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Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the
leading cause of death from an infectious bacterium and is responsible for 1.8 million
deaths annually. The emergence of drug resistance, together with the need for a shorter
more effective regimen, has prompted the drive to identify novel therapeutics with the
bacterial cell surface emerging as a tractable area for drug development.Mtb assembles a
unique, waxy, and complex cell envelope comprised of the mycolyl-arabinogalactan-
peptidoglycan complex and an outer capsule like layer, which are collectively essential for
growth and pathogenicity while serving as an inherent barrier against antibiotics. A
detailed understanding of the biosynthetic pathways required to assemble the polymers
that comprise the cell surface will enable the identification of novel drug targets as these
structures provide a diversity of biochemical reactions that can be targeted. Herein, we
provide an overview of recently described mycobacterial cell wall targeting compounds,
novel drug combinations and their modes of action. We anticipate that this summary will
enable prioritization of the best pathways to target and triage of the most promising
molecules to progress for clinical assessment.
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INTRODUCTION

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has infected
approximately a third of the global population and is currently one of the leading causes of
death from an infectious disease (WHO, 2019a). The emergence and global spread of drug resistant
TB (DR-TB) has hampered effective control of the disease, creating an urgent need to identify novel
drug targets or to re-purpose existing antibiotics (Gautam et al., 2011; Conradie et al., 2020).
Considering this, cutting-edge molecular tools such as TnSeq, CRISPRi, and high-throughput
whole-cell phenotypic screening with large compound libraries coupled with whole-genome
sequencing are currently being used to rapidly identify drug targets and to discover novel anti-
mycobacterial drugs (Grzelak et al., 2019; Rock, 2019; De Wet et al., 2020). Recently, several
promising novel compounds and targets have been identified, particularly in the biosynthetic
gy | www.frontiersin.org November 2020 | Volume 10 | Article 6033821
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pathways of the mycobacterial cell wall (CW) (Dulberger et al.,
2019; Maitra et al., 2019). Herein, we specifically review recent
developments identifying new targets and inhibitory molecules
ranging from those that specifically inhibit the activity of a
particular enzyme in CW biosynthesis to those that may
indirectly enhance the activity of certain compounds by
functionally weakening the cell wall (Jeon et al., 2017; Maitra
et al., 2019). Several biochemical inhibitors of the targets
discussed are not approved drugs but despite this, further
characterization enable a clearer understanding of essential
pathways which aid in drug discovery. We focus our review on
recently discovered chemical matter with proven inhibitory
properties against mycobacterial CW biosynthesis enzymes and
highlight some that have entered the TB drug development
pipeline. We do not extensively review the biosynthesis of all
CW components nor we do we provide a historical narrative of
current CW targeting drugs. For this and related information, we
direct the reader to several prior reviews for further information
(Bhat et al., 2017; Abrahams and Besra, 2018; Maitra et al., 2019;
Vilchèze, 2020). For peptidoglycan (PG), we highlight the
compounds targeting the periplasmic component of polymer
biosynthesis/crosslinking specifically, the MraY/MurX
translocase and amidation modifications together with drugs
that can potentiate the activity of b-lactams. We also summarize
WhiB4-expression and its association with augmentin
sensitivity. In addition, we discuss targets associated with
regulation of PG biosynthesis such as the serine/threonine
protein kinases and also discuss FtsZ inhibitors. For
arabinogalactan (AG), we discuss inhibitors of RmlC and
GlmU inhibitors as the inhibition of DprE1 by BTZ043 is
widely discussed in literature.

The Mycobacterial Cell Wall
Mycobacterial species possess a CW with biochemically diverse
components, including primarily three distinct layers, namely:
PG, AG, and mycolic acids (MAs) which are surrounded by a
capsule (Abrahams and Besra, 2018). The capsule is comprised of
proteins, polysaccharides and lipids [phosphatidyl-myo-inositol
mannosides, diacyl trehaloses, phthiocerol dimycocerosates
(PDIMs), and phosphatidylethanolamine] (Abrahams and Besra,
2018). In addition to these components, there are several solvent-
ex trac table l ip ids inc luding non-covalent ly l inked
glycophospholipids and inert waxes, which are well known to
serve as a permeability barrier against antibiotics and play critical
role in pathogenesis and survival ofMtb. The diverse pathways for
biosynthesis of CW precursors, and subsequent processes required
for transport and polymerization have been exploited for
development of anti-mycobacterial drugs (Vilchèze, 2020). A
select set of recently identified CW targeting compounds and
those currently in clinical trials are summarized in Figure 1 and
Table 1.

Peptidoglycan Biosynthesis and Potential Targets
PG precursor (lipid II) biosynthesis includes major cytoplasmic
enzymes (MurA–F) that produce UDP-MurNAc-penta-peptide
or UDP-MurNGlyc-penta-peptide. In Gram-negative bacteria,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
fosfomycin targets MurA (Bensen et al., 2012) however, as the
mycobacterial MurA homologue lacks a critical active site
cysteine residue required for fosfomycin binding (De Smet
et al., 1999). Fosfomycin mimics able to bind the Mtb MurA
active site remain to be designed and tested. Interestingly, unlike
in other bacteria, where MurA activity is regulated by the binding
of UDP-MurNAc, mycobacterial MurA activity is regulated by
interaction with phosphorylated CwlM, a catalytically inactive
PG amidase (Boutte et al., 2016). Several FDA-approved drugs
and known MurB inhibitors, such as 4-thiazolidinones, were
screened against the Mtb MurB homologue using docking
simulations and target- or inhibitor-based approaches. As there
are significant similarities in the structures of MurC and MurD/
MurE and MurF, it should be possible to design inhibitors that
can inhibit the Mur enzymes simultaneously (Kouidmi et al.,
2014). Still within the cytoplasm, alanine racemase (Alr)
catalyzes the conversion of L-alanine to D-alanine which is
required to synthesize the peptide component of Lipid II (De
Chiara et al., 2020). There are currently several commercial
antibiotics targeting Alr (see Table 1), including D-cycloserine
(Kim et al., 2003). D-Cycloserine has been used to treat
pulmonary and extra-pulmonary TB, including MDR-TB, but
this is hampered by severe toxic side-effects (Azam et al., 2016).
Recently, it was shown that Alr activity remains detectable in
Mtb exposed to clinically relevant D-cycloserine concentrations
(Prosser and De Carvalho, 2013; De Chiara et al., 2020). This is
due to reversible binding via D-cycloserine-adduct hydrolysis
thus enabling dissociation and structural rearrangement within
the active enzyme to regain activity. This mechanistic insight
now provides a route for discovery of improved Alr inhibitors
(De Chiara et al., 2020). D-cycloserine also inhibits D-Ala:D-Ala
ligase (DdlA), another essential enzyme in PG biosynthesis
(Prosser and De Carvalho, 2013) and improvements on the
activity of this compound may yield increased activity to
DdlA also.

The next step involves the translocase MraY/MurX which
links the UDP-MurNAc/Glyc-L-Ala-D-Glu-meso-DAP-D-Ala-
D-Ala to a decaprenyl phosphate (C50-P) to form lipid I. This
enzyme has also emerged as an attractive target as it is essential in
Mtb (Hering et al., 2018). While the natural nucleoside inhibitors
of MraY, tunicamycin, and muraymycin D2 (MD2), have been
available, promising efforts to design new inhibitors are emerging
(Tanino et al., 2011; Chen et al., 2016; Chung et al., 2016;
Mashalidis and Lee, 2020).

MurG facilitates the transfer of GlcNAc from UDP-GlcNAc
to MurNAc or MurNGlyc of Lipid I to generate Lipid II
(Laddomada et al., 2019). MurG function is inhibited by
ramoplanin, a lipoglycodepsipeptide which binds lipid I (Lo
et al., 2000). Following this, the MurT-GatD complex and
AsnB amidate the a-carboxyl group of D-glutamate and the
D-carboxyl group of meso-DAP to form amidated Lipid II,
respectively (Münch et al., 2012; Levefaudes et al., 2015). These
amidation modifications are essential for PG cross-linking
(Pidgeon et al., 2019) and as such, the MurT-GatD complex
and AsnB remain high priority targets for development of PG
targeting antibiotics.
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Translocation of Lipid II into the periplasm is facilitated by
MurJ, which has emerged as a possible target of newly
discovered antibiotics including humimycins in gram-positive
bacteria. Humimycins are potent b-lactam potentiators and
display broad spectrum activity (Chu et al., 2018). However,
MurJ inMtb remains to be fully characterized and further work
in this regard will guide the design of Mtb MurJ inhibitors.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Ramoplanin, teixobactin, malacidin, and nisin bind periplasmic
Lipid II while the glycopeptides vancomycin and teicoplanin
bind the D-Ala-D-Ala terminus of lipid II preventing lipid II
polymerization (Pazos and Peters, 2019). Once lipid II is
translocated into the periplasm, the transglycosylase activities
of PBPs and SEDS proteins facilitate the linking of the
disaccharide component of Lipid II to the existing PG glycan
FIGURE 1 | Mycobacterial cell wall and its validated and potential drug targets. Shown are the cytoplasmic and periplasmic biosynthetic pathways for the different
polymers in the mycobacterial cell wall (peptidoglycan, arabinogalactan, mycolic acids, and glycolipids). Cytoplasmic and periplasmic enzymes already validated as
drug targets and potential drug targets are shown in red text. Membrane channels involved in PG recycling, GlcNAc-1-P-L-rha-Galf30-, DPA-, Ac1/Ac2PIM4-, and
surface glycolipid translocation remain to be identified (depicted by “?”).
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TABLE 1 | Drugs targeting mycobacterial cell wall biosynthesis pathways.

Drug target Drug Effect Tested in silico, in vitro,
in vivo (i.e., in animal
models) or in clinical

studies?

Ref

GlmU 4-Aminoquinazolines
(compounds HMP-05 and
HMP-15)

Inhibit PG precursor biosynthesis in vitro (Patel et al., 2020)

MurA Fosfomycin Inhibit PG precursor biosynthesis N/A (Mtb MurA is naturally
resistant to fosfomycin)

(Bensen et al., 2012)

MurB 4-Thiazolidinones Inhibit PG precursor biosynthesis in vitro (Kouidmi et al., 2014)
PBPs Moenomycin, b-lactams,

Carbapenems and
Cephalosporins

Inhibit PG cross-linking Clinical studies (except
moenomycin)

(Story-Roller and Lamichhane,
2018)

Alr Thiadiazolidinones and D-
cycloserine

Inhibits PG precursor biosynthesis Thiadiazolidinones (in
vitro), D-cycloserine
(clinical studies)

(Kim et al., 2003; Prosser and De
Carvalho, 2013; De Chiara et al.,
2020)

DdlA D-cycloserine Inhibits PG precursor biosynthesis Clinical studies (Prosser and De Carvalho, 2013;
De Chiara et al., 2020)

MurG Ramoplanin Inhibits PG precursor biosynthesis Not tested against Mtb (Lo et al., 2000)
BlaC Clavulanate,

diazabicyclooctanes
(nacubactam and
zidebactam), avibactam,
tazobactam, and sulbactam

Inhibit BlaC b-lactamase activity Clinical studies (Story-Roller and Lamichhane,
2018)

LD-
transpeptidase

Carbapenems and
cephalosporins

Inhibit PG cross-linking Clinical studies (Gold et al., 2016; Lopez Quezada
et al., 2020)

PknB 5-Substituted pyrimidine
analogs

Inhibit PknB signaling in vitro (Carette et al., 2018)

Carboxypeptidase Meropenem Inhibits PG remodeling in vivo (Kumar et al., 2012)
MurX/MraY Tunicamycin and muraymycin

D2 (MD2), capuramycin,
capuramycin analogs
(compound UT-01320),
compound SQ 641,
compound X-J99620886,
muramycin, caprazamycin,
and liposidomycin

Inhibit PG precursor biosynthesis Tunicamycin (in vitro),
MD2 (in silico),
capuramycin and
capuramycin analogs (in
vitro), compound SQ 641,
compound X-J99620886,
muramycin, caprazamycin,
and liposidomycin (in
vitro).

(Siricilla et al., 2015; Huszár et al.,
2017)

WecA Tunicamycin, caprazamycin,
compound X-J99620886,
and compound CPZEN-45

Inhibit Arabinogalactan precursor biosynthesis in vitro (Huszár et al., 2017)

GlfT1 and GlfT2 UDP-Galf derivatives Inhibit arabinogalactan precursor biosynthesis in vitro (Abrahams and Besra, 2018)
DprE1 >15 (compounds are listed in

Degiacomi et al., 2020)
Inhibit arabinogalactan precursor biosynthesis BTZ043, Macozinone,

TBA-7371 (clinical studies)
(Degiacomi et al., 2020)

AftA,B,C,D DPA analogs Inhibit periplasmic arabinogalactan biosynthesis in vitro (Abrahams and Besra, 2018)
EmbA,B,C Ethambutol (EMB) Inhibit periplasmic arabinogalactan biosynthesis Clinical studies (Zhang et al., 2020)
FabH Thiolactomycin analogs Inhibit mycolic acid biosynthesis in vitro (Senior et al., 2003)
MabA Anthranilic acid analogs Inhibit mycolic acid biosynthesis in vitro (Faion et al., 2020)
HadA Thiacetazone and thiocarlide Inhibit mycolic acid biosynthesis Clinical studies (Grzegorzewicz et al., 2015)
InhA Isoniazid (INH), ethionamide

(ETH), triclosan, diazaborines
(compound AN12855 and
AN12541), 2-(o-tolyloxy)-5-
hexylpnenols (compound
PT70), 4-hydroxy-2-pyridines
(compounds NITD-916 and
NITD-113), pyridomycin, and
compound GSK693

Inhibit mycolic acid biosynthesis INH and ETH (Clinical
studies), Triclosan,
diazaborines, 2-(o-
tolyloxy)-5-hexylpnenols,
4-hydroxy-2-pyridines (in
vitro), pyridomycin (in
vitro), and GSK693 (in
vivo)

(Dessen et al., 1995; Holas et al.,
2015; Martıńez-Hoyos et al., 2016)

KasA, KasB Cerulenin, plastensimycin,
TLM (thiolactomycin), and
compound GSK3011724A

Inhibit mycolic acid biosynthesis in vitro (Abrahams et al., 2016; Abrahams
and Besra, 2018)

FabD32 Diarylcoumarin Inhibits mycolic acid biosynthesis in vivo (Stanley et al., 2013)
MmaA1 Compound 3-(2-

morpholinoacetamido)-N-
Inhibits mycolic acid biosynthesis in vitro (Veeravarapu et al., 2020)

(Continued)
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chains (Kieser and Rubin, 2014). The transpeptidase activities of
high molecular weight PBPs facilitate the formation of 4-3
cross-links between meso-DAP and D-Ala of adjacent penta-
peptide chains. In mycobacteria, remodeling of 4-3 to 3-3 cross-
links occurs via the co-ordinated actions of PG endopeptidases
and LD-transpeptidases. The 3-3 cross-link allows for a
localized increase in tensile strength of the cell wall at sub-
cellular regions where there is an insufficient level of 4-3 cross
linking necessary to maintain a wildtype morphology
(Baranowski et al., 2018).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
The moenomycin class of antibiotics inhibit transglycosylase
activity of PBPs while b-lactam antibiotics inhibit the
transpeptidase activity of PBPs (Ostash et al., 2010; Story-
Roller and Lamichhane, 2018). Despite the successful
treatment of many bacterial infections, conventional b-lactams
are generally ineffective against mycobacterial species due to a
chromosomally encoded b-lactamase—BlaC, which rapidly
hydrolyzes the b-lactam ring (Mishra et al., 2017; Tooke et al.,
2019). Consistent with this, the carbapenem class of b-lactam
antibiotics are poor substrates for BlaC and when combined with
TABLE 1 | Continued

Drug target Drug Effect Tested in silico, in vitro,
in vivo (i.e., in animal
models) or in clinical

studies?

Ref

(1,4-dihydro-4-oxoquinazolin-
6-yl)benzamide

Pks13 Benzofurans (TAM16),
coumestans, thiophene
compounds, and b-lactones
(EZ120)

Inhibit mycolic acid biosynthesis TAM16 (in vivo),
coumestans, thiophenes,
and EZ120 (in vitro)

(Wilson et al., 2013; Lehmann
et al., 2018; Zhang et al., 2018)

EchA6 THPPs [tetrahydropyrazo
(1,5-a)pyrimidine-3-
carboxamides]

Inhibit mycolic acid biosynthesis in vivo (Cox et al., 2016)

MmpL3 Compound SQ109 (a 1,2-
ethylenediamine), compound
C215 (a benzimidazole
derivative), compounds NITD-
304 and NITD-349 (indole-2-
carboxamides), compound
TBL-140 (a diphenylether-
modified adamantyl 1,2-
diamine), THPPs
[tetrahydropyrazo (1,5-a)
pyrimidine-3-carboxamides],
SPIRO analogues [N-benzyl-
6’,7’-dihydrospiro(piperidine-
4,4’-thieno{3,2-c}pyran)
analogues], compound E11
(an acetamide analogue),
compound AU1235 (an
adamantyl urea), compound
BM212 (a 1,5-diarylpyrrole
derivative), compound
HC2091 [a N-(2-{4-
chlorophenyl}ethyl)-4-
thiophen-2-yloxane-4-
carboxamide], and
compound PIPD1 (a
piperidinol-containing
molecule)

Block translocation of mycolic acids to the
periplasm and inhibit periplasmic mycolic acid
biosynthesis

SQ109 (clinical studies),
C215 (in vitro), NITD-304,
NITD-349 (in vitro), TBL-
140 (in vitro), THPPs and
SPIROs (in vivo),
Compound E11 (in vitro),
compound AU1235 (in
vitro), compound BM212
(in vitro), compound
HC2091 (in vitro),
compound PIPD1 (in vitro)

(Xu et al., 2017; Dupont et al.,
2019; Vilchèze, 2020)

Antigen 85 Compound I3-AG85,
cyclipostins, and cyclophostin
analogs.

Inhibit mycolic acid biosythesis in vitro (Warrier et al., 2012; Viljoen et al.,
2018)

Ppm1 Amphomycin Inhibits glycolipid biosynthesis in vitro (Kremer et al., 2002)
TreS a-Glycoside analogues Inhibit surface glycolipid biosynthesis in vitro (Zhang et al., 2011; Thanna and

Sucheck, 2016)
GlgE Maltose mimics: maltose-C-

phosphonate (MCP) 13, 2-
deoxy-2-fluoro-a-maltosyl
fluoride and deoxy-2-2-
difluoro-a-maltosyl fluoride

Inhibit surface glycolipid biosynthesis in vitro (Zhang et al., 2011; Syson et al.,
2014; Thanna and Sucheck, 2016)
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a b-lactamase inhibitor, prove to be very effective in killing
mycobacteria (Hugonnet et al., 2009). As a result of the early
bactericidal activity (EBA) of intravenously administered
meropenem plus clavulanic acid combined with oral
amoxicillin (Mero/Clv/Amx) for treatment of DR-TB, the
World Health Organization has recently endorsed the use of
this regimen as an additional drug combination for DR-TB
(WHO, 2019b). Furthermore, it was shown that carbapenems
and novel cephalosporins inhibit M. abscessus growth (Kumar
et al., 2017) and also kill non-replicating Mtb (Gold et al., 2016).
However, the use of other carbapenems like Ertapenem in
combination with Amx/Clv did not display significant EBA when
compared with Mero/Clv/Amx (De Jager et al., 2020). Therefore,
the search for orally bioavailable carbapenems continues.

The 2-aminoimidazoles (2-AIs) have recently been shown to
potentiate the activity of b-lactams by decreasing Mtb protein
secretion and also by increasing the CW permeability (Jeon et al.,
2017). This was due to inhibition of the electron transport chain
which resulted in impairment of protein secretion systems and
MA biosynthesis (Jeon et al., 2019). Further investigations to
identify novel b-lactamase inhibitors and the impact of novel b-
lactam:b-lactamase inhibitor combinations for the treatment of
DR-TB have therefore become an active research area (Story-
Roller and Lamichhane, 2018).

Due to the potential of including b-lactamase inhibitors in the
clinical setting, the mechanistic aspects of how Mtb responds to
b-lactam:b-lactamase combinations, e.g., augmentin (Amx/Clv)
was recently elucidated (Mishra et al., 2017). WhiB4, a
cytoplasmic redox sensor, appears to co-ordinate the activity of
BlaC in a redox-dependent manner. Disruption of WhiB4
increased tolerance to augmentin whereas overexpression
potentiated augmentin activity against Mtb. Therefore,
compounds that can induce increased expression of WhiB4
could enhance the bactericidal activity of augmentin against
Mtb, this approach should be actively investigated.

Regulation of Peptidoglycan Biosynthesis and
Potential Targets
Mtb expresses 11 serine/threonine protein kinases designated
PknA to L, which regulate various metabolic pathways via
protein phosphorylation. PknB and PknG are essential for
intracellular survival of Mtb (Bellinzoni et al., 2019). PknB
regulates PG biosynthesis by localizing at sites of new synthesis
and activating/inhibiting PG-associated enzymes (Mir et al.,
2011; Turapov et al., 2018; Kaur et al., 2019). Several kinase
inhibitors that target PknA and PknB have been developed and
are bactericidal for Mtb (Carette et al., 2018).

FtsZ, a tubulin homolog, is essential for bacterial cell division
and remains an attractive target for novel antibiotics (Mathew
et al., 2016). Dihydroquinolines have also been shown to possess
inhibitory activity against mycobacterial FtsZ (Carro, 2019). Loss
of LamA, another mycobacterial cytoskeletal factor, influence
polar growth dynamics (a phenotype associated with
heterogeneity in susceptibility to antibiotics), indirectly
enhancing susceptibility to rifampicin (RIF) and cell wall
targeting drugs (Rego et al., 2017). Similarly, loss of FtsX, a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
regulator of cell division, enhanced susceptibility to RIF (Mavrici
et al., 2014). A recent whole-cell screening approach identified
compound APYS1, an aminopyrimidine-sulfonamide, with
potent activity indirectly inhibiting Mtb Wag31/DivIVA, an
actin-like protein required for cell wall biosynthesis and cell
elongation (Singh et al., 2017).

Arabinogalactan Biosynthesis and Potential Targets
AG biosynthesis is initiated in the cytoplasm by WecA, resulting
in a “linker” region that serves as the site of attachment to PG
(Alderwick et al., 2015; Huszár et al., 2017). WecA is a target of
tunicamycins and caprazamycin derivatives (Huszár et al., 2017).
The next steps yield units that are polymerized in the periplasm
by AftA-D and EmbA-B (targets of ethambutol), see Figure 1.
The AG complex is then ligated to PG by Lcp1, which has also
recently emerged as an attractive target in the Mtb CW (Hett
et al., 2008; Harrison et al., 2016). The crystal structure of a LCP
homologue in Staphylococcus aureus has been solved and this
provides insight into structure-guided design of inhibitors of this
enzyme family (Li et al., 2020). For further insight, the reader is
directed to a recent review that comprehensively describes the
biosynthesis of galactan in Mtb, with a focus on drug discovery
(Konyariková et al., 2020).

Another promising target, DprE1, acts as a flavoenzyme
which uses the cofactor FAD (flavin adenine dinucleotide) to
oxidize DPR (decaprenyl-phospho-ribose) to a keto-
intermediate. This is then reduced to decaprenyl-phospho-
arabinose (DPA—a substrate for AG biosynthesis) by DprE2
using NADH (Brecik et al., 2015). DprE1 localizes to the CW,
negating the need of some DprE1 targeting drugs to enter into
the cytoplasm (Brecik et al., 2015). DprE1 was first discovered as
the target for benzothiazinones (BTZs), since then more than 15
DprE1 inhibitory compounds some of which have entered
clinical trials have been identified (Degiacomi et al., 2020). The
most promising BTZ compound to date, BTZ043, displayed a
MIC of 1 ng/ml (0.23 nM) and is currently progressing through
clinical trials. Macozinone (MCZ, also known as PBTZ169) is a
BTZ043 derivative which has been medicinally optimized and
has entered clinical trials. TBA-7371 is another DprE1 inhibitor
with high potency and has also entered clinical trials (Degiacomi
et al., 2020).

Mycolic Acid Biosynthesis and Potential Drug
Targets
Targeting MA biosynthetic enzymes holds significant potential
for developing new anti-tubercular drugs as MAs influence
permeability and sensitivity to hydrophobic antibiotics
(Jankute et al., 2015). Enzymes in the FAS-I and FAS-II
pathways synthesize and facilitate the correct folding of short
and long-chain fatty acids, respectively. Several enzymes in the
FAS-I and FAS-II pathways are essential for viability and have
been targeted, see Figure 1 and Table 1 (Sassetti et al., 2003;
Baran et al., 2020). InhA is the target of isoniazid (INH) and
structural analogues such as ethionamide (ETH) activated by the
catalase-peroxidase KatG (Dessen et al., 1995). Novel InhA
inhibitors (indicated in Table 1), unlike INH and ETH, do not
November 2020 | Volume 10 | Article 603382
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require prior activation and have potential for treatment of DR-TB
while some are also bactericidal against non-replicatingMtb (Holas
et al., 2015;Martıńez-Hoyos et al., 2016; Flint et al., 2020).KasA and
KasB are targets of cerulenin, plastensimycin, thiolactomycin, and
indazole sulfonamides (Abrahamset al., 2016;AbrahamsandBesra,
2018). Tetrahydropyrazo (1,5-a)pyrimidine-3-carboxamides
(THPPs) have recently been shown to target EchA6, a
catalytically inactive enoyl-CoA hydratase required for shuttling
fatty acyl-CoA esters into FAS-II for MA biosynthesis (Cox et al.,
2016) . MmaA1 is a target of the compound 3-(2-
morpholinoacetamido)-N-(1,4-dihydro-4-oxoquinazolin-6-yl)
benzamide (Veeravarapu et al., 2020). Benzofurans, coumestans,
thiophenes, b-lactones target Pks13 (Wilson et al., 2013).
Diarylcoumarins inhibit FabD32 and possess high bactericidal
activity againstMtb (Stanley et al., 2013).

The mature MAs are translocated to the CW via the
membrane embedded transporter—MmpL3 (Grzegorzewicz
et al., 2012; Xu et al., 2017). Before translocation, the MAs are
attached to trehalose by mycolyl-transferases to form trehalose
monomycolates (TMMs) (Jankute et al., 2015). TMMs are
attached to AG by the mycolyltransferase Ag85 complex.
TMMs may also be converted to trehalose dimycolates
(TDMs) by the Ag85 complex before being attached to AG
(Jankute et al., 2015). Ag85C is a target of the compound I3-
AG85 causing inhibition of incorporation of MAs into the
mycobacterial CW (Warrier et al., 2012). Cyclipostins and
cyclophostin analogs have been shown to inhibit Ag85
enzymes (Viljoen et al., 2018). MmpL3 is currently one of the
most promising anti-TB targets (Vilchèze, 2020). Several diverse
compounds (see Table 1) display inhibitory activity against
MmpL3 either by direct binding or disruption of membrane
potential (Xu et al., 2017; Dupont et al., 2019; Vilchèze, 2020;
Yang et al., 2020).

The Variance of Cell Wall Targets in Clinical Strains
Mtb clinical isolates display differences in the composition of the
CW that should be noted for drug discovery approaches
(Moopanar and Mvubu, 2020). Specific differences in
abundance of pthiotriol dimycerosate and PDIM, have been
noted in clinical isolates of the East Asian/Beijing, Indo-
Oceanic, and Euro-American lineages (Krishnan et al., 2011).
These lipids form a hydrophobic barrier to antibiotics and
therefore the differences in lipid profiles or differences in the
abundance of enzymes associated them can be correlated with
differential susceptibility to antibiotics. For example, the
proteomic profile of an INH resistant clinical strain of the
Euro-American lineage (T-family), and an INH resistant lab
strain were analyzed by LC-MS/MS and this revealed an altered
abundance of FAS-II pathway enzymes required for MA
biosynthesis. This altered abundance of FAS-II enzymes was
compensated for through alternative enzymes including FabG4,
HtdX, FadD13, and members of the mymA operon, which has
been shown to play a role in MA biosynthesis (Singh et al., 2005;
Mehaffy et al., 2018). Although the change in protein abundance
only affected the abundance of the two more abundant MAs in
the clinical INH resistant strain, these lineage specific differences
in the abundance of CW associated biosynthetic enzymes should
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be considered during development of new anti-mycobacterial
drugs. A later study conducted by Seepe et al. in two drug
susceptible and resistant East-Asian (Beijing) clinical isolates
exposed to INH further elucidated the differences in MA
composition amongst clinical isolates and found differential
expression of FAS-II pathway enzymes highlighting the
importance of considering the basis of lineage specific
differences for CW targeted TB drug development (Seepe, 2011).

Despite the promise of using b-lactam:b-lactamase
combinations, it should be noted that susceptibility to this
combination treatment is variable among clinical isolates
(Gonzalo and Drobniewski, 2013; Forsman et al., 2015; Zhang
et al., 2016). A recent study assessing 89 clinical isolates from
South Africa demonstrated that approximately half of the clinical
isolates studied were hyper-susceptible to Amx/Clv as compared
to the reference strains (Cohen et al., 2016). Whole genome
sequencing of Amx/Clv hypersusceptible LAM4 isolates
identified polymorphisms in the genes aftD, PE-PGRS genes,
pks12, and ubiA associated with CW biosynthesis. Hence, screens
for new PG targeting compounds should include different
lineages of Mtb, together with representatives of drug
resistant strains.

TnSeq has recently been used to conduct fitness profiling of
clinical isolates, identifying notable differences in the
requirement of various genes for viability and antibiotic
susceptibility (Carey et al., 2018). Several CW biosynthesis
genes including murI, pbpA, ldtB, otsA, pimE, pssA, papA3, and
CW associated lipoprotein biosynthesis genes (lppL and lppX)
were found to be differentially required for fitness in various
clinical isolates (Carey et al., 2018). Moreover, TnSeq was also
used recently to identify genetic variants that influence drug
efficacy in vivo. Several Mtb mutants displayed altered
susceptibility to TB drugs in the murine model of TB disease,
many of which were associated with CW pathways described
herein. The findings suggest that genetic variants that may be
associated with drug resistance in clinical Mtb isolates do not
alter in vitro drug susceptibility but can still influence drug
efficacy in vivo (Bellerose et al., 2020). This suggested that the
genetic backgrounds of different clinical strains can impact the
applicability of new anti-mycobacterial drugs in the clinical setting.
FUTURE DIRECTIONS AND CONCLUDING
REMARKS

A significant amount of work has been done in the identification
of potential drug targets in the CW and their inhibitory
compounds, however, only a few lead compounds have entered
clinical trials (https://www.newtbdrugs.org/pipeline/clinical).
Improved strategies to test and fast-track the development of
these compounds including the use of TnSeq and CRISPRi in
clinical strains to study target vulnerability is of importance
given the high prevalence of DR-TB. When considering these
recent developments, the mycobacterial cell surface continues to
hold promise for the development of shorter, more effect
TB treatments.
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