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Plant pathogens cause severe losses or damage to crops worldwide and thereby
significantly reduce the quality and quantity of agricultural commodities. World
tendencies are shifting towards reducing the usage of chemically synthesized
pesticides, while various biocontrol methods, strategies and approaches are being
used in plant disease management. Fungal antagonists play a significant role in
controlling plant pathogens and diseases and they are used as Biocontrol Agents
(BCAs) throughout the world. This review provides a comprehensive list of fungal BCAs
used against fungal plant pathogens according to modern taxonomic concepts, and
clarifies their phylogenetic relationships because thewrong names are frequently used in
the literature of biocontrol. Details of approximately 300 fungal antagonists belonging to
13 classes and 113 genera are listed together with the target pathogens and
corresponding plant diseases. Trichoderma is identified as the genus with greatest
potential comprising 25 biocontrol agents that have been used against a number of
plant fungal diseases. In addition to Trichoderma, nine genera are recognized as
significant comprising five or more known antagonistic species, namely, Alternaria,
Aspergillus, Candida, Fusarium, Penicillium, Pichia, Pythium, Talaromyces, and
Verticillium. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene
(LSU) of fungal antagonists was performed to establish their phylogenetic relationships.

Keywords: biocontrol agents, disease control, fungicides, plant diseases, plant pathogens, phylogeny, Trichoderma
INTRODUCTION

Plant pathogens including fungi, bacteria, viruses and nematodes cause serious losses or damage to
crops worldwide and significantly reduce the quality and quantity of agricultural commodities. These
losses pose a major threat to global food production annually (El Ghaouth et al., 2002; Dean et al.,
2012; Singh, 2014; O’Brien, 2017). Moreover, pathogenic infection in the field or in post-harvest
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storage can affect the health of humans and livestock, especially if
the pathogen produces toxins in or on consumable products
(Brimner and Boland, 2003; Menzler-Hokkanen, 2006).

Various methods, strategies, and approaches are used in the
management of plant diseases. These encompass the
development of resistant varieties through plant breeding,
genetically engineered plants, use of agrochemicals and
physical methods (i.e., heat treatments, UV irradiation,
modified or controlled atmosphere, cold storage, and inducing
resistance by applying elicitors), application of biological control
agents and good agronomic and horticultural practices (Stevens
et al., 1997; Wisniewski et al., 2000; Droby, 2006; Singh and
Chawla, 2012; Gupta and Sharma, 2014; Singh, 2014; O’Brien,
2017). These approaches have contributed significantly to the
remarkable improvements in crop productivity and quality over
the past few decades (Punja, 1997; Droby, 2006; Chandrashekara
et al., 2012).

Biological Control: Overview and
Significance
Biological control approaches of plant diseases include any
reduction in the amount or the effect of pathogens (disease-
producing activity) that is achieved through the induction of
biological mechanisms or the action of naturally occurring or
introduced antagonists, that occurs by manipulating the
microenvironment to favour the activity of antagonists (Baker,
1987; Stirling and Stirling, 1997). Microbial biocontrol agents
(BCAs) for plant diseases are usually fungal or bacterial strains
isolated from the phyllosphere, endosphere or rhizosphere and
they play an important role in controlling plant-pathogenic
organisms. Biocontrol agents or microbial antagonists prevent
infection of the host plant by the pathogen, or establishment of
the pathogen in the host plant. The principal mechanisms for the
control have been assumed to be those that act primarily upon
the pathogens. The antagonists can exhibit several direct or
indirect mechanisms of action involved in biological disease
control. These mechanisms include; antibiosis (where an
inhibitory metabolite or antibiotic is produced by the
antagonist), mycoparasitism (where the antagonist derives
some or all of its nutrients from the fungal host), induced
resistance (induction of plant defense response against plant
pathogens) and growth enhancement (BCAs promote plant
growth while the effects of the disease are being reduced
and also through microbial hormones such as indoleacetic
acidand gibberellic acid). Secretion of extracellular hydrolytic
enzymes by the antagonist, competition for space and nutrients
between organisms and detoxification of virulence factors
are other actions involved in biological disease control
(Wilson et al., 1991; Punja, 1997; Heydari and Pessarakli, 2010;
Chandrashekara et al., 2012; Singh, 2014; Zhang et al., 2014;
Deketelaere et al., 2017). Recent studies have demonstrated that
effects such as induced systemic or localized resistance by
microbial BCAs on plants are also crucial. These fungi or
bacteria can colonize the root epidermis and outer cortical
layers and release bioactive molecules that cause walling-off of
the fungal thallus or bacterial colonies (Harman, 2006).
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Consequently, they will alter the transcriptome and the
proteome machinery of plants substantially. This alteration in
the plant’s genetic material will provide certain additional
advantages to the plant, such as increased plant growth and
nutrient uptake in addition to induction of pathways for
resistance in plants.

World trends are shifting towards reducing the use of
agrochemicals in the management of plant diseases.
Considerable research effort today is focused on seeking safe,
eco-friendly and effective alternatives to synthetic, chemical
fungicides to reduce the decay loss in harvested commodities
and to control crop diseases in the field that lead to significant
economic losses (Stirling and Stirling, 1997; Wisniewski et al.,
2000; Droby, 2006; Chandrashekara et al., 2012). Due to the
aforementioned mechanisms, biological control agents for plant
diseases are gaining stature as viable alternatives to synthetic
pesticides given their perceived increased level of safety and
minimal negative environmental impacts. It is imperative to
continue this line of research, since regulations on the use of
new and existing fungicides are becoming more and more
stringent. In particular, this has led to extensive researches on
the use of microbial antagonists as protective agents and many
fungal diseases can now be controlled by microbial antagonists.
As a result, commercial products containing microbial BCAs
have been successfully exploited in modern agriculture (e.g.,
Trichoderma based products and biopesticides based on
Bacillus thuringiensis) (Menzler-Hokkanen, 2006).

A significant amount of harvested fruits and vegetables is lost
annually due to microbial spoilage and this loss can range from
10%–50% depending on the commodity and country (El
Ghaouth et al., 2002; Janisiewicz and Korsten, 2002).
Developing countries experience greater losses due to
inadequate storage and transportation facilities, and improper
handling methods that are employed during harvesting and
transit (Pathak, 1997; El Ghaouth et al., 2002; Nabi et al.,
2017). The harvested yield might have been infected by one or
several pathogens prior to harvest or they may become infected
during transit and storage. (Punja, 1997; Janisiewicz and
Korsten, 2002; Nabi et al., 2017). Several researches have been
carried out to identify effective biocontrol agents for post-harvest
disease management and as a result, biocontrol antagonists are
now employed to control postharvest diseases worldwide. A few
examples of these applications are indicated here. Mohamed and
Saad (2009) found that the application of specific strains of
Pichia anomala was a safe and effective biocontrol agent against
Diplodia postharvest rot of guava fruit caused by Lasiodiplodia
theobromae (Pat.) Griffon & Maubl. Alvindia and Natsuaki
(2008) and Sangeetha et al. (2009) demonstrated the superior
biocontrol potential of Trichoderma species for the management
of the postharvest crown rot complex of banana caused by a
variety of fungal pathogens including Colletotrichum musae,
Fusarium verticillioides, and Lasiodiplodia theobromae. The
search for suitable biological-control systems has largely taken
place in the last fifty years and there has been considerable
interest in the use of antagonistic microorganisms for the control
of postharvest diseases. (Droby, 2006; Heydari and Pessarakli, 2010;
November 2020 | Volume 10 | Article 604923
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Wisniewski et al., 2016). Bacteria associated with plants are
known to develop biofilms on plant surfaces and within
intercellular spaces of plant tissues, which act as microniches.
It has been reported that the conditions within these microniches
created because of the biofilm formation are markedly different
from those of the ambient environment, which will eventually
lead the microbial cells to effect functions that are not possible
alone. This may influence the ecology of the bacteria they harbor
and the relationship of bacteria with plants, which directly
influence the development of strategies for biological control of
plant disease and for assuring food safety (Morris and
Monier, 2003).

Fungal Antagonists
The potential for the application of fungal biological control
agents against plant pathogens has largely increased because
fungi have a comparatively high reproductive rate (sexually as
well as asexually), a short generation time and they are target
specific. Furthermore, in the absence of the host, they can survive
in the environment shifting their mode of parasitism to
saprotrophism thus maintaining sustainability. Many fungal
species possess mechanisms that allow them to efficiently
protect plants from diseases caused by plant pathogenic fungi
(Figure 1).

History of Fungal Biological Control
Applications
Since ancient times man has attempted to increase crop
production and control disease severity of crop plants by
altering cultivation practices, which reduce both initial
inoculum as well as infection rate (Singh and Chawla, 2012;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Gupta and Sharma, 2014). With the finding of microorganisms
and their interactions, many methods have been employed to
control pathogens through the use of fungal antagonists.

Roberts (1874) showed the antagonistic action of
microorganisms in liquid cultures between Penicillium glaucum
and bacteria, introducing the term antagonism as used in
microbiology. Hartley (1921) made the first attempt at direct
application of biological control of plant pathogens by
inoculating soil with microorganisms that were thought to
have antagonistic potential. He inoculated forest nursery soils
with thirteen antagonistic fungi to control damping-off caused by
Pythium debaryanum. (Baker, 1987; Gupta and Sharma, 2014).
Weindling (1932, 1934) described the potential of Trichoderma
lignorum (T. viride) to control plant-pathogenic fungi by
mycoparasitism and reported the first use of a known
antimycotic-producing antagonist in plant disease control
(Baker, 1987). Later, Weindling (1941) noted that Trichoderma
species excrete an antimycotic that was toxic to plant pathogens
including Rhizoctonia solani and Sclerotinia americana, and
named it gliotoxin. This was the first record of the use of a
known antimycotic-producing antagonist in plant disease
control (Baker, 1987; Howell, 2003). The discovery of penicillin
by A. Fleming in 1928, and its purification and use in
pharmaceutical production, significantly stimulated studies on
antagonists of plant pathogens (Baker, 1987).

Development of modern biotechnological approaches lead to
increase the potential usage of fungal antagonists against a wide
range of plant diseases. Numerous researches and experiments
have been carried out during the past few decades to identify new
fungal BCAs and evaluate their effectiveness under different
environmental conditions.
FIGURE 1 | Key mechanisms of action involved in biological control of plant fungal diseases by fungal antagonists.
November 2020 | Volume 10 | Article 604923
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Commercialization of Fungal Biological
Control Agents
Commercial uses and applications of biological control of plant
diseases have been slow mainly due to their variable performances
under different environmental conditions in the field as well as due
to their host specificity. To overcome this problem, it is essential to
develop new formulations of BCAs with a higher degree of stability,
efficiency and survival using new biotechnological practices
(Heydari and Pessarakli, 2010). Several criteria have to be
satisfied for upscaling a particular BCA to reach the stage of
commercialization (Punja, 1997). Commercialization of biological
control agents is expensive as it involves many steps such as
isolation in pure culture or enrichment of the microorganism,
identification and characterization, the development of a suitable
formulation, mass production, efficacy testing of the product,
inspection of storage stability, finding an industrial partner,
attention to human and environmental safety matters,
registration and marketing (Punja, 1997; Stirling and Stirling,
1997; Janisiewicz and Korsten, 2002; Montesinos, 2003). A
number of biologically based products are being sold worldwide
for the control of fungal plant pathogens and generally they are
produced as granules, wettable powders, dusts, and aqueous or oil-
based liquid products using different mineral and organic carriers
(Ardakani et al., 2009; Nega, 2014). Several microbial antagonists
have been patented and evaluated for commercial uses (Wisniewski
et al., 2000; El Ghaouth et al., 2002; Schena et al., 2004; Nabi et al.,
2017) and these agents are frequently recommended for plants
(Albajes et al., 2000; Fravel, 2005; O’Brien, 2017). Some
commercialized fungal BCAs used to control plant fungal
diseases and their particulars are listed in Table 1.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Integrated Applications of BCAs With
Synthetic Fungicides for the Control of
Plant Fungal Pathogens
Synthetic fungicides consisting of inorganic or organic compounds
are commonly used in developed agricultural systems to control
plant diseases, including post-harvest diseases, and to safeguard
crop yield and quality mainly due to their relatively low cost, ease of
application, and effectiveness. Chemical agents such as Captan,
dithiocarbamates, thiabendazole (TBZ) and imazalil (IMZ) are
widely used in the control of plant fungal pathogens (Lucas et al.,
2015; Perez et al., 2016; Gupta, 2018). However, the massive and
indiscriminate use of synthetic fungicides in crop protection and
post-harvest food preservation has resulted in resistance to some
fungicides and also led to severe effects on humans, animals, and
wildlife resulting in widespread adverse ecological effects (Gupta,
2018; Gupta, 2019). Significant biocontrol of postharvest diseases of
fruits and vegetables can be achieved with both field and
postharvest applications (Janisiewicz and Korsten, 2002). The
combined or integrated applications of a BCA with a synthetic
fungicide or physical additives, either simultaneously or in rotation,
would be expected to result in an enhanced degree of disease
suppression, provided that the biocontrol agent is compatible with
the fungicide used (Punja, 1997; Janisiewicz and Korsten, 2002;
Droby, 2006; Eshel et al., 2009).

Modern Biotechnological Approaches
Used in Plant Fungal Pathogen Biocontrol
Biological control of plant diseases using fungal BCAs has
developed considerably in recent years with the application of
genomics, genetic engineering and recombinant DNA
TABLE 1 | Some commercialized fungal Biocontrol Agents (BCAs) for plant fungal diseases and their specifications.

Biocontrol agent Product Target Pathogen(s) or crop disease Manufacturer or distributor

Ampelomyces quisqualis AQ10® Bio
Fungicide

Powdery mildew Ecogen Inc, USA, Israel

Anthracocystis flocculosa
(Pseudozyma flocculosa)

Sporodex L Powdery mildew Plant Products Co., Canada

Candida oleophila Aspire Post-harvest diseases Ecogen Inc, USA, Israel
Paraphaeosphaeria minitans
(Coniothyrium minitans)

Contans WG;
KONI

Sclerotinia sclerotiorum and S. minor Prophyta Biologischer Pflanzenschutz
GmbH; Germany,
Bioved Ltd, Hungary

Clonostachys rosea (Gliocladium
catenulatum)

Primastop Damping-off, seed rot, root and stem rot, and wilt diseases Kemira Agro OY,
Finland; RegWest Co., USA

Prestop Soil-Borne and foliar diseases of greenhouse vegetables, herbs
and ornamentals

Danstar Ferment Ag., Switzerland;
AgBio, Inc., USA

Fusarium oxysporum (non-
pathogenic)

Fusaclean; Biofox C Wilt diseases SIAPA, Italy; Natural Plant Protection,
France

Phlebiopsis gigantea Rotstop® Root rot diseases Kemira Agro Oy, Finland
Trichoderma virens (Gliocladium
virens)

Soilgard® Soil-borne pathogens; Rhizoctonia and Pythium species Certis USA

Trichoderma harzianum RootShield® Root rot diseases; Pythium, Fusarium, Rhizoctonia, Thielaviopsis
and Cylindrocladium species

BioWorks, Inc., USA

Trichoderma harzianum Trichodex Grey mould (Botrytis cinerea); Rhizoctonia, Sclerotinia and
Colletotrichum species

Makhteshim Agan Industries, Israel

Trichoderma harzianum and T.
polysporum

Binab T Root rot diseases, pruning wounds in ornamental, shade, and
forest trees

BINAB Bio-Innovation AB, Sweden

Trichoderma viride Trichoderma Viride
Trieco

Soil-borne fungal diseases Ecosense Lab (I) Pvt. Ltd., India
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techniques. These techniques have been developed to a high
degree of precision and have been applied to the improvement of
fungal strains for agro-industrial processes. Development of new
crop varieties or clones that are resistant to plant pathogens
offers a commonly acceptable and potentially long-term control
option. Furthermore, many studies have been conducted to
identify genetic traits of fungal antagonists and determine their
potential to enhance biocontrol activity (Janisiewicz and Korsten,
2002; Droby, 2006; O’Brien, 2017). A few examples are pointed
out here; (a). the introduction of multiple lytic enzyme‐encoding
genes into Trichoderma virens genome resulted in a strain that
secreted a mixture of glucanases and showed greatly enhanced
inhibition of the pathogens Pythium ultimum (Oomycota,
Chromista), Rhizoctonia solani, and Rhizopus oryzae (Djonovic
et al., 2007); (b). McDougal et al. (2012) presented a method for
the genetic transformation of Cyclaneusma minus, the causal
agent of Cyclaneusma needle-cast, using protoplasts generated
by incubation with Glucanex™ enzyme. Cyclaneusma minus was
transformed with a gene encoding green fluorescent protein
(GFP), which was allowed to identify several Trichoderma
strains with potential for biocontrol of the disease. The
interaction between C. minus and the Trichoderma strains, in
the interaction zone where GFP expression was lost, was
determined by a dual culture technique to be fungicidal; (c).
Yakoby et al. (2001) generated reduced-pathogenicity mutants of
the avocado fruit pathogen Colletotrichum gloeosporioides using
insertional mutagenesis by restriction enzyme mediated
integration (REMI) transformation and these isolates can be
used for the biological control of anthracnose caused by
C. gloeosporioides.

Aims of This Study
The present study aims to provide a comprehensive list of fungal
BCAs that are used against fungal pathogens of crop plants, and
clarify their phylogenetic relationships as these are often wrongly
mentioned and interpreted in the literature of biocontrol. In this
review, the main researches conducted during past the fifty years
to evaluate the interactions between fungal antagonists and
fungal plant pathogens were highlighted. Thus, this review is
meant to serve as an updated database for applications of
potential fungal antagonists against particular plant fungal
diseases employed by different researchers worldwide. This can
also serve as a useful tool to select and compare suitable and most
applicable fungal antagonistic applications for fungal disease
management in ongoing practices and researches. Many fungal
antagonists and causative agents of plant diseases are presently
identified and described based on the traditional classification
and taxonomic systems. This review is the first comprehensive
study of potential fungal antagonists applied against fungal plant
pathogens based on a phylogenetic analysis and provides an
extensive list of fungal BCAs used against fungal plant pathogens
according to modern taxonomic concepts.Therefore, in this
review the fungal antagonists and fungal pathogens are
presented and listed using updated taxonomic nomenclature,
which helps to avoid complications and misunderstandings.
Also, the phylogenies of potential fungal BCAs are shown
and discussed.
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A variety of biological control methods are available
nowadays, however they should be further developed before
they can be effectively adopted. Therefore, this study makes a
significant contribution for a greater understanding in
developing such approaches with the help of the detailed
information presented.
MATERIALS AND METHODS

Data Collection and Presentation
Research data on fungal antagonists used against fungal plant
pathogens were collected from resources published during the
past fifty years. The collected data are summarized in the
Supplementary Table 1, which includes information on
Fungal biocontrol agent, Disease and host as well as Pathogen.
The disease or the pathogen suspension/control rate equal to or
greater than 50% in each case is indicated with an asterisk (*)
after the pathogen. Several potential fungal-like taxa causing
plant diseases have also been taken into account to show the
broad spectrum of activity of fungal BCAs and they are indicated
with @. Different applications and treatment methods (in vitro
and in vivo or both) have often been used when evaluating the
effect of fungal BCAs in the research papers we considered. Thus,
the disease/pathogen suppression percentage was accounted
based on the maximum inhibition shown (if different
conditions were applied).

Phylogenetic Analysis of Fungal
Antagonists
Sequence data of the 28S nrRNA gene (LSU) from ex-type, ex-
epitype, or ex-neotype strains of fungal antagonists listed in this
study were downloaded from the NCBI’s GenBank nucleotide
database (Supplementary Table 2). If no ex-type strains were
available, sequences from voucher, authentic or reference strains
were included in the analysis. Hyphochytrium catenoides
(EF594059) was chosen as the outgroup taxon.

Sequences were aligned with Bioedit 7.1.3.0 (Hall, 1999), and
the consensus sequences were further improved with MUSCLE
implemented in MEGA 5v (Tamura et al., 2011). Alignments
were checked and optimized manually when necessary. The
phylogenetic tree was generated by maximum likelihood (ML)
criterion using RAxML-HPC2 BlackBox (8.2.10) (Stamatakis,
2006; Stamatakis et al., 2008) on the CIPRES Science gateway
portal V 3.3 (Miller et al., 2010) and a Bayesian analysis was
performed with MrBayes v. 3.2.6 (Ronquist and Huelsenbeck,
2003). The general time-reversible model of evolution including
estimation of invariable sites and assuming a discrete gamma
distribution with default parameters was used for the ML
analysis. The model of evolution (GTR + I + G) was
determined with MrModeltest 2.2 (Nylander, 2004) under the
Akaike Information Criterion (AIC) implemented in PAUP v.
4.0b10. Bayesian inference (Rannala and Yang, 1996;
Zhaxybayeva and Gogarten, 2002) was determined by Markov
Chain Monte Carlo sampling (MCMC) in MrBayes v. 3.0b4
(Huelsenbeck and Ronquist, 2001). Six simultaneous Markov
November 2020 | Volume 10 | Article 604923
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chains were run for 7,000,000 generations and trees were
sampled every 100th generation. The first 20% of the trees
(14000), representing the burn-in phase of the analysis, were
discarded, while the remaining trees were used to calculate
posterior probabilities (PP) in the majority rule consensus tree.
The best scoring RAxML tree was selected and visualized with
MEGA v. 5 (Tamura et al., 2011) and the graphical layout of the
tree was created using PowerPoint 2010 version. ML Bootstrap
support values (MLBS) greater than or equal to 50% and
Bayesian posterior probabilities (PP) greater than or equal to
0.90 are indicated at the nodes of the branches. Alignments were
deposited in TreeBASE (www.treebase.org) under the
submission number 26869.
RESULTS

Phylogenetic Analysis and Taxonomy of
Fungal Antagonists
After alignment the LSU dataset consisted of 1,030 characters
(including alignment gaps) for 218 ingroup taxa and the
outgroup taxon. The Bayesian tree had had a topology
identical to the ML tree presented. (data not shown). Fungal
BCAs are distributed in four phyla (Ascomycota, Basidiomycota,
Glomeromycota and Mucoromycota) and thirteen classes viz.
Sordariomycetes, Dothideomycetes, Eurotiomycetes, Leotiomycetes,
Saccharomycetes (Ascomycota), Agaricomycetes, Exobasidiomycetes,
Ustilaginomycetes, Microbotryomycetes, Cystobasidiomycetes,
Tremellomycetes (Basidiomycota), Glomeromycetes (Glomeromycota),
Mucoromycetes (Mucoromycota) in the kingdom fungi (Figure
2). The results show the phylogenetic placement of the various
fungal BCAs within the kingdom fungi and confirm the current
taxonomic placement of those BCAs. Most of the fungal BCAs
belong to the class Sordariomycetes.

Fungal Antagonists and Their Potential
Against Plant Pathogens
Approximately 300 species or varieties belonging to 113 fungal
genera are identified as BCAs for plant fungal pathogens based
on the previous studies (Supplementary Table 1). Nine genera
are recognized as potential genera, which consist of five or more
known antagonistic species (Table 2). They are Alternaria,
Aspergillus, Candida, Fusarium, Penicillium, Pichia, Talaromyces,
Trichoderma, and Verticillium. Trichoderma is the most prominent
genus comprising 25 BCAs and they are widely used in controlling
plant diseases caused by fungi. Alternaria, Botrytis, Colletotrichum,
Fusarium, Lasiodiplodia, Penicillium, Phytophthora, Sclerotinia,
and Verticillium are identified as common and most abundant
plant pathogenic genera, to which frequently BCAs are applied for
disease control.
DISCUSSION

The present study provides a comprehensive list of fungal BCAs
used against a wide range of fungal plant pathogens, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
establishes their phylogenetic relationships using a phylogenetic
analysis based on the available authentic 28S nrRNA gene (LSU)
sequence data. This will help clarify the currently correct names
for the species since they have often been wrongly quoted and
interpreted in the literature of biocontrol. It will further help with
searches for the species in earlier literature where the old names
were used.

In the phylogenetic analysis presented in this review, fungal
BCAs were distributed in thirteen classes viz. Sordariomycetes,
Dothideomycetes, Eurotiomycetes, Leotiomycetes, Saccharomycetes
(Ascomycota), Agaricomycetes, Exobasidiomycetes, Ustilaginomycetes,
Microbotryomycetes, Cystobasidiomycetes, Tremellomycetes
(Basidiomycota), Glomeromycetes (Glomeromycota), Mucoromycetes
(Mucoromycota) in the kingdom fungi (Figure 2). The results
confirmed the taxonomic placement of the various fungal BCAs
and most of the fungal BCAs belong to the class Sordariomycetes.
However, DNA sequences for some of the species are not
currently available and therefore it is essential to have sequence
data from authentic strains to confirm their taxonomy.

The main and common issue that we found when preparing
this review was the method used by the authors to identify the
fungal antagonists. Most of the publications have not used an
appropriate identification method and they mainly followed the
traditional identification methods and resources. However,
molecular DNA sequencing and phylogenetic tools have been
used in some of the recent publications to identify the
antagonists and the pathogen correctly (Grondona et al., 1997;
Rubini et al., 2005; Sriram and Poornadchanddra, 2013; Hung
et al., 2015; Kheireddine et al., 2018). In addition, the
nomenclature and classification of several fungal species have
been subjected to change during the past few decades due to the
modern taxonomic approaches and views. Therefore, corrections
on those changes are mandatory in order to avoid
misinterpretations. In this study, we have given the current
names of the fungal species and the names commonly used in
each particular research paper are mentioned in the brackets
where applicable (Table 2).

Trichoderma is a species rich, asexual genus in the family
Hypocreaceae (Hypocreales, Sordariomycetes) and currently
includes 433 species epithets in Index Fungorum, but DNA
sequence data for most of the species are not available in
GenBank. The sexual morphs of Trichoderma species are
linked to Hypocrea. Members of the genus Trichoderma are
biotrophic, hemibiotrophic, saprobic or hypersaprobic on
various plants, or other fungi (Maharachchikumbura et al.,
2016) and have been identified as the antagonists with greatest
potential. They have been employed in several applications in
plant fungal disease control. Twenty-five known Trichoderma
species are included in Table 2 and these species have great
potential for significantly controlling more than 100 fungal plant
pathogens worldwide. Out of these species Trichoderma
harzianum can be considered as the most common and
commercially developed BCA used for a wide range of plant
fungal diseases. Trichoderma species produce a number of
metabolites and these metabolites play a major role in
biological control mechanisms (Reino et al., 2008). Apart from
November 2020 | Volume 10 | Article 604923
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that, Aspergillus and Penicillium species also play a vital role as
BCAs next to Trichoderma (Supplementary Table 1 and Table 2).

Some fungus-like genera (Globisporangium, Hyphochytrium
and Pythium) belonging to Oomycota, Chromista, are also
important as BCAs and have been used to control plant fungal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
diseases (Table 3). Considering the activity of fungus-like BCAs,
Pythium oligandrum may be considered as the one with the
greatest potential as a BCA.

Application of one or more biocontrol agents combined with
physical and/or chemical control treatments can be considered as
FIGURE 2 | Continued
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FIGURE 2 | Phylogram resulting from maximum likelihood (RAxML) analysis of sequence alignment of the 28S nrRNA gene (LSU) sequences of fungal antagonists.
ML bootstrap values (MLBS) ≥ 50% and Bayesian posterior probabilities (PP) ≥ 0.90 are at each node. The tree was rooted to Hyphochytrium catenoides (PL AUS
045). Classes are indicated with coloured blocks to the left of the tree.
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a useful strategy in achieving an enhanced performance against
plant diseases. Sometimes, it is difficult to select individual
strains with a broad spectrum of activity against several plant
pathogens that cause severe damages and infections on plants or
fruits. Mixed cultures of the microbial antagonists appear to
provide better control of plant diseases over individual strains
(Guetsky et al., 2001; Freeman et al., 2004; Xu et al., 2011) and
these BCAs should be compatible and applied properly with a
correct formulation. The application of antagonist mixtures
improves the efficacy of biocontrol and are used in many
agricultural fields including post-harvest disease control
systems. (Datnoff et al., 1995; Nagtzaam et al., 1998; Guetsky
et al., 2001; Janisiewicz and Korsten, 2002; Freeman et al., 2004;
Droby, 2006; Xu et al., 2011; Doley et al., 2017; Nabi et al., 2017).
In a study of the biological control of Armillaria root rot of
strawberry plants by Raziq and Fox (2005), all the strawberry
plants treated with Trichoderma harzianum isolates or T. viride
isolate alone died by the end of the experiment, while 50% of
them survived when treated with a combination of any of the
antagonists with Dactylium dendroides. Calvo et al. (2003)
improved the biocontrol efficiency of postharvest diseases of
apples (Penicillium expansum and Botrytis cinerea) by using
mixtures of yeasts (Rhodotorula glutinis, Cryptococcus albidus
and C. laurentii) without increasing the amount of antagonists
applied. Haggag and Nofal (2006) revealed that the multi-
biocontrol agents namely Trichoderma koningii, T. hamatum,
Pseudomonas fluorescens, P. putida, Tilletiopsis minor, and T.
washingtonensis were more effective against Botryodiplodia
disease (Lasiodiplodia theobromae = Botryodiplodia
theobromae) on some Annona cultivars when applied in
combination than when applied individually or even when
applied in any combination of two agents. Furthermore,
applications of multi-biocontrol agents resulted in a significant
increase of fruit yield. Doley et al. (2017) showed that the incidence
of stem-rot in groundnut caused by Sclerotium rolfsii was
significantly lowered by combined inoculation of both Glomus
fasciculatum along with Trichoderma viride as compared to when
either G. fasciculatum or T. viride was applied alone.

Application of BCAs with inorganic and organic substances
and chemicals such as bicarbonates and chlorides of alkali
metals, minerals and other elements (Piano et al., 1997; Droby
et al., 1997; Tian et al., 2002a; Gamagae et al., 2003; Tian et al.,
2005; Karabulut et al., 2005; Cao et al., 2012) or low dosage of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
fungicides (Chand-Goyal and Spotts, 1996; Spotts et al., 1998;
Qin and Tian, 2004; De Cal et al., 2009) are widely used to
control plant pathogenic diseases including post-harvest
diseases. A few potential examples of these applications are
indicated here. Thus Tian et al. (2005) investigated the
synergistic biocontrol effects of Cryptococcus laurentii and
Rhodotorula glutinis combined with silicon (Si) against
Alternaria alternata and Penicillium expansum moulds in
jujube fruit stored at different temperatures and found that
combinations of these two biocontrol agents with 2% Si is
most effective in controlling the diseases on jujube fruit stored
at 20°C. The studies of Karabulut et al. (2005) demonstrated that
postharvest applications of sodium bicarbonate within a
hydrocooler significantly controlled postharvest diseases of
sweet cherries. Liu et al. (2010) revealed that tea polyphenol
alone or in combination with biocontrol agents has great
potential in commercial management of postharvest diseases in
fruits. Larena et al. (2010) enhanced the adhesion of Epicoccum
nigrum conidia to peach surfaces by adding 2.5% methylcellulose
to the conidial formulation of E. nigrum and this improved the
biocontrol of brown rot caused by Monilinia laxa. Cao et al.
(2012) found that Boron improves biocontrol activity of
Cryptococcus laurentii against Penicillium expansum in jujube
fruit. The study by Gamagae et al. (2003) showed that the use of
sodium bicarbonate at 2% with the biocontrol agent Candida
oleophila reduces anthracnose caused by Colletotrichum
gloeosporioides on papaya during storage. Sometimes, these
integrated applications increase the efficiency of the particular
BCA and sometimes indirectly improve plant productivity.
Ordentlich et al. (1990) showed that integrated treatment of
the fungicide captan and the biocontrol agent Trichoderma
harzianum resulted in a reduction of Verticillium dahlia
colonization of potato stems (Verticillium wilt), increasing
marketable and total potato yield of cultivars Draga by 84% and
46% respectively, and total yield of cultivarDesiree by 80%.However,
only BCA alone applications (without combining with organic or
inorganic chemical substances) are considered in this review.

Fungal biological control agents act through several
mechanisms (see the introduction) when controlling plant
diseases. However, these mechanisms may cause risks to non-
target species including mycorrhizal and saprophytic fungi, soil
bacteria, other plants, insects, aquatic and terrestrial animals, and
humans. Possible non-target effects of any BCAs or method used
November 2020 | Volume 10 | Article 604923
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TABLE 2 | Number of known fungal species in each genus with a potential
Biocontrol Agent (BCA) activity against plant fungal pathogens.

Phylum Class Genus Number of
known

species with
a potential
BC activity

against plant
fungal

pathogens

Ascomycota Dothideomycetes Alternaria 08
Ampelomyces 01
Aureobasidium 01
Bipolaris 01
Cladosporium 04
Curvularia 03
Didymella 01
Epicoccum 01
Leptosphaeria 01
Microsphaeropsis 02
Neocamarosporium 01
Paraboeremia 01
Paraphaeosphaeria 01
Phaeotheca 01
Stemphylium 01

Eurotiomycetes Aspergillus 16
Cladophialophora 01
Exophiala 01
Paecilomyces 01
Penicillium 17
Talaromyces 08

Incertae sedis Gonatobotryum 01
Teratosperma 01

Leotiomycetes Botrytis 01
Phialocephala 01
Cadophora 01

Saccharomycetes Candida 08
Citeromyces 01
Debaryomyces 01
Diutina 01
Hanseniaspora 02
Kazachstania 01
Lipomyces 01
Metschnikowia 03
Meyerozyma 02
Nakazawaea 01
Ogataea 01
Pichia 05
Saccharomyces 02
Torulaspora 02
Wickerhamomyces 01
Zygosaccharomyces 01

Sordariomycetes Acremonium 02
Akanthomyces 03
Albifimbria 01
Aphanocladium 01
Arcopilus 01

Bionectria 01

Coniochaeta 01

Chaetomium 03

Clonostachys 02

Collariella 01

Colletotrichum 02

Fusarium 12

Gibellulopsis 01

(Continued)
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 and Infection Microbiolo
gy | www.frontiersin.o
rg 13
TABLE 2 | Continued

Phylum Class Genus Number of
known

species with
a potential
BC activity

against plant
fungal

pathogens

Gliomastix 01
Haematonectria 01
Hypomyces 01
Lecanicillium 01
Metapochonia 01
Metarhizium 01
Microdochium 01
Muscodor 03
Neocosmospora 01
Nigrospora 01
Paramyrothecium 01
Parasarocladium 01
Pestalotiopsis 01
Plectosphaerella 01
Purpureocillium 01
Robillarda 01
Sarocladium 01
Simplicillium 02
Sordaria 01
Stachybotrys 01
Stilbella 01
Trichoderma 25
Trichothecium 01
Verticillium 05
Xylaria 01

Basidiomycota Agaricomycetes Athelia 01
Ganoderma 01
Laetisaria 01
Lentinus 01
Minimedusa 01
Phlebiopsis 01
Rhizoctonia 01
Schizophyllum 01
Serendipita 01
Trametes 01
Typhula 01
Waitea 01

Cystobasidiomycetes Buckleyzyma 01
Exobasidiomycetes Gjaerumia 01

Robbauera 01
Tilletiopsis 02

Microbotryomycetes Rhodotorula 03
Tremellomycetes Cystofilobasidium 01

Naganishia 01
Papiliotrema 02
Saitozyma 01
Tausonia 01

Ustilaginomycetes Anthracocystis 01
Moesziomyces 02

Glomeromycota Glomeromycetes Claroideoglomus 01
Diversispora 01
Funneliformis 01
Gigaspora 01
Rhizophagus 03
Septoglomus 01
Simiglomus 01

Mucoromycota Mucoromycetes Absidia 01
Rhizopus 01
Novemb
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in the field should be determined before their applications.
Continuous monitoring and the use of molecular techniques to
identify and follow the movement of BCAs are also necessary
and negative biological impacts can then be avoided (Brimner
and Boland, 2003). Cross-protection can be defined as the
protection conferred on a host by infection with one strain of a
microorganism that prevents infection by a closely related strain
of that microorganism. This method has been widely used to
control the plant diseases caused by Fusarium and Verticillium
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
species (Matta and Garibaldi, 1977; Larkin and Fravel, 1998; Nel
et al., 2006; Zhu et al., 2013).

The efficiency of a particular BCA against plant diseases can
be altered by many factors such as; environmental factors, time
of treatment, season of the application, nature or technique of
the treatment and the frequency of the application (McLaughlin
et al., 1990; Wu and Hsiang, 1998; Ali-Shtayeh and Saleh, 1999;
Schisler et al., 2002; Bhagat and Pan, 2007; Lal et al., 2009;
Perelló et al., 2009; Padder and Sharma, 2011). The same BCA
TABLE 3 | Fungal-like species (Oomycota, Chromista) used as Biocontrol Agents (BCAs) in the past few decades against fungal pathogens/diseases of different host
plants.

Biocontrol agent Disease and host Pathogen References

Hyphochytrium catenoides Phytophthora root rot of soybean Phytophthora megasperma f. sp. glycines Filonow and Lockwood, 1985
Globisporangium ultimum
(Pythium ultimum)

Barley powdery mildew Blumeria graminis f. sp. hordei Haugaard et al., 2001

Pythium acanthicum Damping-off of cucumber Globisporangium ultimum (Pythium
ultimum)

Ali-Shtayeh and Saleh, 1999

Fusarium ear blight of wheat Fusarium culmorum & Microdochium
nivale

Diamond and Cooke, 2003

Pythium nunn Damping-off disease of cucumber Globisporangium ultimum (Pythium
ultimum)

Paulitz and Baker, 1987

Pythium oligandrum Seedling and taproot diseases of
sugar beet

Aphanomyces cochlioides Takenaka and Ishikawa, 2013

Seedling disease of sugar beet Aphanomyces cochlioides Takenaka et al., 2006
Grey mould of grapevine Botrytis cinerea Mohamed et al., 2007
Grey mould of tomato Botrytis cinerea Le Floch et al., 2003
Grey mould of strawberry Botrytis cinerea Meszka and Bielenin, 2010
Cercospora leaf spot in sugar beet Cercospora beticola Takenaka and Tamagake, 2009
Foot rot pathogens of pea Didymella pinodella (Phoma medicaginis

var. pinodella)
Bradshaw-Smith et al., 1991

Fusarium head blight Fusarium graminearum Takenaka et al., 2003
Fusarium crown and root rot of tomato Fusarium oxysporum f. sp. radicis-

lycopersici
Benhamou et al., 1997; Gerbore et al., 2014

Seed rot of tomato Globisporangium ultimum (Pythium
ultimum)

He et al., 1992; Gerbore et al., 2014

Pythium damping-off in cress and
sugar-beet

Globisporangium ultimum (Pythium
ultimum)

Vesely, 1977; McQuilken et al., 1990;
McQuilken et al., 1992

Damping-off disease of cress Globisporangium ultimum (Pythium
ultimum)

Al-Hamdani et al., 1983

Damping-off of cucumber Globisporangium ultimum (Pythium
ultimum)

Ali-Shtayeh and Saleh, 1999

Seedling diseases of cotton Globisporangium ultimum (Pythium
ultimum)

Martin and Hancock, 1986; Gerbore et al.,
2014

Pre-emergence damping-off disease of
sugar beet

Globisporangium ultimum (Pythium
ultimum)

Martin and Hancock, 1987

Pythium root rot of tomato Pythium dissotocum Vallance et al., 2009; Gerbore et al., 2014
Crown and root rot of tomato Phytophthora parasitica (Phytophthora

nicotianae)
Picard et al., 2000

Damping-off of wheat Pythium ultimum var. ultimum Abdelzaher et al., 1997
Leaf spot of strawberry Ramularia grevilleana (Mycosphaerella

fragariae)
Meszka and Bielenin, 2010

Damping off disease of tomato Rhizoctonia solani He et al., 1992; Gerbore et al., 2014
Black scurf of potato Rhizoctonia solani Ikeda et al., 2012
Seedling disease of sugar beet Rhizoctonia solani Takenaka et al., 2003
Powdery mildew of strawberry Sphaerotheca macularis (Podosphaera

aphanis)
Meszka and Bielenin, 2010

Verticillium wilt of pepper Verticillium dahliae Al-Rawahi and Hancock, 1998; Rekanovic
et al., 2007

Verticillium wilt of olive Verticillium dahliae Varo et al., 2016
Pythium periplocum Grey mould of grape-vine Botrytis cinerea Paul, 1999a

Damping-off of cucumber Globisporangium ultimum (Pythium
ultimum)

Ali-Shtayeh and Saleh, 1999

Pythium radiosum Grey mould of grape-vine Botrytis cinerea Paul, 1999b
November 2020 | Volume 10 | Article 604923
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can show different efficiencies at in vitro, in vivo, and
greenhouse/field conditions (Wokocha et al., 1986; Larena
et al., 2003; Campanile et al., 2007; Padder and Sharma, 2011;
Ommati et al., 2013). The dual culture method is the most
widely used and simplest in vitro technique to determine the
activity of BCAs against pathogens and sometimes the results
obtained from this method may differ from results found in the
in vivo, field or greenhouse conditions (Padder and Sharma,
2011; Zheng et al., 2011; Kheireddine et al., 2018). Therefore, it
is hard to expect the same result for the same BCA in the field
compared to the laboratory or greenhouse applications and it is
essential to carry out tests in both in vitro and in vivo before
scaling up the particular BCA. However, in this review, the
maximum disease control situations are stipulated in Table 2, in
case where different environmental conditions have been used
in the respective publication.
FUTURE ASPECTS

An assay based on modern taxonomic approaches is highly
recommended to identify the antagonists and the pathogens
correctly. Also, verified antagonistic cultures must be obtained
from reputable culture collections in a case when researchers are
planning to use known strains. These practices will largely
minimize the confusion related to this field in the future.
Moreover, modern biotechnological and genetic engineering
tools have contributed immensely towards the development of
new fungal strains with high capacity and efficiency of
biocontrolling. Last, but not least, fungal extracts and
secondary metabolites produced by various fungal species
(Mathivanan et al., 1998; Park et al., 2005; Pal and McSpadden
Gardener, 2006; Koitabashi and Tsushima, 2007; Reino et al.,
2008; Stoppacher et al., 2010; Lou et al., 2011; Cimmino et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
2013) will also play a significant role in future bio-control
methods of plant pathogens.
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