistent reporting of differential
expression were considered as true differentially expressed
between the two groups. A log2-fold change of at least one and
a corrected p-value of £0.05 were required to be considered as
significant. Statistical testing and imputation were made using a
set of freely available R package tools running under R studio.

RESULTS

Proteome Parameters of Giardia lamblia
Trophozoites

Shotgun mass spectrometry of the proteomes of untransfected G.
lamblia WBC6 trophozoites (WT) and of trophozoites
transfected with a plasmid containing the S. alboniger
puromycin-N-acetlytransferase (Pac) as a resistance marker
and the E. coli glucuronidase A gene (Gus A) resulted in the
identification of 20’091 unique peptides matching to 1’705
proteins. Moreover, 12 unique peptides matching to GusA
were consistently detected in the transfected trophozoites, but
not in the WT. The identified peptides are depicted in Figure 1.
Unique peptides matching to Pac could not be detected.
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The expression levels of GusA in the transfected trophozoites
were compared to four housekeeping proteins expressed at equal
LFQ and iTop3 levels in both transfected and untransfected strains,
namely pyruvate-ferredoxin oxidoreductase, arginine deiminase,
thioredoxin reductase, and glutamate dehydrogenase. The levels of
GusA were one to two magnitudes (in base 10) lower than the levels
of these proteins (Table 1).

Transfection Induces Significant Changes
in Giardia lamblia Trophozoite Proteomes
Overall analysis of the data by principal component analysis
(PCA) revealed that the proteomes from WT and GusA
trophozoites were distinctly separated along the principal
component 1. As expected, technical replicates clustered
together, whereas biological replicates were separated by
principal component 2 for both groups (Figures 2A, B).
Differences in the proteome patterns of both strains were
confirmed by Volcano plot analysis (Figure 2 C).

MVRPVETPTREIK KLDGLWAFSLDRENCGIDQR WWESALQ
ESR AIAVPGSFNDQFADADIR NYAGNVWYQREVFEFIPKGWA
GORIVLRFDAVTHYGK VWVNNQEVMEHQGGYTPFEADVTP
YVIAGK SVRITVCVNNELNWQTIPPGMVITDENGKKK QSY
FHDFFNYAGIHR SVMLYTTPNTWVDDITVVTHVAQDCNHA
SVDWQVVANGDVSVELRDADQQVVATGQGTSGTLQVVNPH
LWQPGEGYLYELCVTAK SQTECDIYPLR VGIRSVAVK GEQ
FLINHKPFYFTGFGR HEDADLR GK GFDNVLMVHDHALMDW
IGANSYR TSHYPYAEEMLDWADEHGIVVIDETAAVGENLS
LGIGFEAGNKPK ELYSEEAVNGETQQAHLQATK ELIARDK
NHPSVVMWSIANEPDTRPQGAR EYFAPLAEATR KLDPTRP
ITCVNVMFCDAHTDTISDLFDVLCLNRYYGWYVQSGDLET
AEKVLEKELLAWQEKLHQPITIITEYGVDTLAGLHSMYTDM
WSEEYQCAWLDMYHRVFDR VSAVVGEQVWNFADFATSQGI
LR VGGNKKGIFTRDRKPKSAAFLLQKRWTGMNEFGEKPQQG
GKQ

FIGURE 1 | Primary sequence of the transgene E. coli glucuronidase A with
the identified peptides highlighted in bold red letters. The underlined
sequence is a separate peptide generated from the longer peptide sequence
with a missed trypsin cleavage site at position twelve. Otherwise, trypsin
cleavage sites are indicated by a space. Each line consists of 40 amino acids.

Differentially Expressed Proteins

Further analysis of the dataset revealed that the proteomes of WT
and GusA contained 132 differentially expressed proteins,
namely 39 with higher levels in WT and 93 with higher levels
in GusA trophozoites, when the evaluation was done by both
iLFQ and iiTop3 algorithms as shown in Figure 3.

Besides 70 differentially expressed (DE) hypothetical proteins,
the two categories with the highest numbers of DE proteins,
namely 17, comprised surface antigens and proteins involved in
intermediary metabolism, followed by 14 proteins involved in
gene expression, cell cycle and development and 14 proteins
involved in cytoskeleton, flagella, adhesion and organelle
transport (Table 2). The complete list of the accession
numbers of the DE proteins is given as Supplementary Table S1.

Antigenic Variation
As mentioned above, surface antigens constituted one of the two
categories with the highest amount of DE proteins, namely 17. In
particular, 14 variant-specific surface proteins (VSP) had
significantly higher levels in GusA-transfected trophozoites and
one VSP in wildtype trophozoites. Conversely, only two high
cysteine membrane proteins (HCMP), namely 115066 and
25816, had significantly higher levels in WT than in GusA
trophozoites. The VSP 89315 was the predominant differential
surface antigen with significantly higher levels in wildtype
trophozoites. VSP14586 was the predominant DE VSP in
GusA trophozoites (Figure 4).

The expression levels of the major surface antigens, namely
the VSPs 188, 88, 8, and the HCMP with the ORF number 15317,
however, were not significantly affected (Table 3).

DISCUSSION

The present dataset confirms our initial hypothesis that the
transfection of G. lamblia by plasmids followed by an antibiotic-
based selection of transfected trophozoites affects the whole
genome expression pattern thereby confirming and extending
previous findings (Su et al, 2007). Furthermore, it induces
antigenic variation like other drug-based selections (Emery et al,
2018; Miiller et al., 2019) or in strains from different genetic
backgrounds (Emery et al., 2014; Emery et al., 2015a; Miiller et al.,
2020a). For instance, we have found 17 DE surface antigens

TABLE 1 | Major housekeeping proteins and transgenes in untransfected Giardia lamblia WBC6 wildtype (WT) and Escherichia coli glucuronidase A (GusA)-transfected trophozoites.

Protein Accession No. LFQ iTop3

WT GusA WT GusA
Pyruvate ferredoxin oxidoreductase 17063 10,464 + 407 8,096 + 70 249 + 36 196 £ 17
Arginine deiminase 112103 31,263 + 450 39,025 + 1,129 1,110 £ 431 1,550 + 289
Thioredoxin-reductase 9827 1,725 + 556 1,804 + 458 108 + 42 144 £33
Glutamate dehydrogenase 21942 10,315 + 1015 7,159 + 826 309 + 39 216 + 39
Glucuronidase A P05804 nd 128+ 7 nd 183+2
Puromycin-N acetyltransferase P13249 nd nd nd Nd

Mean values (+ SD) of LFQ, and iTop3 levels (x10°) are given for three biological replicates. The accession numbers of the transgenes are from the Uniprot database, the others from

GiardiaDB. nd, not detected.
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FIGURE 2 | Principal component analysis plots (A, B) and volcano plot (C) of proteome data set from G. lamblia trophozoites transfected with a plasmid containing
E. coli glucuronidase A (GusA) and of not transfected, control trophozoites (WT). The principal component analysis plots show for each strain, all technical and
biological (red square, brown circle, green triangle for WT; pink circle, blue square, turquoise diamond for GusA) replicates based on iiTop3 data (A) or iLFQ data (B).
The volcano plot (C) is based on iiTop3 data. Differential proteins identified by both iiTop3 and iLFQ algorithms are depicted in red.

between WT and Gus (one permutation) and 89 between WT and
nitro drug resistant C4 cells grown either in the presence of
metronidazole or nitazoxanide (three permutations), as shown
in a previous study (Miller et al., 2019; in particular
Supplementary Table S2 therein).

Since antigenic variation is caused by epigenetic (Lagunas-
Rangel and Bermudez-Cruz, 2018) and post-transcriptional
(Prucca et al., 2008) mechanisms, the degree of variation could
be used as a tool to estimate the impact of a given treatment, in
our case transfection, on these mechanisms. As generally
admitted, trophozoites express only one VSP on their surface
at the same time (Nash et al., 2001). Thus, the fact that the

number of differentially expressed VSPs is higher in the
transfected than in the untransfected trophozoite population is
indicative for a higher degree of diversification most likely caused
by the selection process. Moreover, the transfection and the
subsequent selection procedure may influence metabolism, cell
organization and motility, as indicated by a number of
differentials in these categories. In fact, we observe only small
metabolic differences between WT and GusA transfected strains,
as published in a previous study (Miiller et al., 2020b).

It is surprising that 12 unique peptides can be attributed to the
GusA protein thereby allowing an easy identification, but no
peptides to the puromycin resistance marker Pac protein, which
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TABLE 2 | Overview of differentially expressed proteins in untransfected
G. lamblia wildtype (WT) and E. coli glucuronidase A-transfected

iLFQ iiTop3 trophozoites (GusA).
(Hypothetical) function Higher in Higher in
WT high WT GusA
GusA low ) ) »
Surface antigens: (a) Variant-specific surface 1 14
proteins
(b) High cysteine membrane proteins 2 0
21.1 proteins (ankyrin repeat proteins without 1 3
kinase domain)
Gene expression, cell cycle, development 3 iR
WT low Intermediary metabolism 5 12
GusA high Transport of micromolecules 0 1
Cytoskeleton, flagella, adhesion and organelle 2 5
transport
Chaperones 0 2
FIGURE 3 | Venn diagram depicting the number of differentially expressed Hypothetical 25 45
proteins in transfected and untransfected G. lamblia trophozoites. Total 39 93

Untransfected trophozoites (WT) and trophozoites transfected with E. coli
glucuronidase A were subjected to MS shotgun analysis as described in
Materials and Methods. The differential proteins were determined via the iLFQ,
the iiTop3 algorithm or via both.

The proteins were identified by MS shotgun. Only proteins, which were differential by both
iiTop3 and ILFQ algorithms were considered. The complete dataset is available online, the
GiardiaDB open reading frame numbers and annotations of the differentials as
Supplementary Table S4.

89315 - 1

41472

B GusA
37093

OWT
25816
14586

136004
11521

115066
11470

113797

113450

113357

112801

112113

103992

101832

101765

0 50 100 150 200 250
LFQ (x 108)

FIGURE 4 | Quantitative assessments of differential surface antigens. Untransfected G. lamblia WBC6 trophozoites (WT; white bars) and E. coli glucuronidase
A-transfected trophozoites (GusA; black bars) were subjected to MS shotgun analysis as described in Materials and Methods section. For all proteins, mean values +
one standard deviation for LFQ intensities (x10°) in three biological replicates are shown. The proteins are termed by their respective accession numbers in the
GiardiaDB. 25816 and 113416 are high cysteine membrane proteins.
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TABLE 3 | Major surface antigens without significant differences in expression levels between untransfected G. lamblia WBC6 wildtype (WT) and E. coli glucuronidase A

(GusA)-transfected trophozoites.

Accession N° Annotation LFQ iTop3

WT GusA WT GusA
GL50803_101074 VSP with INR; VSP-88 1,315 £ 172 1,740 + 148 746 + 162 975 + 185
GL50803_112207 VSP 102 + 44 35+2 168 + 88 24 +2
GL50803_137612 VsP 195 + 28 352 + 27 119+ 10 218 £ 24
GL50803_137613 VSP with INR; VSP-188 3,368 = 217 3,170 + 96 3,104 + 96 2,728 + 237
GL50803_137617 VSP 102 £3 123+ 4 66 + 3 79+3
GL50803_137618 VSP with INR; VSP-8 979 + 173 637 + 54 619 + 157 386 + 37
GL50803_15317 HCMP group 1 835 + 110 401 + 23 495 + 102 330 + 29
GL50803_221693 (hypothetical), VSPAG 124 + 60 48+ 4 179+ 75 42+ 3
GL50803_33279 VSP 181 +12 118 +9 276 + 6 150 + 4

Mean values (+ SD) of LFQ and iTop3 levels (x10°) are given for three biological replicates. Only surface antigens with LFQ levels above 10° in at least one strain are shown. The accession

numbers of the GiardiaDB are given. HCMP, high cysteine membrane protein; V'SP, variant-specific surface protein.

has allowed to select the transfectants. The expression of both
proteins is controlled by the same promoter, namely the strong
promoter of the glutamate dehydrogenase (Singer et al., 1998).
The lack of unique Pac peptides could be due to a high similarity
to peptides derived from Giardia proteins—what is, however,
very unlikely—or to a rapid post-transcriptional silencing.

Consequently, each experiment investigating the role of a
given transgene should contain an irrelevant transfection (e.g.
with GusA) as a control. Untransfected WT trophozoites do not
reflect the impact of the transfection and selection procedures on
gene expression. So far, it is unclear how other genetic
manipulations such as RNA virus-mediated transfection
(Janssen et al., 2015) or CRISPR/Cas9 (Lin et al., 2019;
Mclnally et al, 2019) affect gene expression in G. lamblia.
Proteome studies should be performed with trophozoites
transfected by these methods and investigate the impact on
epigenetic and post-transcriptional regulation of gene
expression by estimating the degree of antigenic variation.
Further, more detailed studies comparing either different
selection methods, or different control genes, or both, would be
useful for helping researchers to determine methods that induce
minimal proteomic perturbation. Indeed, the ideal vector control
will induce minimal proteomic changes relative to wild-type
untransfected cells. By including a reference transgene such as
Gus A, expressing a clearly detectable, unique peptide may help
to establish an internal standard, e.g. for comparative studies in
different genetic backgrounds.
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