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Host innate immunity is the major player against continuous microbial infection. Various
pathogenic bacteria adopt the strategies to evade the immunity and show resistance
toward the various established therapies. Despite the advent of many antibiotics
for bacterial infections, there is a substantial need for the host-directed therapies
(HDTs) to combat the infection. HDTs are recently being adopted to be useful in
eradicating intracellular bacterial infection. Changing the innate immune responses of
the host cells alters pathogen’s ability to reside inside the cell. MicroRNAs are the small
non-coding endogenous molecules and post-transcriptional regulators to target the
3’UTR of the messenger RNA. They are reported to modulate the host’s immune
responses during bacterial infections. Exploiting microRNAs as a therapeutic candidate
in HDTs upon bacterial infection is still in its infancy. Here, initially, we re-analyzed the
publicly available transcriptomic dataset of macrophages, infected with different
pathogenic bacteria and identified significant genes and microRNAs common to the
differential infections. We thus identified and miR-30e-5p, to be upregulated in different
bacterial infections which enhances innate immunity to combat bacterial replication by
targeting key negative regulators such as SOCS7 and SOCS3 of innate immune signaling
pathways. Therefore, we propose miR-30e-5p as one of the potential candidates to be
considered for additional clinical validation toward HDTs.

Keywords: innate immunity, microRNA, host-pathogen interaction, bacterial infection, host-directed therapy

INTRODUCTION

Variety of commensal bacteria were considered beneficial to human host and their role is crucial for
the host survival. In contrast, several bacteria qualify the category of potential pathogens to cause
serious health ailments in humans ranging from the food-borne illnesses caused by species such as
Listeria monocytogenes and Salmonella typhi, as well as tuberculosis caused by Mycobacterium
tuberculosis and also associated with oncogenesis. Additionally, bacterial infections are associated as
a secondary infection to many infectious and non-infectious diseases, which further enhance the
severity of primary disease, for example influenza virus and HIV infection. Furthermore, the
alarming elevation of the antibacterial resistance against any bacterial disease possess biggest global
threat and is a critical cause for the millions of human deaths annually around the world
(Laxminarayan et al, 2013). Like viruses, bacteria can also cause outbreak, leading to sever
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health damage and lives. Recently, a food-borne- bacteria Listeria
monocytogenes caused an outbreak in South Africa leading to
severe illness and deaths among the population (de Noordhout
et al, 2014; Allam et al,, 2018; Desai et al.,, 2019; Thomas et al.,
2020). Therefore, re-exploring the host factors against bacterial
infections might is needed.

Innate immunity is the first line of defense accelerates when a
pathogen encounters the host. Host cells express pattern
recognizing receptors (PRRs) which sense a diverse range of
invading pathogens including bacteria through PAMPs
(pathogen associated molecular patterns) and triggers the
immune responses which subsequently eliminate the infection
(Kawai and Akira, 2010; Kumar et al., 2011). Macrophages are
one of the major innate immune cells also termed as professional
phagocytes which helps in binding and clearance of the invading
bacterial pathogens (Nau et al., 2002). Additionally, non-
immune epithelial cells aid in immune activation to challenge
the bacterial infection (Francis and Thomas, 1996). However,
almost all pathogenic bacteria develop certain mechanisms to
manipulate the host immune system for their survival by various
immune evasion strategies (Diacovich and Gorvel, 2010; Reddick
and Alto, 2014).

The activated immune system may lead to excessive secretion
of inflammatory molecules like interferons and pro-
inflammatory cytokines. Hence, immune actions are tightly
regulated at various levels. One important regulatory factors
and fine tuners of immune system were the microRNAs
(miRNAs). miRNAs are small non-coding RNAs of length
ranging from 18-22 nucleotides in their mature form. They
bind to the partially complementary sequences of the
3’untranslated regions (3’-UTR) in mRNA transcript of the
gene to inhibit the expression of the corresponding gene at
post-transcriptional level. The miRNAs have been previously
shown to be involved in the regulation of bacterial infections and
also employed by the bacteria for their survival (Izar et al., 2012;
Maudet et al,, 2014; Das et al., 2016; Zhou et al.,, 2018). Host
directed therapy (HDT) is one of the recently emerging approach
against infectious diseases which majorly aims to directly affects
the host factors and machineries which play crucial role in the
encroachment and survival of the pathogens (Kaufmann et al.,
2018). In previous studies, miRNAs recommended for HDT in
bacterial infections (Iannaccone et al., 2014; Sabir et al., 2018) but
still the approach of considering miRNAs for HDT lies in
its infancy.

In present work, we aimed to identify the miRNA-mediated
regulation common to wide range of bacterial infection. We
initially re-analyzed the RNA-sequencing dataset GSE73502, in
which peripheral blood mononuclear cells (PBMCs) of healthy
volunteers were differentiated to macrophages then infected with
Listeria monocytogenes and Salmonella typhimurium respectively
(Haraga et al., 2008; Pai et al, 2016). Both the bacteria have
different genetic composition and varied immune activation
mechanisms associated with them to be used as the model
bacteria for understanding the host-bacterial interactions (Corr
and O'Neill, 2009). We determine high confidence genes (HCGs)
using robust rank aggregation method. Then after applied

miRNAs-seed enrichment analysis to HCGs, which identified
miR-30-5p family as the highly enriched family of miRNAs
within the host. Our study proposed the role of miR-30e-5p
(miR-30e) in modulating innate immunity during bacterial
infections, due to its significant upregulation during
pathogenic infections and PAMPs stimulation. Altogether, our
finding concludes that miR-30e targets the 3°’-UTR of SOCSI and
SOCS3, crucial negative regulators of innate immunity which
enhances the innate immune responses and reduces the bacterial
replication of Listeria monocytogenes and Uropathogenic E. coli -
representative of both gram-positive and gram-negative
bacterium respectively, causing severe diseases like listeriosis
and urinary tract infections. This further proposes that miR-
30e might considered as the potential candidate for HDTs during
infectious diseases caused by intracellular bacteria.

MATERIALS AND METHODS

Cell Lines, Bacteria, and Reagents

HEK293 human embryonic kidney cells (ATCC CRL-3216), Raw
264.7 (Cell Repository, NCCS, India), HeLa cervical cancer cells
(Cell Repository, NCCS, India), were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum (FBS) and 1% Antibiotic-Antimycotic
solution. DMEM, FBS and Antibiotic-Antimycotic solution
were purchased from Invitrogen. Human PBMCs were isolated
from whole blood as reported previously (Ingle et al., 2015). The
seeded cells were washed with phosphate-buffered saline (PBS)
prior to infection. Then cells were infected in serum-free
DMEM/RPMI with L. mono. for 2 h and UPEC for 1 h with
50 MOI after attaining optical density (OD 600) of 0.4 to 0.8.
After infection cells were washed twice with serum free DMEM/
RPMI and supplemented with complete DMEM/RPMI and
gentamicin (75ug/ml, Sigma) for 24 h at 37°C, 5% CO,. Cells
were harvested after 24 h in BHI media containing 1X Triton
(Thermo Scientific) and/or Trizol (Ambion Life Tech.) for CFU
assay and mRNA quantification. For electroporation of human
PBMCs, 1 X 10° cells were suspended in Opti-MEM (Invitrogen)
containing 50 nM mirVana miRNA mimics (Ambion). The cells
were pulsed twice with 1000 V for 0.5 ms with a pulse interval of
5 s with the Gene Pulser Xcell electroporation system. The cells
were then transferred to RPMI supplemented with 10% FBS.
Then infected with L. mono. with 50 MOI. Transfection of HeLa
cells with miRNA mimics, inhibitors and control mimics/
inhibitors and/or plasmids was performed with Lipofectamine
2000 or 3000 (Invitrogen) according to the manufacturer’s
protocol. Stimulation of cells was carried out using LPS and
CpG from Sigma and Invivogen. DMEM, FBS, Opti-MEM,
RPMI, and Lipofectamine 2000/3000 were purchased from
Invitrogen. The miR-30e mimic (miR-30e) (Invitrogen: Catalog
number#4464066) or a nonspecific miRNA negative control#1
(miR-NC1) (Invitrogen: Catalog number#4464058) was used
according to the manufacturer’s instructions (Applied
Biosystems). The miR-30e inhibitor (AmiR-30e) (Invitrogen:
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Catalog number#4464066) was used to inhibit miR-30e
expression in transfected cells.

Bacterial Infection

Listeria monocytogenes (L. mono.), a gram-positive bacterium
was used for infection (MTCC-1143). Bacteria were grown to the
logarithmic growth phase in brain heart infusion BHI (HiVegTM
Media, HIMEDIA) at 37°C with continuous shaking at 200 rpm
overnight. Secondary culture was established until desired OD.
Bacteria were subsequently washed with fresh BHI and PBS by
two steps of centrifugation at (4,000 rpm, 5 min) and diluted in
serum free DMEM/RPMI at 50 MOI for infection. Secondly,
Uropathogenic E. coli (UPEC), a gram-negative bacterium was
used for infection, UPEC bacteria used in the study was GFP-
tagged, GFP was induced by using inducing agent IPTG
(Isopropyl $3-D-1-thiogalactopyranoside) at a secondary culture
without shaking the inoculated tube/s. After obtaining optimal
OD, respective bacterial cultures were used to infect the
mammalian HeLa cells and PBMCs accordingly. Cell were
then harvested to quantify the bacterial population by
performing colony forming unit assay and counting the
bacterial colonies at different dilutions on BHI plates incubated
overnight at 37°C.

Quantitative Real-Time Reverse
Transcription PCR

Total RNA was extracted with the Trizol reagent (Ambion/
Invitrogen) and used to synthesize ¢cDNA with the iScript
c¢DNA Synthesis Kit (BioRad, Hercules, CA, USA) according to
the manufacturer’s protocol. Gene expression was measured by
quantitative real-time PCR using gene-specific primers both for
humans and bacteria as analyzed in the results and SYBR Green
(Biorad, Hercules, CA, USA) and additionally using 18S and
NPM1 (for AGO2-RNA immunoprecipitation experiment)
primers for normalization. For quantification of the
abundances of miR-30e, real-time PCR analysis was performed
with the TagMan Universal PCR Master Mix (Applied
Biosystems) and the miR-30e-5p specific TagMan miRNA
assays. The Taqgman U6 assay was used as a reference control.
Real time quantification was done using StepOne Plus Real time
PCR Systems by Applied BioSystems (Foster City, CA, USA).

Luciferase Reporter Assays

HEK 293T and HeLa cells (5 X 10%) were seeded into a 24-well
plate and transiently transfected with 25 nM of mimics (miR-30e
and miR-NC1), 50 ng of the transfection control pRL-TK
plasmid (Renilla luciferase containing plasmid) and 300 ng of
the various expression plasmids (containing 3’-UTR of specific
genes and Firefly luciferase containing plasmid) according to the
respective experiments. In another experiment, 300 ng of miR-
30e promoter Firefly luciferase containing plasmid together with
50 ng of the transfection control pRL-TK plasmid were
transfected together and finally infected with L. mono. The
cells were lysed at 24 h after transfection and/or infection, and
finally the luciferase activity in total cell lysates was measured
using Glomax machine (Promega, Madison, WI, USA).

Enzyme-Linked Immunosorbent Assay
(ELISA)

HeLa cells were transiently transfected with miR-30e and miR-
NC1 and then were infected L. mono. bacterial infection then
treated with gentamycin. The culture media were harvested 24 h
after infection and were analyzed by specific ELISA kits (Becton
Dickinson) according to the manufacturer’s instructions to
determine the amounts of IL6 that were secreted by the cells.

RNA Immunoprecipitations

RNA immunoprecipitations were performed as described previously
(Meister et al.,, 2004; Beitzinger and Meister, 2011). The pIRESneo-
Flag/HA Ago2 plasmid was a gift from Professor T. Tuschl (Addgene
plasmid #10822). Briefly, HeLa cells transfected with miRNA and
infected with L. mono. then treated with gentamycin were lysed in
0.5% NP-40, 150 mM KCl, 25 mM tris-glycine (pH 7.5) and
incubated with M2 Flag affinity beads (Sigma) overnight. The lysate
was then washed with 300 mM NaCl, 50 mM tris-glycine (pH 7.5), 5
mM MgCl,, and 0.05% NP-40. The extraction of RNA from the
immunoprecipitated RNPs was performed with the Trizol reagent
(Ambion, Invitrogen) according to the manufacturer’s protocol.

Microscopy

HeLa cells were seeded along with cover slips in low confluency
and next day transfected with miRNA mimic for 24 h prior to
bacterial infection then infected with UPEC-GFP for 4 h and
treated with gentamycin for 1 h. Afterwards kept in incubator
(37°C, 5% CO2) for 24 h. Then cells were fixed with 4% PFA for
15 min at room temperature; permeabilized with 0.05% Triton
X-100 in 1 x PBS for 10 min at room temperature; blocked with
bovine serum albumin (5 mg/ml) in PBS, 0.04% Tween-20 for
30 min and incubated for 1 h with the relevant primary
antibodies diluted in blocking buffer. The cells were then
washed three times with PBS and incubated for 1 h with the
appropriate secondary antibodies at room temperature. Nuclei
were stained with DAPI, phalloidin red was used to stain the
actin filaments of the cells. Cover slips then containing cells were
carefully mounted on to the glass slides using Fluoroshield
(Sigma) as mounting media. Slide was then kept for few hours
for drying before imaging. Images were visualized at 40X with
Apotome — AXIO fluorescence microscope by Zeiss.

Re-analysis of the RNA-Seq Dataset

The raw read counts were obtained from GSE73502 (Pai et al.,
2016) through GREP2 R package (Mahi et al., 2019) and were
TMM (Trimmed mean of M-values) normalized. Differential
expression analysis was performed using EdgeR (Robinson et al.,
2010) package with a significance cutoft - logFC >1.5 and
adjusted p-value <0.05. The differential expression analysis was
performed for each time point (2hr and 24 hr) and both the
bacterial infections separately. In case of robust rank aggregation
(RRA) approach (Kolde et al., 2012), the significant differentially
expressed genes (DEGs) obtained from each case were ranked
using robust rank aggregation R package, which basically ranks
and aggregate the high confidence genes across each list. The
high confidence genes were calculated based on the p-value
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adjusted using Bonferroni correction and 30 genes were obtained
below the cutoff less than 0.05. In next approach, miRNA seed
enrichment analysis was performed using the tool Mienturnet
(Licursi et al., 2019). In this, the high confidence genes were used
as input for the miRNA enrichment analysis. The number of

miRNAs which were predicted to be binding with the high
confidence genes were represented using the bar plot (Figure
1D). All the analysis was performed in R 3.6 environment and
the tool Networkanalyst (Zhou et al., 2019) was used for the
generation of PCA plot and Venn diagram.

Bacterial Infections
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FIGURE 1 | Bioinformatic identification of crucial host genes and microRNAs (miRNAs) associated with bacterial infection in Macrophages. (A) Schematic of the
bioinformatics pipeline used to identify the high confidence genes and the potential MIRNAs that target them, upon infection with two different bacteria at different
time points. (B) PCA plot shows the segregation of samples between three experimental groups — Control, Listeria and Saimonella infection. (C) Venn diagram
shows the overlap of differentially expressed genes at 2 h and 24 h of Listeria and Salmonella infection compared to the corresponding uninfected samples giving 30
high confidence host factors obtained through robust rank aggregation (RRA) method. (D) Bar plot showing miRNA seed enrichment analysis for significant high
confidence genes obtained through robust rank aggregation method. (E-H) Quantification (as determined by gRT-PCR analysis) of the fold changes in the
abundances of miR-30e as indicated in hPBMCs, Hel.a and Raw264.7 cells in presence of respective bacterial pathogens and PAMPs stimulation. (I) Quantification
of miR-30e promoter activity by luciferase assay as indicated in Hela cells. Data are mean +/- SEM of triplicate samples from single experiment and are
representative of two independent experiments. ***P < 0.001, **P < 0.01 and *P < 0.05 by one-way ANOVA Tukey test and student t-test.
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Statistical Analysis

All experiments were carried out along with the appropriate
controls, indicated as control cells (Ctrl) or uninfected/non-
infected cells. Experiments were performed in duplicates or
triplicates for at least two or three times independently.
GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA, USA)
was used for statistical analysis. The differences between two
groups were compared by using an unpaired two-tailed Student’s
t-test. While the differences between three groups or more were
compared by using analysis of variance (ANOVA) with Tukey
test. Differences were considered to be statistically significant
when P < 0.05. Statistical significance in the figures is indicated as
follows: **P < 0.001, **P < 0.01, *P < 0.05; ns, not significant.

RESULTS

Bioinformatic Prediction of Host Genes
and Their Regulatory MicroRNAs During
Bacterial Infection

To investigate the microRNAs (miRNAs) and their target(s)
involved in bacterial infection, we robustly re-analyzed the
publicly available transcriptomic dataset GSE73502 in Gene
Expression Omnibus (GEO) database. The dataset comprises
of human macrophages infected with live gram-positive Listeria
or gram-negative Salmonella bacteria, respectively (Pai et al.,
2016). We first identified high confidence genes (HGCs) or the
host factors from the dataset which were significantly
dysregulated upon bacterial infection. Next, we identified the
miRNAs targeting these HCGs. The schematic of in-silico
unbiased pipeline used to perform the analysis is explained in
Figure 1A. The dataset includes samples of human macrophages
infected with bacteria both at early (2 h) and late (24 h) time
points that were taken for analysis to cover the maximum
number of infected samples during the unbiased analysis as
well as to find the wide range host factors involved in crucial
cellular machineries both at early and late stages of infection.
After normalization, the segregation of different samples was
visualized through PCA plot (Figure 1B). Differential expression
analysis for genes was performed between the non-infected
(control) and infected (Listeria and Salmonella) groups. The
963 and 3857 differentially expressed genes (DEGs) were obtain
upon Listeria infection at 2 h and 24 h respectively. Similarly,
2040 and 2669 DEGs were obtain upon infection with Salmonella
at 2 h and 24 h respectively. To determine the significantly
dysregulated genes crucial for different cellular responses and
common to both bacterial infections at early and late time points,
we employed a popular rank aggregation method known as
robust rank aggregation (RRA) (Kolde et al., 2012). The
overlap of the DEGs were depicted in Venn diagram (Figure
1C). Robust rank aggregation method narrowed 30 genes to be
significantly dysregulated in all the cases with the adjusted
p-value of 0.05. These 30 genes or host factors were
predominantly related to immune pathways and studied during
bacterial infections. In addition, this analysis holds valid

presumptions to be taken into consideration as the target cells
used here were macrophages from healthy volunteers infected
with bacteria (Listeria and Salmonella), are the crucial innate
immune cells to play an important role in defense during bacterial
infections. Through this approach we have found 30 HCGs
crucial for both the infections. In this connection, we predicted
the microRNAs which can modulate these HCGs as the host
regulatory molecules proposing their utility in host-directed
therapy (HDT). Furthermore, we performed miRNA seed-
target enrichment analysis using a tool called Mienturnet
(Licursi et al., 2019). This analysis provides the miRNA seed
enrichment result from the given query of HCGs. We found the
miRNA-seed of miR-30-5p family to be significantly enriched
which targets seven of these 30 HCGs as shown in Figure 1D. This
family consists of five members (miR-30a to miR-30e) with minor
sequence difference and major phylogenetic difference as
regulated at different chromosomal location. miR-30a/b/c/d has
been extensively studied in relation to bacterial infections and
immune evasion strategies as discussed later. However, role of
miRNA-30e during bacterial infection is poorly understood.
Hence, we further focused on miRNA-30e characterization as
the host regulatory microRNA and concluded that miR-30e-5p
induced upon different bacterial infections and stimulation
with bacterial PAMPs in hPBMCs, HeLa and Raw264.7 cells
respectively (Figures 1E-H). In addition, we estimated the miR-
30e promoter activity in presence of Listeria monocytogenes
(L. mono.) infection (Figure 1I) and found that bacterial
infection controls miR-30e transcriptional regulation to regulate
its expression.

The miRNA-30e-5p Targets Innate
Immunity Regulators SOCS1 and SOCS3
To demonstrate the post-transcriptional regulation by miR-
30e-5p, out of seven enriched host genes, SOCSI and SOCS3
were selected to be analyzed in-vitro as shown schematic
representation (Figure 2A). Because SOCSI and SOCS3, a key
immune negative regulator of PRR-mediated innate immune
signaling pathways were obtained after the unbiased miRNA-
seed enrichment analysis to demonstrate the role of miR-30e in
immune regulation. Notably, they were also observed to be
highly conserved targets of miR-30e throughout all
the different class of species (Figure 2B). Next, to validate the
regulation of 3’UTR of mRNA targets, the 3’UTR of the SOCSI
and SOCS3 gene were cloned downstream of luciferase gene
under the CMV promoter to perform the luciferase assay. It was
found that miR-30e significantly reduced the luciferase activity
compared to control miR-NC1 (Figure 2C). In contrast,
introduction of mutation (3’UTR_MUT) in cloned 3’UTR/
3'UTR_WT by site directed mutagenesis (SDM) did not
change the luciferase activity in presence of miR-30e and it
was comparable with 3’UTR_WT (wild type) as shown in Figure
2D. miR-NCI1 was used as a control for the experiment.
Furthermore, we scanned the 3’'UTRs of SOCSI and SOCS3 for
RNA binding site for AGO2 protein, in CLIP database, which is a
key component of the miRNA-mediated silencing known as
RNA-induced silencing complex (RISC) and found that the miR-
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FIGURE 2 | miR-30e-5p targets SOCS71 and SOCS3. (A) Schematic of miR-30e-5p targeting of innate immune regulators. (B) miR-30-5p binding 3’ UTR site
conservation of SOCS7 and SOCS3 among wide range of species. (C, D) HEK293 cells were transfected with 50 ng of pRL-TK and 300 ng of 3'UTR_WT or 300 ng
of 3'UTR_MUT (of indicated genes) together with 25 nM miR-30e or miR-NC1 mimics, 24 h after transfection, the cell was lysed and subjected to luciferase assay.
(E) Schematic for RNA-immunoprecipitation assay. Hela cells were transfected with plasmid encoding Flag-AGO2 in presence of miR-30e (50 nM) and miR-NC1

(50 nM) and then infected with L. mono. (60 MOI). Serum-free media of cells were replaced after 2 h with complete media containing gentamicin. After 24 h cells
were subjected to RNA immunoprecipitation and quantified for SOCS7 and SOCSS3 transcripts. (F, G) Quantification of the fold changes by qRT-PCR analysis in the
relative abundances of SOCS71 and SOCS3 after infection of (F) L. mono. (50 MOI) and (G) UPEC (50 MOI) for 24 h in Hela cells prior to transfected with miR-30e
or miR-NC1 as indicated. Data are mean +/- SEM of triplicate samples from single experiment and are representative of two (E) and three (C, D, F and G)
independent experiments. ***P < 0.001 and *P < 0.05 by one-way ANOVA Tukey test.

30e make stable complexes with the target genes (Mishra et al.,
2020). To validate, miR-30e and negative regulators transcripts
(SOCSI and SOCS3) interaction, AGO2 pull-down assay was
performed as shown in schematic (Figure 2E) and found that
introduction of miR-30e significantly enriches the transcript of
SOCSI and SOCS3 during L. mono. infection compared to the L.
mono. infection alone or L. mono. infection along with control
miR-NC1 treated cells, suggesting that miRNA-30e directly
interact with the transcript through the formation of RISC.
Next, the ectopic expression of miR-30e reduced the

expression level of SOCSI and SOCS3 in HeLa cells compared
to the control after L. mono. infection (Figure 2F) and UPEC
infection (Figure 2G). Taken together, miR-30e targets SOCSI
and SOCS3 significantly which might regulate innate immunity
during bacterial infection.

The MiRNA-30e-5p Curtails Bacterial
Infection by Enhancing Innate Immunity

To understand the physiological implication of miR-30e-
mediated targeting of SOCSI and SOCS3, we investigated
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innate immune responses and bacterial burden. To this end, we ~ comparison to LLO containing pathogenic strain of Listeria
estimated the expression level of innate immune effector genesin ~ (Figure 3A). Therefore, for subsequent study we have used the
presence of L. mono. and miR-30e. Notably, absence of  LLO-sufficient strain. In context to immune regulation upon
listeriolysin O (LLO) or non-pathogenic strain of Listeria  infection, miR-30e was found to significantly induce the
showed no significant induction of immune response in  expression of IL6 both at mRNA and protein levels as
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quantified by qRT-PCR (Figure 3B) and ELISA (Figure 3C) in
presence of bacterial infection in HeLa cells compared to control
miR-NC1. Subsequently, miR-30e also shown to enhance the
expression of other pro-inflammatory cytokines and IFNs (Type
1,2 and 3) during L. mono. (gram-positive) (Figures 3D-H) and
UPEC (Uropathogenic E. coli: gram-negative) (Figures 3I-K)
bacterial infections respectively. Heightened innate immune
responses in case of bacterial infections and in presence of
miR-30e, prompted us to demonstrate the eligibility of miR-
30e-5p toward host-directed therapy parameters. Therefore, we
estimated the outcome on bacterial replication in presence of
miR-30e. Colony forming units (CFU) assay (Figure 3L) and
mRNA quantification (Figure 3M) of L. mono. hly gene in HeLa
cells demonstrated that miR-30e reduces the L. mono.
replication. Similar results were shown in the hPBMCs isolated
from five different individuals both in presence of both miR-30e
and AmiR-30e (inhibitor of miR-30e) by CFU assay (Figure 3N).
Quantification of hly gene at mRNA levels also demonstrates
reduced replication of L. mono. in hPBMCs upon miR-30e
treatment compared to control miR-NCI1 treated cells (Figure
30). Furthermore, microscopy analysis, revealed the reduction
in bacterial replication of UPEC GFP-tagged gram-negative
bacteria in presence of miR-30e compared to AmiR-30e
(Figure 3P). In addition, quantification of fimA virulence gene
at mRNA levels demonstrates reduced replication of UPEC in
HeLa cells upon miR-30e treatment to cells compared to control
miR-NC1 treated cells (Figure 3Q). Altogether, miR-30e
qualifies to combat bacterial replication by enhancing innate
immunity via targeting SOCSI and SOCS3, two crucial negative
regulators of innate immune signaling cascade during
bacterial infections.

DISCUSSION

The pathogens continuously evolve along the host for their survival
and to evade the immune defense mechanisms within the system.
Innate immunity delivers protection against various intracellular
bacteria by recognition of bacterial PAMPs through various sensors.
Several intracellular bacteria infects the host and develop
mechanisms to escape from the innate immune activation
(Diacovich and Gorvel, 2010). Host-pathogen communication
decides the initiation, development and progression of infectious
diseases. Majority of hazardous disease like tuberculosis, brucellosis,
listeriosis, and salmonellosis are caused by intracellular bacteria
(Paul, 2003; Silva, 2012). Listeriosis or commonly known as food-
borne disease requires attention in this modern era of differential
standards of food supply and reconstruction of food demand
strategies. Listeria monocytogenes (L. mono.) is a gram-positive
bacterium causing listeriosis, its pathogenesis being explored in
detail and is used extensively as the model for studying different
aspects of host-bacteria intricacies. Apart from macrophages, non-
immune epithelial cell lines such as Hela cells were also reported to
be used in demonstrating infectivity of bacterial infections,
particularly, L. mono. (Francis and Thomas, 1996). Uropathogenic
E. coli (UPEC) is another harmful bacteria belongs to gram-negative

bacterium and is responsible for causing mild to severe urinary tract
infections (UTI) with the ability to counter distinct immune
modulation strategies (Olson and Hunstad, 2016). In contrast,
evidence suggests, rapid onset of innate immune responses during
the clinical manifestations of UTT might provide new biomarkers
for the infectious disease (Reygaert, 2014; Ching et al., 2020). An
intact and efficiently regulated innate immune environment is
critical for host resistance against bacterial infection.

Herein, we re-explored publicly available dataset to perform
differential expression analysis. To obtain high confidence genes
(HCGs), we used robust rank aggregation (RAA) method to
detect the genes that are ranked consistently better than expected
under null hypothesis of uncorrelated inputs and assigns a
significance score for each gene. Next we performed miRNA
seed enrichment analysis for these HCGs, which provided the
significant miRNA-target interactions. This approach concluded
the identification of mir-30-5p family members to be enriched
among the other miRNAs/miRNA-families targeting maximum
seven out of 30 high confidence differentially expressed genes
(Figure 1D). miRNA-30-5p family consists of five members
namely miR-30a-5p, miR-30b-5p, miR-30c-5p, miR-30d-5p
and miR-30e-5p. miR-30 family has been reviewed and
reported to be extensively involved in regulation of
development and diseases within the host (Verma et al., 2015;
Mao et al., 2018). We selected miR-30e-5p for our study, which is
lesser explored (Das et al., 2013; Latorre et al., 2015) to decipher
the unknown regulatory mechanism during bacterial infection
and subsequent innate immune modulation. In contrast, miR-
30a has been shown to be involved in Streptococcus pneumoniae
and Mycobacterium tuberculosis infections (Chen et al., 2015;
Wu et al., 2017; Poore et al., 2018). miR-30b and miR-30d has
been reported to be associated with H. pyroli infection (Tang
et al,, 2012; Yang et al,, 2016). miR-30b/miR-30c¢, controls the
intracellular survival of Burkholderia pseudomallei by targeting
Rab32 GTPase and regulating phagosome formation (Hu et al,,
2019). Seven HCGs those were targeted by miR-30-5p family
were FOSL2, GBP2, IL2RA, SOCS1, SOCS3, TMEMS86A, TNIP]I.
These factors were reported to be involved in various bacterial
infections and other diseases (Cha et al., 2013; Degrandi et al.,
2013; Goudy et al,, 2013; Muth et al,, 2017; Ling et al., 2018;
Shamilov and Aneskievich, 2018; De Oyarzabal et al., 2019; Place
et al,, 2020). SOCS family proteins were considered as the
important regulators of inflammatory responses (like
interferons and cytokines; IL6, TNF«) and being significantly
induced by broad range of bacterial infections (Stoiber et al.,
2001; Yasukawa et al., 2003; Demirel et al., 2013; Carow and
Rottenberg, 2014; Duncan et al,, 2017; Alice et al., 2018).
Interferons (IFNs) and pro-inflammatory cytokines like IL6
were additionally reported to play crucial roles during Listeria
infection that might be connected to SOCS proteins in the
Listeria infected system (Stoiber et al., 2001; Hoge et al., 2013;
Pitts et al., 2016; Hop et al,, 2019). Interestingly, out of these 7
HCGs, SOCS1 and SOCS3 were found to be the highly conserved
targets of miR-30e with greater binding affinity. Therefore, we
sought to characterize miR-30e binding with SOCSI and SOCS3
during bacterial infections.
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In the host-directed therapy (HDT), the host factors which
are crucial for the infection of pathogen and its survival will be
targeted for possible therapeutic outcomes, rather than directly
targeting the pathogen, which is true in case of conventional
antimicrobial drugs (Zumla et al., 2016; Kaufmann et al., 2018;
Baindara, 2019). HDT can help in tackling the anti-microbial
resistance which is one of the major challenges in dealing global
health concerns. HDT for bacterial infection involves repurposed
drugs, synthetic nucleic acids, mono-clonal antibodies,
recombinant proteins to enhance the host immune defense
against the pathogenic bacterial agent (Wroblewski et al., 2010;
Yedery and Jerse, 2015; Bravo-Santano et al., 2019). To interpret
the dimension of HDTs via microRNA-mediated regulatory
mechanism, we thought of understanding the role of miR-30e
in innate immune modulation. Hence, we validated the
expression of miR-30e, which is upregulated during bacterial
infections/PAMPs (Figures 1E-H) and selected SOCSI and
SOCS3, important negative regulator of innate immune
signaling pathways which are significantly targeted by miR-30e
(Figure 2). This resulted in reduced bacterial burden and
moderate elevation of the innate immune responses within the
HeLa cells infected with L. mono. and UPEC bacteria. On
contrary, inhibitor of miR-30e was shown to exhibit opposite
effect on bacterial infection (Figures 3L, N). Recently, miRNAs
were shown as the promising candidates for HDT during many
cases of bacterial infections (Iannaccone et al.,, 2014; Liu et al.,
2018; Sabir et al., 2018). miRNAs are the fine tuners of host
cellular factors during infectious diseases which reshapes the
immunity and inflammatory responses during bacterial infection
(Das et al., 2016; Zhou et al., 2018). In conclusion, our findings
suggest that miR-30e regulates bacterial infections by interfering
with the innate immunity that might challenges the bacterial
survival strategy. Therefore, miRNA-30e binding of host factors
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