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Introduction: Clostridioides difficile is a neglected pathogen in many African countries as
it is generally not regarded as one of the major contributors toward the diarrheal disease
burden in the continent. However, several studies have suggested that C. difficile infection
(CDI) may be underreported in many African settings. The aim of this study was to
determine the prevalence of CDI in hospitalized patients, evaluate antimicrobial exposure,
and detect toxin and antimicrobial resistance profiles of the isolated C. difficile strains.

Methods: In this cross-sectional study, 333 hospitalized patients with hospital-onset
diarrhoea were selected. The stool samples were collected and cultured on cycloserine-
cefoxitin egg yolk agar (CCEY). Isolates were presumptively identified by phenotypic
characteristics and Gram stain and confirmed by singleplex real-time PCR (qPCR) assays
detecting the species-specific tpi gene, toxin A (tcdA) gene, toxin B (tcdB) gene, and the
binary toxin (cdtA/cdtB) genes. Confirmed C. difficile isolates were tested against a panel
of eight antimicrobials (vancomycin, metronidazole, rifampicin, ciprofloxacin, tetracycline,
clindamycin, erythromycin, and ceftriaxone) using E-test strips.

Results: C. difficile was detected in 57 (25%) of diarrheal patients over the age of two, 56
(98.2%) of whom received antimicrobials before the diarrheal episode. Amongst the 71
confirmed isolates, 69 (97.1%) harbored at least one toxin gene. More than half of the
toxigenic isolates harbored a truncated tcdA gene. All isolates were sensitive to vancomycin,
while three isolates (2.1%) were resistant to metronidazole (MIC >32 mg/L). High levels of
resistance were observed to rifampicin (65/71, 91.5%), erythromycin (63/71, 88.7%),
ciprofloxacin (59/71, 83.1%), clindamycin (57/71, 80.3%), and ceftriaxone (36/71,
50.7.8%). Among the resistant isolates, 61 (85.9%) were multidrug-resistant.
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Conclusion: Multidrug-resistant C. difficile strains were a significant cause of healthcare
facility-onset C. difficile infections in patients with prior antimicrobial exposure in this
Kenyan hospital.
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INTRODUCTION

Clostridioides difficile is an obligate anaerobic Gram-positive
bacterium that colonizes 0 to 15% of the healthy human
population (Furuya-Kanamori et al., 2015). However, the
absence of a competitor gut microbiota as a result of
antimicrobial therapy induces a shift from asymptomatic
colonization to mild diarrhea that may progress to life-
threatening diarrhea due to severe inflammation and
perforation of the colon (Ferreyra et al., 2014; Pérez-Cobas
et al., 2014). Substantial increases in the incidence and
morbidity of healthcare facility-associated diarrhea attributed
to Clostridioides difficile (previously named Clostridium difficile)
(Lawson et al., 2016) during the past decade have resulted in
recent attention being given to this pathogen.

In 2019, the United States Centers for Disease Control and
Prevention (CDC) declared C. difficile as one of the five “urgent
health threats” with the perception that it requires urgent and
aggressive action because of the significant risks associated with
antimicrobial overuse (CDC, 2019). Previous reviews reported a
low and underestimated prevalence of C. difficile infection in low
and middle-income countries. However, given that antimicrobial
use is the primary driver of C. difficile infections, the frequency
could be higher in countries where antimicrobial use is not
regulated (Bebell and Muiru, 2014; Roldan et al., 2018). Testing
for C. difficile infections in developing countries is not routinely
carried out owing to a lack of resources for diagnostic testing and
the culture facilities for obligate anaerobes. Therefore, diarrhea is
treated symptomatically, leading to misdiagnosis, mistreatment,
and a possible underestimation of the contribution of C. difficile
to diarrhea.

C. difficile infection (CDI) is primarily attributed to the
production of toxins A and B and occasionally binary toxins.
While the majority of symptomatic disease, severe cases, and
nosocomial outbreaks have been associated with strains that
produce both toxin A and B (A+B+), new variants continue to
emerge. Toxin A−B+ variants, such as those belonging to ribotype
(RT) 017, harbor a truncation in the 3′-region of the toxin A gene
(tcdA) that results in a TcdA negative phenotype. PCR primers
such as those developed by Lemee et al. (2004) have been
designed to amplify the partially deleted tcdA fragment
allowing for correct characterization of the most common
A−B+ variant strains (Lemee et al., 2004).

Prior antimicrobial exposure not only triggers the expansion
of C. difficile populations in the gastrointestinal tract but also
facilitates toxin production by the organism, cumulatively
contributing to an approximately 60% increased risk of
healthcare facility-onset CDI (HO-CDI) (Slimings and Riley,
2014). The fluoroquinolones, clindamycin, and cephalosporin
gy | www.frontiersin.org 2
antibiotics are known to trigger toxin-mediated CDI more than
other classes of antimicrobials (Gerding, 2004; Slimings and
Riley, 2014; Peng et al., 2017). Over the years, new variants of
C. difficile resistant to these antimicrobials and with reduced
susceptibility to first-line antimicrobials (metronidazole and
vancomycin) against CDI have emerged (Spigaglia, 2016).
High levels of resistance to clindamycin, ciprofloxacin,
moxifloxacin, erythromycin, and imipenem especially among
ribotypes 027 and 078 have largely been documented in
Northern America, Europe, and Asia (Tenover et al., 2012;
Keessen et al., 2013; Wieczorkiewicz et al., 2016).

In Kenya, recent studies have reported a CDI prevalence of
93.3% and 37.6% in young adults with diarrhea and children
under the age offive, respectively, with the majority of the strains
producing both toxins A and B (Oyaro et al., 2018; Plants-Paris
et al., 2019). The findings were significantly higher than the 0%
prevalence previously reported by Mwachari and colleagues two
decades ago (Mwachari et al., 1998). This increased prevalence
could be due to the differing diagnostic assays used and possibly,
epidemiological changes following significant increases in CDI
and emerging variants of C. difficile. Therefore, this study was
conducted to determine the prevalence of CDI in hospitalized
patients at Kenyatta National Hospital and to evaluate the
antibiotic resistance and toxin profiles of the isolated
C. difficile strains.
MATERIALS AND METHODS

Study Setting and Patient Recruitment
A cross-sectional study was conducted among patients admitted
at a large referral hospital in Nairobi Kenya, the Kenyatta
National Hospital. The study participants included patients of
all ages who developed diarrhea ≥3 days following
hospitalization. From 2016 to 2018, a total of 333 patients were
consecutively recruited in all in-patient clinical departments. To
recruit patients, two approaches were employed. In the first
approach, patients meeting the eligibility criteria (diarrhea onset
>72 h after admission and ≥3 loose stools in 24 h preceding
assessment) were identified from the patient’s files in the wards
and were invited to participate and provide consent/assent. The
second approach identified watery stool samples received in the
laboratory and traced them back to patients in the wards to seek
consent/assent if they met the inclusion criteria. For each patient
that consented, data on the age, sex, date of admission, reason for
admission, history of previous admission, admission ward,
duration of diarrhea, antimicrobial exposure during the
hospitalization period, and pre-existing comorbidities was
collected. A unique identifying number was assigned to each
February 2021 | Volume 10 | Article 604986
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study subject and used on the questionnaire and the stool
collection container.

Case Definition
C. difficile infection (CDI) was defined as the presence of
unexplained clinical diarrheal symptoms (≥3 loose stools in
24 h) plus a positive nucleic acid amplification test (NAAT)
for the C. difficile tpi gene, toxin A and/or toxin B, or the binary
toxins. A case was considered a healthcare facility-onset C.
difficile infection (HO- CDI) if the CDI symptoms occurred >3
days after admission.

Culture and Isolation of C. difficile
The stool samples were alcohol-shocked in an equal volume of
absolute ethanol. The suspension was then vortexed and allowed
to stand at room temperature for 1 h. Following centrifugation of
the sample at 4,000 rpm for 1 min, 50 µl of the sample was
directly streaked onto cycloserine-cefoxitin egg yolk agar
(CCEY) (LabM, United Kingdom) to obtain distinct colonies.
The culture plates were then incubated anaerobically at 37°C for
48 h using anaerobic jars and anaerobic gas generating sachets
(Oxoid, United Kingdom). C. difficile were presumptively
identified based on the presence of gray, opaque, elongating,
colonies with fimbriated edges and a typical phenolic odor and
the appearance of Gram-positive rods on microscopy. Pure
isolates were stored at −80°C in 1 ml of brain‐heart infusion
(BHI) supplemented with 10% glycerol. Clostridium difficile
DSMZ 27147 was used as a positive control strain (https://
www.dsmz.de/catalogues/details/culture/DSM-27147.html).

Confirmation of the Isolates
DNA extraction was performed on all presumptive C. difficile
isolates using the Zymo Research Quick-DNA Fungal/Bacterial
Miniprep Kit (Zymo Research, Irvine, CA, USA) with a final
elution volume of 50 µl. We confirmed the identity of the
presumptive isolates by testing for the C. difficile-specific
triosephosphate isomerase (tpi) housekeeping gene in an in-
house qPCR assay using the tpi-specific primer set designed by
(Lemee et al., 2004). The qPCR amplification and analysis were
performed with a Magnetic Induction Cycler with the
micPCRv2.4.0 software (Bio Molecular Systems, Sydney, NSW,
Australia). A 20 µl reaction was prepared by mixing 10 µl of 2X
Luna Universal qPCR SYBR Green master mix (New England
BioLabs, UK) with 7 µl of nuclease-free water, 0.5 µl of both
forward and reverse primers (10 µM stock solutions), and 2 µl of
template DNA. The temperature cycling parameters were as
follows: one cycle of 95°C for 3min, followed by 40 cycles of 95°C
for 30s, 60°C for 30s, and 72°C for 30s. A dissociation curve was
generated post-amplification with a ramp from 72°C to 95°C to
confirm the amplification specificity.

Real-Time PCR Assay for Detection of
Toxins tcdA, tcdB, and Binary Toxin
(cdtA, ctdB)
Singleplex SYBR Green-based qPCR assays were carried out on
all the tpi positive isolates to investigate the presence of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
C. difficile toxin A (tcdA), toxin B (tcdB) genes, as well as the
accessory toxins A (cdtA) and toxin B (cdtB). For each reaction, a
final volume of 20 µl reaction mix was prepared to contain 10 µl
of 2X Luna Universal qPCR master mix, 7 µl of nuclease-free
water, 0.5 µl of both forward and reverse primers (10 µM stock
solutions), and 2 µl of extracted DNA template. The temperature
cycling parameters and melt curve analysis were identical to
those used to screen for the tpi gene.

As noted previously (Lemee et al., 2004), the tcdA primers
were designed to flank the smallest of the three deletions in the 3’
region of the gene generating a shorter fragment (110 bp) for the
most common deleted form of the gene. The qPCR assay was
able to distinguish strains with a truncated tcdA gene from those
with a full-length gene by the associated melting profiles.
Samples with a truncated tcdA gene had a significantly lower
melting temperature than those with the full-length tcdA. A
toxigenic strain of C. difficile was defined as an isolate harboring
any one or a combination of the genes: tcdA, tcdB, and cdtA/B. C.
difficile DSMZ-27147, which carries all these genes, was used as
an internal control to validate the PCR results.

Antimicrobial Susceptibility Testing
Pure colonies of C. difficile were diluted to a 0.5 McFarland
standard and swabbed on Brucella Base agar supplemented with
5% sheep blood, vitamin K1 (0.5 mg/ml), and hemin (5 mg/ml)
(Becton & Dickinson, USA). E-test strips (BioMérieux, France)
for metronidazole, vancomycin, ciprofloxacin, erythromycin,
clindamycin, tetracycline, rifampicin, and ceftriaxone were
then placed on the culture plates. Following a 48 h incubation
in anaerobic conditions, minimum inhibitory concentrations
(MICs) for each of the antimicrobials tested were determined
and interpreted as per the Clinical and Laboratory Standards
Institute (CLSI, M100, 2020) and the European Committee on
Antimicrobial Susceptibility Testing (EUCAST, version 10)
guidelines. The MIC breakpoints were categorized into
susceptible (S), intermediate (I), and resistant (R). The MIC
breakpoints for all the antimicrobials tested except rifampicin
were determined according to CLSI 2020. The EUCAST defined
epidemiological cut-off value (ECOFF) of 0.004 mg/L was used to
interpret the susceptibility of rifampicin. Both CLSI and
EUCAST standards do not specify the breakpoints for
ciprofloxacin so the CLSI breakpoints of moxifloxacin were
used as a proxy. Multidrug-resistance (MDR) was defined as
non‐susceptibility to at least one agent in three or more
antimicrobial categories. C. difficile DSM 27147 (R20291) with
published MICs (vancomycin [0.2–0.93 mg/L], metronidazole
[0.21–0.9 mg/L], clindamycin [18 mg/L], erythromycin [≥256
mg/L], ciprofloxacin [≥32 mg/L], tetracycline [0.22 mg/L])
served as an internal control (Stabler et al., 2009; Mathur et al.,
2013; Kelly et al., 2016).

Statistical Analysis
The data were analyzed using SPSS version 21 and Microsoft
Excel. Both continuous and categorical variables were
summarized as frequencies and percentages of the study
population. Two-sided Fisher’s exact tests were used to
February 2021 | Volume 10 | Article 604986
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compare groups of continuous variables. Antibiograms were
tabulated as proportions of isolates that were susceptible,
intermediate, or resistant.

Ethical Approvals
Ethical approval was sought from the Kenyatta National
Hospital-University of Nairobi Ethics and Research Committee
(P8/01/2014). Per ethical standards, the study objectives were
explained to the participants in either English or Swahili and
those willing to participate signed the informed consent/
assent forms.
RESULTS

Demographics and Admission Information
A total of 333 patients with diarrhea during the study period
consented to participate. The baseline data for patients with and
without CDI are summarized in Table 1. All the patients
provided stool samples for microbiological analysis. There were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
more females, 170 (51.1%) than males, 163 (48.9%), with the
majority of patients falling within the 26–45 years age range (108,
32.4%). Additionally, a relatively large number of patients (101,
30.3%) were below 2 years old at the time of sampling, and these
were excluded from the subsequent prevalence and antimicrobial
prescription analyses described below due to high C. difficile
asymptomatic colonization. More than a third of the patients
(137, 41.1%) had hospital stays of more than 4 weeks, and 48
(14.4%) of the patients reported a history of prior admission
within the previous 3 months. Overall, 168 (50.5%) of the
patients had infectious diseases with antimicrobial use before
the onset of diarrhea, noted in 297 (89.2%) patients. More than
half of the patients, 230 (69.1%), had comorbidities, including
HIV, tuberculosis, anemia, diabetes, and hypertension. Of the
232 patients >2 years, 57 had CDI, giving an overall CDI
prevalence of 24.6%. After stratifying based on patient age, the
highest prevalence (31.6%) was observed for patients who were
≥60 years old, followed by those in the 3–15-year-old range
(30.2%). The lowest prevalence was observed in patients between
the ages of 16 and 25 years.
TABLE 1 | Demographic and admission information of the study patients (n = 333).

C. difficile positive patients (%) (n = 71) C. difficile negative patients (%) (n = 262) Total

Age group in years (mean = 24 years)*
≤2 14 (13.9) 87 (86.1) 101 (30.3)
3–15 13 (30.2) 30 (69.8) 43 (12.9)
16–25 5 (16.1) 26 (83.9) 31 (9.3)
26–45 25 (23.1) 83 (76.9) 108 (32.4)
45–59 8 (26.7) 22 (73.3) 30 (9.0)
≥60 6 (31.6) 13 (68.4) 19 (5.7)
Gender
Female 33 (46.5) 137 (52.3) 170 (51.1)
Male 38 (23.3) 125 (76.7) 163 (48.9)
Admission ward
Internal medicine 27 (38.0) 91 (34.7) 118 (35.4)
Pediatric 26 (36.7) 90 (34.4) 116 (34.8)
Surgical 14 (19.7) 45 (17.2) 59 (17.7)
Other 4 (5.6) 36 (13.7) 40 (12.0)
Duration of diarrhea
<1 week 55 (77.5) 228 (87.0) 283 (85.0)
1–3 weeks 14 (19.7) 29 (11.1) 43 (12.9)
>3 weeks 2 (2.8) 5 (1.9) 7 (2.1)
Antimicrobial use
Yes 70 (98.6) 227 (86.6) 297 (89.2)
No 1 (1.4) 35 (13.4) 36 (10.8)
Previous admission in the last 3 months
Yes 20 (28.2) 28 (10.7) 48 (14.4)
No 51 (71.8) 234 (89.3) 285 (85.6)
Duration of hospitalization
≤1 week 8 (12.7) 55 (87.3) 63 (18.9)
2 weeks 15 (18.1) 68 (81.9) 83 (24.9)
3 weeks 13 (26.0) 37 (74.0) 50 (15.01)
≥4 weeks 35 (25.5) 102 (74.5) 137 (41.1)
Reason for hospitalization
Infectious diseases 44 (62.0) 124 (47.3) 168 (50.5)
Non-Infectious diseases 27 (38.0) 138 (52.7) 165 (49.5)
Comorbidity
Yes 63 (88.7) 167 (63.7) 230 (69.1)
No 8 (11.3) 95 (36.3) 103 (30.9)
February 2021 | Volume 10 | Artic
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Isolation and Toxin Profile of C. difficile
Of the 333 stool samples cultured on CCEY, C. difficile was
recovered from 71 (21%) samples, all of which tested positive for
the tpi gene. Of the 71 confirmed isolates, 69 (97.1%) and 2
(2.8%) were toxigenic and non-toxigenic C. difficile isolates,
respectively. The toxigenic isolates comprised of 4 (5.6%) with
toxin A, toxin B, and binary toxin (A+B+ CDT+), 15 (21.1%)
isolates with both toxin A and toxin B but devoid of binary toxin
(A+B+ CDT−), 16 (22.5%) positive for toxin B and binary toxin
with a 110 bp deletion in the tcdA gene (A−*B+ CDT+) while 19
(26.8%) isolates were positive for truncated toxin A, toxin B but
lacked the binary toxin (A−*B+ CDT−). Two isolates did not
express tcdB gene one of which was positive for the full-length
tcdA gene and cdtAB genes (A+B−CDT+) while the other had a
110 bp deletion in the tcdA gene but harboured the cdtAB genes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
(A−*B−CDT+). We also observed isolates that only harboured the
A component of the binary toxin; 5 (7.0%) of A+B+ CDTA+/
CDTB−, and 8 (11.3%) of A−*B+ CDTA+/CDTB−. The two non-
toxigenic isolates comprised 1 (1.4%) isolate which appeared to
harbor a truncated tcdA gene but lacked the tcdB genes and the
binary toxin (A−*B−CDT−) and the other that completely lacked
the PaLoc as well as the cdt genes despite multiple attempts to
amplify them. The distribution of toxigenic and non-toxigenic
types of C. difficile strains is summarized in Figure 1 with a
representative gel electrophoresis image in Figure 2.

Comparison of Antimicrobial Use Between
Patients With and Without C. difficile
Antimicrobial use before the onset of diarrhea was noted in 197
(84.9) of the patients who were 2 years of age or older.
FIGURE 1 | Distribution of the toxin types of the 71 C. difficile isolates. A− *: isolates in which the tcdA gene had a 110 bp deletion compared to the wildtype tcdA
gene. CDT+: isolates harboured both cdtA and cdtB gene of the binary toxin. CDTA+B−: isolates only harboured the A component of the binary toxin. CDT– isolates
lacked either of the binary toxin genes.
FIGURE 2 | Gel electrophoresis of qPCR amplicon products; lanes 1, 7, and 15 represent 100 bp molecular weight marker, lanes 2–4 tpi positive (230 bp) clinical
isolates, lane 5 tpi positive control (C. difficile DSM 27147), lane 6 no template control. Lane 8 clinical isolate with truncated tcdA (110 bp) amplicon, lane 9–12
clinical isolates with full length tcdA gene (369 bp), lane 13 positive control (C. difficile DSM 27147), and lane 14 no template control. Lane 16–18 clinical samples
with tcdB gene (160 bp), lane 19 positive control (C. difficile DSM 27147), and lane 20 no template control.
February 2021 | Volume 10 | Article 604986
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Ceftriaxone 121 (52.2), amoxicillin/clavulanic acid (69, 29.7%),
and metronidazole (73, 31.5%) were the most commonly
prescribed antimicrobials. Antimicrobial use differed
significantly in patients who tested positive for C. difficile from
those who tested negative (Table S1 in supplementary material).
Patients with CDI were more likely to have received any
antimicrobials (p = <0.001), and significant associations were
seen for amoxicillin/clavulanic acid, penicillins, ceftriaxone,
meropenem, amikacin, clarithromycin, ciprofloxacin,
cotrimoxazole, clindamycin, and anti-TB drug use.

Antimicrobial Susceptibility of the
C. difficile Isolates
All 71 isolates (100%) were sensitive to vancomycin (MIC ≤2 µg/
ml). Varying proportions of resistance were noted for all the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
other antimicrobials. High frequencies of resistance to rifampicin
(65, 91.5%), erythromycin (63, 88.7%), ciprofloxacin (59, 83.1%),
clindamycin (57, 80.3%), and ceftriaxone (36, 50.7%) were
observed. In contrast, resistance to metronidazole and
tetracycline was observed for only 3 (4.2%) and 7 (9.9%) of the
isolates, respectively. The antibiogram profile for each of the
antimicrobials tested is presented in Table 2.

Multiple Antimicrobial Resistance
Among the 71 C. difficile isolates, 70 (98.6%) isolates were
resistant to at least one antimicrobial, while 68 isolates (95.7%)
displayed resistance to more than two classes of antimicrobials.
Based on the multiple antimicrobial resistance analysis, 61
isolates (85.9%) were multidrug-resistant, showing resistance to
more than three classes of antimicrobials. Twenty-three isolates
TABLE 2 | Antimicrobial susceptibility pattern of C. difficile isolates (n = 71).

Antimicrobial agent MIC range (mg/L) MIC breakpoint criteria (mg/L) Frequency (%)

S I R ECOFF S I R

Vancomycina 0.125–0.5 ≤2 ≥4 71 (100) – 0 (0)
Metronidazolea 0.016–256 ≤8 16 ≥32 68 (95.8) 0 (0) 3 (4.2)
Clindamycina 0.023–256 ≤2 4 ≥8 13 (18.3) 1 (1.4) 57 (80.3)
Cefriaxonea 0.064–256 ≤16 32 ≥64 22 (31.0) 13 (18.3) 36 (50.7)
Erythromycina 0.094–256 ≤2 4 ≥8 8 (11.3) – 63 (88.7)
Rifampicinb 0.002–32 0.004 6 (85.0) – 65 (91.5)
Ciprofloxacina* 0.064–32 ≤2 4 ≥8 10 (14.1) 2 (2.8) 59 (83.1)
Tetracyclinea 0.016–32 ≤4 8 ≥16 35 (49.3) 29 (40.8) 7 (9.9)
February 2021 | V
olume 10 | Articl
aBreakpoints per CLSI MIC values for anaerobes. bBreakpoints per EUCAST MIC guidelines for C. difficile. *The Moxifloxacin breakpoint is used as a proxy. MIC, minimum inhibitory
concentration; S, susceptible; I, intermediate; R, resistant; ECOFF, epidemiological cut-off value.
TABLE 3 | Comparison of antimicrobial resistance by toxin variant types of C. difficile strains.

Resistance phe-
notype

Toxigenic strains Nontoxigenic strains p-value#

A+B+

CDT+

(n = 4)

A+B+

CDT−

(n = 15)

A+B+

CDTA+B−

(n = 5)

A+B−

CDT+

(n = 1)

A−*B+CDT+

(n = 16)
A−*B+

CDT−

(n = 19)

A−*B+

CDTA+B−

(n = 8)

A−*B−CDT+

(n = 1)
A−*B−CDT−

(n = 1)
A−B−CDT−

(n = 1)

Metronidazole
(n = 3)

– 1 (6.7) – – 2 (12.5) – – – – – 1.000

Clindamycin (n = 58) 4 (100) 12 (80.0) 3 (60.0) 1 (100) 16 (100) 14 (73.7) 7 (87.5) – – 1 (100) 1.000
Ceftriaxone (n = 49) 2 (50.0) 9 (60.0) 2 (40.0) 1 (100) 13 (81.3) 13 (68.4) 7 (87.5) 1 (100) – 1 (100) 0.724
Erythromycin
(n = 63)

3 (75.0) 14 (93.3) 4 (80.0) 1 (100) 16 (100) 16 (84.2) 7 (87.5) – 1 (100) 1 (100) 0.613

Rifampicin (n = 65) 3 (75.0) 15 (100) 3 (60.0) 1 (100) 16 (100) 17 (89.5) 8 (100) – 1 (100) 1 (100) 0.492
Ciprofloxacin
(n = 61)

4 (100) 13 (86.7) 4 (80.0) 1 (100) 15 (93.8) 13 (68.4) 8 (100) 1 (100) 1 (100) 1 (100) 0.257

Tetracycline (n = 36) 2 (50.0) 9 (60.0) 3 (60.0) 1 (100) 11 (73.3) 5 (26.3) 4 (50.0) – – 1 (100) 0.080
MDR (n = 61) 3 (75.0) 14 (93.3) 3 (60.0) 1 (100) 16 (100) 14 (73.7) 8 (100) – 1 (100) 1 (100) 0.196
MDR patterns
Three classes
(n = 6)

– 4 (26.7) – – – – 1 (12.5) – 1 (100) – 0.030

Four classes (n = 6) – 2 (13.3) 1 (20.0) – 1 (6.3) 2 (10.5) – – – – 1.000
Five classes (n = 26) 1 (25.0) 5 (33.3) 2 (40.0) – 6 (37.5) 8 (42.1) 4 (50.0) – – – 0.728
≥Six classes
(n = 23)

1 (25.0) 4 (26.7) – 1 (100) 9 (56.3) 4 (21.1) 3 (37.5) – – 1 (100) 0.709
A−*: isolates in which the tcdA gene had a 110 bp deletion compared to the wildtype tcdA gene. CDT+: isolates harboured both cdtA and cdtB genes of the binary toxin. CDTA+B−: isolates
only harboured the A component of the binary toxin. #P-value the result of a two-tailed Fishers exact test comparing A+B+CDT− isolates to A−*B+CDT− isolates. MDR, Multidrug-resistant.
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(37.7%) showed resistance to more than six antimicrobials, while
the majority, 26 (42.6%), were resistant to five antimicrobials.
There was a tendency for slightly higher proportions of A+B+

CDT− isolates to show resistance to the majority of the tested
antimicrobials, although the difference was not statistically
significant (Table 3).
DISCUSSION

Data on the prevalence of CDI in sub-Saharan Africa are
currently lacking. In this study, we determined a CDI
prevalence of 24.6% in hospitalized patients with healthcare
facility-onset diarrhea in a large hospital in Kenya. The
majority of these patients were previously exposed to
antimicrobials such as ceftriaxone, amoxicillin/clavulanic acid,
and metronidazole. Many of the C. difficile strains isolated from
this patient population were highly resistant to rifampicin,
clindamycin, erythromycin, ciprofloxacin, and ceftriaxone, and
a large proportion were multidrug-resistant. Similar findings
where more than half of the C. difficile isolates recovered were
MDR have been associated with outbreaks (Obuch-
Woszczatyński et al., 2014; Krutova et al., 2015; Spigaglia,
2016; Ramıŕez-Vargas et al., 2017; Carman et al., 2018; Zhou
et al., 2019). These findings highlight the significance of this
pathogen in an African population previously considered to be at
low CDI risk (Roldan et al., 2018). Published data from studies
conducted in Africa show that C. difficile prevalence varies from
as low as 0% to as high as 93% depending on the population
sampled and the testing method used (Mwachari et al., 1998;
Zulu et al., 2000; Onwueme et al., 2011; Beadsworth et al., 2014;
Simango and Uladi, 2014; Kullin et al., 2015; Seugendo et al.,
2015; Janssen et al., 2016, Oyaro et al., 2018). These variations
make it difficult to directly compare studies. Nevertheless, the
prevalence rate for C. difficile in diarrheal patients in our setting
is within the range generally reported for studies internationally,
where C. difficile is thought to be responsible for 15–25% of
antibiotic-associated diarrheas (Bartlett and Gerding, 2008).

Infants under the age of 2 years old are typically excluded
from C. difficile surveillance studies due to the high prevalence of
asymptomatic colonization in this group (McDonald et al.,
2018). For this reason, in our study, we excluded these patients
from our epidemiological analyses. However, we chose to include
isolates from infants in our toxin profiling and antimicrobial
susceptibility testing analyses due to the potential for infants to
serve as reservoirs of clinically relevant strains of C. difficile
(Rousseau et al., 2012; McLure et al., 2019). Interestingly, while
the prevalence of CDI in older patients (≥60 years) was slightly
higher than in the other age groups in our setting, there did not
appear to be a strong association of CDI with age that is typically
observed in European and US studies. This disparity has been
noted in African studies of CDI and may reflect the generally
younger African population as well as differences in underlying
risk factors (Rajabally et al., 2013).

While almost all isolated strains were PCR-positive for at least
one toxin, one isolate did not express either of the toxin genes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Notably, the majority of our isolates were A−*B+variants
harboring a previously described truncated version of the tcdA
gene (Lemee et al., 2004) different from the association with
A+B+ variants previously described (Oyaro et al., 2018). A−*B+

variants are particularly common in Asia but have been
identified in many countries across the world. It is thought
that the early reliance on diagnostic tests that only targeted
toxin A allowed A−*B+ strains to circulate undetected for an
extended period, facilitating their spread (Imwattana et al.,
2019). Importantly, A−*B+ strains are capable of causing severe
and recurrent disease and have been associated with several
major nosocomial outbreaks in Dublin (Drudy et al., 2007),
Canada (Al-Barrak et al., 1999), Australia (Elliott et al., 2011),
Japan (Sato et al., 2004), Israel (Samra et al., 2002), and
Netherlands (Kuijper et al., 2001) predominantly belonging to
ribotype (RT) 017. The appearance of strains expressing the
binary toxin gene in Kenyan hospitalized patients is noteworthy
considering that they have previously been linked to increased
disease severity (Gerding et al., 2014). Therefore, further studies
are needed to determine whether the high prevalence of A−*B+

strains is due to a localized outbreak or simply reflects the pattern
of strains more generally found in the region.

Interestingly, three of the strains isolated in the current study
exhibited the rare A+B− variation. All three of these were PCR
positive for the tcdA gene (full length and truncated) but failed to
yield a product for the tcdB gene, despite several attempts. An
important limitation of the tcdA primer set employed in this
study is that it does not allow the identification of additional
deletions within the 5’- region of the gene, such as those present
in toxinotype XI strains (Geric Stare and Rupnik, 2010). While
true A+B− variants are rare, they have been reported previously
(Monot et al., 2015), and it would be interesting to examine the
pathogenicity locus further in these isolates. Similarly some of
the isolated strains also harbored cdtA and not cdtB. These
strains are unusual however it is not the first time that they
have been reported (Azimirad et al., 2018).

The burden of HIV/AIDS and TB, together with infections by
multidrug-resistant organisms (MDRO) in Africa, has increased
the number of individuals requiring prolonged hospitalization
(Serra-Burriel et al., 2020; Singh et al., 2020). Long stays in
hospitals can lead to inappropriate and prolonged use of
antimicrobials, gradually increasing the risk of acquiring C.
difficile infections (Onwueme et al., 2011; Seugendo et al., 2015;
Kullin et al., 2018). In the current study, most of the patients
were admitted for infectious diseases accounting for the high
levels of antimicrobial use among the study participants. In
particular, we observed the predominant use of ceftriaxone,
amoxicillin/clavulanic acid and metronidazole similar to what
has been documented in Kenya, Tanzania, Uganda, and other
countries that participated in the Global Point Prevalence Survey
(Global-PPS) (Kiguba et al., 2016; Versporten et al., 2018;
Momanyi et al., 2019; Sonda et al., 2019). Antimicrobial
prescription decisions in many facilities in resource-limited
settings are primarily empirical due to the relatively high costs
of laboratory investigations and a lack of facilities to perform
anaerobic culture precluding specific diagnostic and
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antimicrobial susceptibility testing (Chem et al., 2018). We also
noted that the majority of the patients were taking more than one
antimicrobial agent drug. Simultaneous treatment with multiple
antimicrobials has a more profound effect on the indigenous gut
microbiota and promotes the spread of C. difficile more
than monotherapy.

In a recent review by (Spigaglia, 2016), resistance to
cl indamycin, fluoroquinolones, cephalosporins, and
erythromycin was common among clinical isolates of C.
difficile. This resistance profile was mirrored in the isolates in
this study, which had relatively high frequencies of resistance to
the macrolide-lincosamide-streptogramin B (MLSB) family of
antimicrobials (clindamycin, erythromycin), fluoroquinolone
(ciprofloxacin), cephalosporins (ceftriaxone), and rifamycins
(rifampicin). The clindamycin, fluoroquinolone, and
cephalosporin groups of antimicrobials are known to be
associated with an increased risk of developing CDI. For
example, the acquisition of high-level resistance to
fluoroquinolones is thought to be associated with major
outbreaks of the “hypervirulent” C. difficile 027/BI/NAP1
strains (He et al., 2013; Spigaglia, 2016). Given the high rates
of antimicrobial consumption in our setting, it is not surprising
that many of the isolates showed increased levels of resistance.
Notably, for antimicrobials such as rifamycins and
fluoroquinolones, the resistance mutations often come without
a fitness cost to the organism and are, therefore, stably
maintained in the population (Wasels et al. , 2015).
Additionally, the resistance of C. difficile to MLSB class
antimicrobials and tetracyclines is mainly mediated by
ermB and tet genes, respectively, both of which are usually
present in mobile genetic elements that promote the horizontal
transfer of resistance between strains (Mullany et al., 2015).

Previously, prolonged rifampicin use, especially in the
treatment of TB, was implicated in the emergence of
rifampicin resistance in C. difficile (Choi et al., 2011). Kenya is
listed by the World Health Organization (WHO) as one of the 30
high burden TB countries (Enos et al., 2018). Therefore, the high
resistance (91.5%) of C. difficile isolates to rifampicin could be as
a result of selective pressure following extensive use of rifampicin
in first-line treatment regimens for TB. The results from this
study, therefore, build on findings from a recent study in Cape
Town, South Africa that found a very high level of rifampicin
resistance (~95% of strains resistant) in C. difficile from patients
undergoing TB treatment (Kullin et al., 2018).

Metronidazole and vancomycin remain the first choice
antimicrobials for treating C. difficile infections, even though
reduced susceptibilities to these antimicrobials have been
reported (Cohen et al., 2010). While almost all the isolates in
the current study were susceptible to metronidazole, three strains
had MICs of ≥32 mg/L. Recent reports of metronidazole
treatment failures due to substantial prolonged exposure to the
antimicrobial are on the rise (Spigaglia, 2016). Interestingly in
this study, none of the three patients from whom these
metronidazole resistant isolates were recovered had any prior
metronidazole exposure. Metronidazole resistance mainly occurs
as a result of alterations in metabolic pathways involved in DNA
repair, iron metabolism, and the carriage of nitroreductases
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
(Chong et al., 2014). Boekhoud et al. recently revealed that
metronidazole resistance in C. difficile could be a result of a
transmissible plasmid (Boekhoud et al., 2020). We however did
not explore the mechanisms for antimicrobial resistance.

We noted that both the toxigenic and non-toxigenic variants
in our setting tended to be resistant to the antimicrobials tested,
although among the predominant variants (A+B+CDT− and
A−*B+CDT−) the differences in the resistance prevalences were
not statistically significant. RT 017 strains are the most
commonly described A−B+ isolates worldwide, and strains
belonging to this ribotype have been reported to have a
stronger association with MDR in several studies (Goorhuis
et al., 2011; Spigaglia et al., 2011; Kim et al., 2016; Putsathit
et al., 2017). Other important ribotypes associated with MDR
include RT 027, RT 078, and RT 018 (Spigaglia, 2016). The
reasons for these associations are not yet known. However,
antimicrobial resistance has likely facilitated the spread of
these isolates in the regions where they are found.

In conclusion, our data show that C. difficile is a clinically
relevant pathogen in patients receiving in-patient services at
Kenyatta National Hospital. Furthermore, antimicrobial
resistance in C. difficile in our setting is potentially a serious
problem that may result in untreatable infections or reliance on
last-line expensive antimicrobials like vancomycin, therefore
highlighting the need for enhanced antimicrobial stewardship
programs. C. difficile should be considered in routine diagnosis of
diarrhea cases to promote the development and implementation
of strategies that regulate antimicrobials known to induce HA-
CDI. As this is the first study to report the occurrence of MDR C.
difficile strains in this region, future work should be undertaken
to examine the diversity of strain types responsible for the disease
(e.g., by ribotyping isolates) and correlate the disease with
predisposing risk factors other than antimicrobial exposure.
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