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Malaria causes a half a million deaths annually. The parasite intraerythrocytic lifecycle in the
human bloodstream is the major cause of morbidity and mortality. Apical organelles of
merozoite stage parasites are involved in the invasion of erythrocytes. A limited number of
apical organellar proteins have been identified and characterized for their roles during
erythrocyte invasion or subsequent intraerythrocytic parasite development. To expand the
repertoire of identified apical organellar proteins we generated a panel of monoclonal
antibodies against Plasmodium falciparum schizont-rich parasites and screened the
antibodies using immunofluorescence assays. Out of 164 hybridoma lines, 12 clones
produced monoclonal antibodies yielding punctate immunofluorescence staining patterns
in individual merozoites in late schizonts, suggesting recognition of merozoite apical
organelles. Five of the monoclonal antibodies were used to immuno-affinity purify their
target antigens and these antigens were identified by liquid chromatography-tandem
mass spectrometry (LC-MS/MS). Two known apical organelle protein complexes were
identified, the high-molecular mass rhoptry protein complex (PfRhopH1/Clags,
PfRhopH2, and PfRhopH3) and the low-molecular mass rhoptry protein complex
(rhoptry-associated proteins complex, PfRAP1, and PfRAP2). A novel complex was
additionally identified by immunoprecipitation, composed of rhoptry-associated
membrane antigen (PfRAMA) and rhoptry neck protein 3 (PfRON3) of P. falciparum. We
further identified a region spanning amino acids Q221-E481 within the PfRAMA that may
associate with PfRON3 in immature schizonts. Further investigation will be required as to
whether PfRAMA and PfRON3 interact directly or indirectly.
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INTRODUCTION

Malaria causes approximately a half a million deaths annually,
mainly via infection with Plasmodium falciparum (WHO, 2019).
To initiate intraerythrocytic development in humans, P.
falciparum merozoites invade erythrocytes. Merozoite apical
organelles—rhoptries, micronemes, exonemes, and dense
granules—have been studied for their role in erythrocyte
invasion. Before invasion some organelle components are
discharged on the surface of merozoite. Once the merozoite
recognizes and forms a tight junction between the erythrocyte
membrane and its apical pole, the apical organelles discharge
their protein contents into the moving junction and developing
parasitophorous vacuole (PV). The apical organelles disappear
after merozoite internalization within an erythrocyte, suggesting
transient roles of their molecular contents during merozoite
invasion (Cowman and Crabb, 2006). The apical organelles
have thereby inspired analysis of the biological and
immunological characteristics of their component proteins, as
well as their candidacies for vaccine and drug development
(Preiser et al., 2000; Kats et al., 2006; Kaneko, 2007).

Numerous rhoptry bulb proteins have been identified,
including the high-molecular weight (HMW) proteins that
form a complex consisting of PfRhopH1/Clag, PfRhopH2, and
PfRhopH3 (Campbell et al., 1984; Holder et al., 1985; Lustigman
et al., 1988; Sam-Yellowe et al., 1998; Kaneko et al., 2001; Kaneko
et al., 2005); and the low-molecular weight complex (LMW)
proteins consisting of PfRAP1, PfRAP2, and PfRAP3 (Ridley
et al., 1990; Saul et al., 1992; Baldi et al., 2002). These protein
complexes have been implicated in erythrocyte invasion
(Siddiqui et al., 1987; Cooper et al., 1988; Harnyuttanakorn
et al., 1992) and channel-mediated nutrient uptake (Counihan
et al., 2017; Ito et al., 2017; Sherling et al., 2017). Another rhoptry
bulb protein, rhoptry-associated membrane antigen (PfRAMA),
is involved in rhoptry biogenesis, the merozoite invasion process,
formation of the PV, and interacts with both PfRAP1 and
PfRhopH3 (Topolska et al., 2004; Richard et al., 2009). The
proteins were identified using monoclonal antibodies generated
against parasite extracts (Campbell et al., 1984; Ridley et al., 1990;
Saul et al., 1992; Doury et al., 1994; Sam-Yellowe et al., 2001) or
proteomic analyses of purified merozoite rhoptries (Sam-Yellowe
et al., 2004; Sanders et al., 2005; Gilson et al., 2006; Sanders et al.,
2007). In addition to the rhoptry bulb proteins, the merozoite
rhoptry neck proteins PfRON2, PfRON4, and PfRON5 form a
moving junction complex together with a micronemal protein,
PfAMA1, in P. falciparum (Collins et al., 2009; Richard et al.,
2010). Therefore, the PfRON2/PfAMA1 complex proteins are
Abbreviations: BSA, bovine serum albumin; DAPI, 4′,6-diamidino-2-
phenylindole; EDTA, ethylenediaminetetraacetic acid; ELISA, enzyme-linked
immunosorbent assay; IFA, immunofluorescence assay; IgG, immunoglobulin
G; MAb, monoclonal antibody; PBS, phosphate buffered saline; SDS-PAGE,
sodium dodecyl sulfate- polyacrylamide gel electrophoresis ; GPI,
glycosylphosphatidylinositol; Pf, P. falciparum; PV, parasitophorous vacuole;
AMA1, apical merozoite protein 1; RAMA, rhoptry-associated membrane
antigen; RAP, rhoptry-associated protein; RON, rhoptry neck protein; RhopH,
high-molecular weight rhoptry protein; Clag, cytoadherence-linked asexual gene;
WGCFS, wheat germ cell-free protein synthesis system.
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highlighted as novel asexual blood-stage malaria vaccine
candidates (Srinivasan et al., 2014).

A limited number of merozoite apical organellar proteins in
micronemes, rhoptries, exonemes, and dense granules have been
extensively assessed for their role in erythrocyte invasion and
growth (Counihan et al., 2013; Cowman et al., 2017). The
identification of novel merozoite apical organellar proteins is
essential for the cumulative understanding of erythrocyte
invasion, and therefore we attempted to expand the repertoire of
apical organellar proteins and their partnermolecules. In this study
we have generated monoclonal antibodies (mAbs) against P.
falciparum schizont-rich antigens that recognize the apical region
of merozoites. We report here the immunofluorescence assay-
based characterizationof 12newly obtainedmAbswhich reactwith
apical organelles, and the identification of immunoaffinity-purified
target antigens by liquid chromatography-tandem mass
spectrometry (LC-MS/MS) analysis. We additionally describe the
identification and validation of a novel PfRAMA/PfRON3 rhoptry
protein complex of P. falciparum.
MATERIALS AND METHODS

Parasite Culture
P. falciparum NF54 strain asexual stage parasites were
maintained in continuous culture of human erythrocytes
(blood group O+) obtained from the Japanese Red Cross
Society, essentially as described (Ito et al., 2013; Morita
et al., 2017).

Fractionation of Schizont-Rich Parasites
and Soluble Antigen Preparation
To obtain parasite specimens, mature schizonts were enriched to
65%–75% parasitemia via 65% Percoll-sorbitol centrifugation
(Dluzewski et al., 1984). The pellets were treated with tetanolysin
(3 µg/ml, Biological Laboratories, Campbell, CA) to remove
hemoglobin without loss of parasite proteins present in the PV
space as described (Hiller et al., 2003; Lopez-Estrano et al., 2003),
and washed with phosphate-buffered saline (PBS) containing
cOmplete protease inhibitor cocktail (Roche, Mannheim,
Germany). Schizont-rich parasites (~108) were disrupted by
sonication (10 s pulse, 30 s rest, repeated 10 times) on ice in
PBS supplemented with cOmplete protease inhibitor cocktail.
Undisrupted cells and debris were removed by centrifugation at
21,600 × g for 15 min at 4°C. The resulting supernatant fractions
were stored at −80°C and subsequently used as soluble antigen
for mouse immunization, enzyme-linked immunosorbent assays
(ELISA), and western blot analyses.

Monoclonal Antibody Production
Mouse monoclonal antibodies (mAbs) were produced at
Kitayama Labes (Ina, Japan). Briefly, three BALB/c mice
(female) 8-weeks old were immunized in their foot pads with
50 µg of soluble antigen of P. falciparum mature schizonts,
formulated with Freund’s complete adjuvant for the first
immunization and with Freund’s incomplete adjuvant 2 weeks
later. Six weeks after the second immunization an intravenous
January 2021 | Volume 10 | Article 605367
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boost with the same amount of soluble fraction in PBS was
administered, and lymphocytes from the inguinal lymph nodes
were used to fuse with P3-X63-Ag8-U1 myeloma cells to produce
hybridoma cells. Culture supernatants from hybridomas were
initially screened for reactivity against immunogen by ELISA and
secondarily with indirect immunofluorescence assays (IFA)
using mature P. falciparum schizonts as antigen. Positive
hybridoma cells were cloned by two rounds of limiting dilution
and the antibody isotypes were determined using a monoclonal
antibody isotyping kit (Santa Cruz Biotechnology, Santa Cruz,
CA). Cloned cell lines were expanded as ascites in mice primed
with Pristane (Wako, Osaka, Japan), and immunoglobulin G
(IgG) was purified from ascitic fluid using a MAbTrap kit (GE
Healthcare, Camarillo, CA).

Immunofluorescence Assays
Thin smears of schizont-rich P. falciparum-infected erythrocytes
were prepared and stored at −80°C. The smears were thawed,
fixed with 4% paraformaldehyde at room temperature for
10 min, permeabilized with PBS containing 0.1% Triton X-100
at room temperature for 15 min, and blocked with PBS
containing 5% non-fat dry milk at 37°C for 30 min. The
smears were then incubated with both mouse monoclonal
antibodies and rabbit polyclonal antibodies as counter staining
at 37°C for 1 h, followed by incubation at 37°C for 30 min with
both Alexa Fluor 488-conjugated goat anti-mouse IgG and Alexa
Fluor 546-conjugated goat anti-rabbit IgG (Invitrogen, Carlsbad,
CA) as secondary antibodies (1:500). Nuclei were stained with
4′,6-diamidino-2-phenylindole (2 mg/ml, DAPI). Slides were
mounted in ProLong Gold Antifade (Invitrogen) and viewed
under a 63× oil-immersion lens. High-resolution image capture
and processing was performed using a confocal scanning laser
microscope (LSM5 PASCAL or LSM710; Carl Zeiss
MicroImaging, Thornwood, NY). Images were processed in
Adobe Photoshop (Adobe Systems, San José, CA).

Immunoelectron Microscopy
Parasites were fixed and embedded in LR White resin
(Polysciences, Warrington, PA) and ultrathin sections were
immunostained as described (Ito et al., 2011). Samples were
examined with a transmission electron microscope (JEM-1230,
JEOL, Tokyo, Japan).

SDS-PAGE and Western Blot Analysis
Parasite soluble antigens were extracted in SDS-PAGE loading
buffer, incubated at 4°C for 6 h, and subjected to electrophoresis
under non-reducing and reducing conditions on 12.5%
polyacrylamide gels (ATTO, Tokyo, Japan). Proteins were then
transferred to 0.2 mm PVDF membranes (GE Healthcare). The
proteins were immunostained with antibodies followed by
horseradish peroxidase conjugated secondary antibody (GE
Healthcare) and visualized with Immobilon Western
Chemiluminescent HRP Substrate (Millipore, Billerica, MA) on
a LAS 4000 Mini luminescent-image analyzer (GE Healthcare).
The relative molecular masses of the proteins were estimated
with reference to Precision Plus Protein Standards (BioRad,
Hercules, CA).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Affinity Purification of Target Proteins and
Identification by Liquid Chromatography-
Tandem Mass Spectrometry
Preparations of enriched lateP. falciparum parasite schizonts were
lysed for 1 h in extraction buffer [50 mM Tris–HCl, 0.2 M NaCl, 5
mM EDTA, 0.2% Nonidet P-40 (NP40; Nacalai Tesque, Kyoto,
Japan), pH 7.4, containing 1 mg/ml leupeptin, 1 mg/ml pepstatin A,
and 1 mM 4-(2-aminoethyl)-benzenesulfonyl fluoride
hydrochloride (Wako)]. The lysate was centrifuged at 15,000 × g
for 10 min at 4°C, and then target proteins were purified from the
parasite lysate by affinity chromatography using a monoclonal
antibody-conjugated Formyl-Cellulofine (Seikagaku-Kogyo,
Japan) column as described (Kaneko et al., 2001). The following
experiments were conducted at APRO SCIENCE (Naruto, Japan).
Briefly, the purified proteinwas resolved by 10%SDS-PAGEunder
reducing conditions, and the expected individual target bandswere
excised from the gels. The extracted protein from each band was
then digested overnight with trypsin (Thermo Fisher Scientific),
and the resulting peptide fragments were fractionated by reverse
phase high-performance liquid chromatography (EASY-nLC
1200, Thermo Fisher Scientific) and analyzed on a Q Exactive
Plus mass spectrometer (Thermo Fisher Scientific). The obtained
peptide mass fingerprints were used to search a P. falciparum
protein sequence database (PlasmoDB, http://plasmodb.org) using
the MASCOT program (Perkins et al., 1999).

Production of Recombinant PfRAMA
Proteins and Antisera
The pframa (PF3D7_0707300) nucleotide sequence of the strain
3D7wasobtained fromPlasmoDB.Togenerate specific antibodies,
three regions of pframa were amplified and expressed as
recombinant proteins using the wheat germ cell-free protein
synthesis system (WGCFS, CellFree Sciences, Matsuyama, Japan)
as described (Tsuboi et al., 2008). Briefly, the constructs included
full-length PfRAMA (PfRAMA_FL) excluding the signal peptide
and GPI-anchor signal sequences (encompassing 768 aa, D32 to
I799), the N-terminal region of PfRAMA (PfRAMA_N,
encompassing 214 aa, D32 to D245), and the C-terminal region of
PfRAMA (PfRAMA_p60, encompassing 277 aa, K482 to F758).
Target regions were PCR amplified from P. falciparum NF54
blood-stage cDNA using sense primers with an XhoI restriction
site and antisense primerswith aBamHI site (in lowercase letters in
the primer sequences below); specifically, PfRAMA-sense (5’-
ctcgagGATCATAATATTAAGAATAATAATTGTATTA-3’),
P f R A M A _ F L - a n t i s e n s e ( 5 ’ - g g a t c c C T A T T T
ACTTATCAATTGTTTCTCTTCCTTA-3’), PfRAMA_N-
antisense (5’-ggatccCTAATCGTCGTAATCATATTCTTCGCT-
3 ’ ) , P f R A M A _ p 6 0 - s e n s e ( 5 ’ - c t c g a g A A A A
AAATGGTCTTTTATGATTTATAC-3’), and PfRAMA_p60-
an t i s e n s e ( 5 ’ - g g a t c cCTAGAAAATTTTATTATT
ATTTTCTAATAATGT-3’). The amplified fragments were then
restricted and ligated into the WGCFS vector pEU-E01-G(TEV)-
N2 to fuse aGST-tag andTEVrecognition site at theN-terminus of
the target sequences (CellFree Sciences). The recombinant GST-
PfRAMAproteinswere capturedusing a glutathione-Sepharose 4B
column (GE Healthcare), and the recombinant proteins were
January 2021 | Volume 10 | Article 605367
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eluted by on-column cleavage with 60 U of AcTEV protease
(Invitrogen). The detailed methods are described (Ito et al.,
2011). To generate antisera against each recombinant PfRAMA
protein, immunization was performed at Kitayama Labes (Ina,
Japan). Briefly, two female BALB/c mice were immunized
subcutaneously with 20 mg of purified PfRAMA with Freund’s
adjuvant. A Japanese white rabbit was also immunized
subcutaneously with 250 mg of purified PfRAMA with Freund’s
adjuvant. All immunizations were performed 3 times at 3-week
intervals, and then antisera were collected 2 weeks after the third
immunization. We used additional mouse and rabbit polyclonal
antibodies: anti-PfAMA1 (PF3D7_1133400), Q25-K546; anti-
PfRON3_2 (PF3D7_1252100), D1686-K1884; and anti-PfRAP1
(PF3D7_1410400), M1-D782 that were generated and validated
previously (Ito et al., 2011).

Immunoprecipitation
Immunoprecipitationwas carried out as described (Ito et al., 2011).
Briefly, proteins were extracted from late schizont pellets in PBS
with 1% Triton X-100 containing cOmplete protease inhibitor
cocktail. After centrifugation the supernatants (50 µl) were
preincubated at 4°C for 1 h with 40 µl of 50% protein G-
conjugated beads (GammaBind Plus Sepharose, GE Healthcare)
inNETTbuffer (50mMTris–HCl, 0.15MNaCl, 1mMEDTA, and
0.5% Triton X-100) supplemented with 0.5% BSA (fraction V,
Sigma-Aldrich).Aliquotsof recovered supernatantswere incubated
withpurified IgG fromrabbit polyclonal antibody, and then40µl of
a 50% protein G-conjugated bead suspension was added. After 1 h
incubation at 4°C, the beads were washed once with NETT–0.5%
BSA, once with NETT, once with high-salt NETT (0.5 M NaCl),
once with NETT, and once with low-salt NETT (0.05 M NaCl and
0.17%TritonX-100). Finally, proteinswere eluted from the protein
G-conjugated beads with 0.1 M glycine–HCl (pH 2.5), and then
immediately neutralized with 1 M Tris pH 9.0. The supernatants
were used for western blot analysis using mouse antibodies.
RESULTS

Monoclonal Antibody Production and
Apical Organelle Recognition by
Immunofluorescence Assays
Out of the 164 ELISA positive mAbs obtained against
immunogens, only 12 (~7%) reacted by IFA against late schizont
parasites with a punctate staining pattern suggestive of recognition
of merozoite apical organelles (Figure 1). To predict target
organelles, dual labeling IFA was performed with PfRAP1 as a
rhoptry bulb marker and PfAMA1 as a micronememarker. All 12
selected mAbs colocalized with PfRAP1 but not with PfAMA1,
suggesting recognition of the merozoite rhoptry bulb (Figure 1).

Monoclonal Antibodies Recognized
Distinct Parasite Antigens by Western
Blot Analysis
To classify target antigens recognized by the 12 mAbs, we first
determined themAb isotype from the culture supernatant and then
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
each mAb was purified frommouse ascitic fluid using a MAbTrap
kit (GEHealthcare).Wewere unable to obtain purifiedmAbs from
two clones, 2B2 and 3D6 (Supplementary Figure 1).Western blot
analysis of schizont-rich parasite lysates was then performed with
purified mAb to confirm reactivity and to predict the molecular
weights of the target parasite native antigens. The mAb clone 4A3
(IgG1 isotype) reacted with antigens of approximately 60 and 52
kDa size; 4H3 (IgG1) with 100 and 95 kDa antigens; 1C2 (IgG1)
with a 150 kDa antigen; 1G5 (IgG2a) with 170, 60, 45, 40, and 30
kDa antigens; 4F6 (IgG1) with a 47 kDa antigen; 2B6 (IgG1) with a
60kDaantigen; 3F10 (IgG1)with100and52kDaantigens; and4E6
(IgG1) with 60 and 50 kDa antigens. The mAb clones 2E5 (IgG1)
and 2E4 (IgG1) did not react with parasite antigens under this
condition. Overall, eight western blot-positive mAbs recognized
distinct parasite antigens (Supplementary Figure 1).

Target Antigen Identification by Liquid
Chromatography-Tandem Mass
Spectrometry From Immunoaffinity-
Purified Parasite Proteins
We successfully obtained 5 mAb clones from mouse ascites in
sufficient quantity to generate immunoaffinity columns. To
identify target proteins recognized by the mAbs, schizont-rich
parasite extracts were immunoaffinity-purified by affinity columns
conjugated with each mAb followed by LC-MS/MS analysis. The
mAbswere categorizedbasedonwhether they recognizedLMWor
HMW rhoptry protein complexes, or other proteins.

Monoclonal Antibodies 4F6 and 4H3
Recognize the Low-Molecular Weight
PfRAP Complex Proteins
Western blot analysis of parasite lysates indicated that mAb 4F6
recognized a distinct antigen from that recognized by 4H3
(Supplementary Figure 1), but the SDS-PAGE banding patterns
of the immunoaffinity-purifiedproteins looked similar using either
a 4F6 or 4H3 column (Figure 2A). To identify which bands were
specifically recognized, the immunoaffinity-purified materials
were analyzed by western blot by staining independently with
each mAb. Figure 2B shows that 4F6 recognizes a single band
around 47 kDa under reducing conditions in separated proteins
immunoaffinity-purified by either 4F6 (Figure 2B, lane 1) or 4H3
(Figure 2B, lane 2), and 4H3 recognized multiple bands around
100 kDa under non-reducing conditions. HMWbands recognized
only under non-reducing conditions were likely non-specific
reaction with secondary antibody because these bands were also
visible in the negative controls (Figure 2B, PBS/T). By LC-MS/MS
analyses we identified the 4F6 immunoprecipitates as PfRAP1 and
PfRAP2 (Figure 2C). Taken together, the target antigens of both
mAbs are the described LMW rhoptry protein complex (Table 1,
Supplementary Tables 1, 2, and Figure 2C).

Monoclonal Antibodies 1C2 and 4E6
Recognize the High-Molecular Weight
PfRhopH Complex Proteins
MAb1C2 recognized a distinct antigen from that identified by 4E6
in western blots of parasite lysates (Supplementary Figure 1). A
January 2021 | Volume 10 | Article 605367
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singlemajor band around 140 kDawas visible in SDS-PAGE in the
immunoaffinity-purified proteins using a 1C2 column, whereas
triple major bands were visible in the immunoaffinity-purified
proteins using a 4E6 column (Figure 2D). The immunoaffinity-
purifiedmaterials were analyzed by western blot by independently
staining with each mAb. Figure 2E shows that 1C2 recognized a
single band around 140 kDa under reducing conditions of
separated proteins immunoaffinity-purified by either 1C2
(Figure 2E, 1C2, lane 1) or 4E6 (Figure 2E, 1C2, lane 2). In
contrast, we could not identify target antigen bands bywestern blot
with 4E6 staining, perhaps because of the lower reactivity of the
mAb 4E6 under reducing conditions (Figure 2E, 4E6). By LC-MS/
MS analyses, we identified that mAb 1C2 dominantly recognized
PfRhopH2 (Figure 2F, lane 1C2) and associated PfRhopH
complex partners Clag 9 and PfRhopH3 as minor bands. In
contrast, mAb 4E6 dominantly recognized PfRhopH3 (Figure
2F, lane 4E6) and associated PfRhopH complex partners as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
minor bands (Clag 3.1, Clag 3.2, and Clag 9). Taken together, the
target antigens of bothmAbs are within theHMWrhoptry protein
complex (Table 1, Supplementary Tables 1, 2, and Figure 2F).

Monoclonal Antibody 1G5 Recognizes the
PfRAMA Protein
MAb 1G5 recognized a major band around 60 kDa with multiple
bands between 170 and 30 kDa in western blots of parasite
lysates (Supplementary Figure 1). A single major band around
60 kDa was also visible in SDS-PAGE of the immunoaffinity-
purified proteins using a 1G5 column (Figure 2G). The
immunoaffinity-purified materials were analyzed by western
blot and 1G5 staining. Figure 2H shows that 1G5 recognizes a
major band around 60 kDa and at least seven additional bands
between 100 kDa and 30 kDa, suggesting that those bands are
proteolytically cleaved fragments from a single molecule. The
SDS-PAGE results using a 10% gel at APRO SCIENCE showed
that a major band around 60 kDa and a high-molecular weight
band were identified (Figure 2I). LC-MS/MS determined that
1G5 recognizes PfRAMA (Figure 2I) and that an associated
PfRON3 protein is also identified. Taken together, PfRAMA was
the target antigen of mAb 1G5, and these data suggest that
PfRAMA forms a protein complex with PfRON3 (Table 1,
Supplementary Tables 1, 2, and Figure 2I).

Complex Formation Between PfRAMA and
PfRON3 Proteins in the Early Schizont
Stage
To confirm the specificity of polyclonal anti-RAMA antibodies
western blot analyses of schizont-rich parasite lysates were
performed under non-reducing (NR) and reducing (R) conditions.
Rabbit and mouse anti-PfRAMA_FL and anti-PfRAMA_p60
antibodies recognized both PfRAMA_FL at the expected molecular
weight of 170 kDa (Figure 3A, arrow) and PfRAMA_p60 at the
expected molecular weight of 60 kDa (Figure 3A, arrowhead);
however, anti-PfRAMA_N antibodies recognized only
PfRAMA_FL (Figure 3A, arrow). In addition, anti-PfRAMA_FL
rabbit antibodies recognized the rhoptry bulb by IEM (Figure 3B),
and confirmed that the anti-PfRAMA antibodies specifically
recognized PfRAMA. We also confirmed the specificity of the anti-
PfRON3_2 rabbit antibody as rhoptry bulb localization (Figure 3C).

Immunoprecipitation assays were performed to validate the
PfRAMA interaction with PfRON3. First, we immunoprecipitated
PfRON3, PfRAMA, and PfAMA1 proteins in schizont-rich parasite
lysates using rabbit anti-PfRON3_2, anti-PfRAMA_FL, and anti-
PfAMA1 antibodies . By western blot analyses the
immunoprecipitates were probed with mouse anti-PfRAMA_FL
antibodies (Figure 3D). We observed that anti-PfRON3_2 antibody
could coimmunoprecipitate both PfRAMA_FL (Figure 3D, arrow)
and PfRAMA_p60 (Figure 3D, arrowhead). The signal intensity of
the PfRAMA_FL band was relatively stronger than that of
PfRAMA_p60 in PfRON3_2 immunoprecipitates, suggesting that
PfRON3 formed a more stable complex with PfRAMA_FL than
PfRAMA_p60. By comparison, anti-PfAMA1 antibodies as a
negative control did not immunoprecipitate PfRAMA. As a
reverse experiment we immunoprecipitated PfRON3 and
FIGURE 1 | Monoclonal antibodies react with the apical end of P. falciparum
merozoites. Mature schizont stage parasites were dual-labeled with each
mouse mAb and rabbit antisera against either PfRAP1 (rhoptry body marker)
or PfAMA1 (microneme marker). Nuclei were visualized with DAPI in the
merged images shown in the right most panels. DIC, differential interference
contrast microscopy. Merge, created by merging the IFA and nuclear-staining
images. A representative image out of at least three independent experiments
is shown for each mAb. Bars represent 5 mm.
January 2021 | Volume 10 | Article 605367
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FIGURE 2 | (A–C) Analyses of the immunoaffinity-purified proteins using affinity columns conjugated with either mAb 4F6 or 4H3. (A) The elution fractions were
resolved by 12.5% SDS-PAGE under reducing or non-reducing conditions. (B) Western blot analyses of elution fractions. Elution fractions from 4F6 (lane 1) and 4H3
(lane 2) affinity columns were resolved by 12.5% SDS-PAGE and the proteins were probed with either mAb 4F6 or 4H3. PBS/T serves as a negative control staining.
(C) Protein bands used for the LC-MS/MS analyses. The elution fraction from the 4F6 column was resolved by 10% SDS-PAGE under reducing conditions and the
target bands (arrows) were excised from the gel. Proteins identified by LC-MS/MS are indicated. (D–F) Analyses of the immunoaffinity-purified proteins using affinity
columns conjugated with either mAb 1C2 or 4E6. (D) The elution fractions were resolved by 12.5% SDS-PAGE under reducing or non-reducing conditions.
(E) Western blot analyses of elution fractions. The elution fractions from the 1C2 (lane 1) and 4E6 (lane 2) affinity columns were resolved by 7.5% SDS-PAGE and the
proteins were probed with either mAb 1C2 or 4E6. PBS/T serves as a negative control staining. (F) Protein bands used for the LC-MS/MS analyses. The elution
fractions from the 1C2 and 4E6 columns were resolved by 10% SDS-PAGE under reducing conditions and the target bands (arrows) were excised from the gel.
Proteins identified by LC-MS/MS are indicated. (G–I). Analyses of the immunoaffinity-purified proteins using an affinity column conjugated with mAb 1G5. (G) The
elution fraction was resolved by 12.5% SDS-PAGE under reducing or non-reducing conditions. (H) Western blot analysis of elution fraction. Elution fractions from the
1G5 affinity column were resolved by 12.5% SDS-PAGE and the proteins were probed with mAb 1G5. (I) Protein bands used for the LC-MS/MS analyses. The
elution fraction from the 1G5 column was resolved by 10% SDS-PAGE under reducing conditions and the target bands (arrows) were excised from the gel. Proteins
identified by LC-MS/MS are indicated.
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PfRAMA proteins in the same parasite lysates using rabbit anti-
PfRON3_2, anti-PfRAMA_p60, and anti-PfRAMA_FL antibodies
and probed with mouse anti-PfRON3_2 antibodies as above
(Figure 3E). We observed that anti-PfRAMA_FL antibody could
coimmunoprecipitate PfRON3 (Figure 3E, arrow); however, anti-
PfRAMA_p60 could not (Figure 3E). These results confirmed that
PfRAMA (except for the PfRAMA_p60 region which is known to
associate with PfRAP1, PfRhopH3, and PfSortilin) formed a protein
complex with PfRON3.

IFA was performed to investigate in which developmental
stages PfRAMA interacts with PfRON3. By immunostaining
with anti-PfRON3_2 and anti-PfRAMA_FL antibodies, PfRON3,
and PfRAMA were colocalized mostly in the cytoplasm in early
schizonts (Figure 3F, ES), and in a patchy pattern in each
merozoite in late schizonts (Figure 3F, LS) suggesting rhoptry
localization. In contrast, when PfRAMAwas immunostained with
anti-PfRAMA_N antibodies, PfRON3, and PfRAMA also
colocalized mostly in the cytoplasm in early schizonts (Figure
3G, ES); however, a lack of staining in late schizonts (Figure 3G,
LS) suggested that the PfRAMA_N region was not present in the
merozoite rhoptry in mature schizonts. These results suggest that
the PfRAMA_N regionmay form a protein complexwith PfRON3
in the early schizont stage.
DISCUSSION

Identification of novel apical organellar proteins of merozoite are
essential for understanding merozoite invasion into erythrocytes
as well as providing new vaccine candidates for study. Here we
generated 12 mAbs which recognize merozoite apical organelles.
Immunoaffinity-purification combined with LC-MS/MS
identified target antigens of 5 mAbs as PfRAP1, PfRAP2,
PfRhopH2, PfRhopH3, and PfRAMA. Although these five
antigens are known rhoptry bulb proteins (Counihan et al.,
2013), the identification of a novel PfRAMA/PfRON3 rhoptry
protein complex in the P. falciparum merozoite is emphasized.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
PfRAMA is a rhoptry bulb protein which is expressed relatively
early before the de novo formation of rhoptries. After proteolytic
cleavage a PfRAMA_p60 fragment is formed and localizes in the
merozoite rhoptry bulb in the late schizont stage (Smythe et al.,
1988; Topolska et al., 2004). Thereafter, PfRAMA_p60 localizes to
the rhoptry but not on the surface of the free merozoite. When the
merozoite attaches to the erythrocyte, the discharged
PfRAMA_p60 binds to the erythrocyte surface. Subsequently,
PfRAMA_p60 is localized in the PV membrane during
merozoite invasion (Smythe et al., 1988; Topolska et al., 2004).

To elucidate the function of PfRAMA two studies
demonstrated by fluorescent resonance energy transfer (FRET)
and immunoprecipitation that PfRAMA interacts with both
PfRAP1 and PfRhopH3 (Topolska et al., 2004; Richard et al.,
2009). Recently the PfRAMA-PfRAP1 complex was also suggested
as a cargo for the Plasmodium orthologue of sortilin (Hallee et al.,
2018b). To further investigate the role of PfRAMA, Sherling et al.,
(2019) generated a PfRAMA conditional knockdown parasite line.
Contrary to previous findings (Topolska et al., 2004; Richard et al.,
2009; Hallee et al., 2018b), the PfRAMA knockdown parasites
presented correct trafficking of PfRAP1 and PfRhopH3. In
addition, several other rhoptry bulb proteins, such as PfRAP2,
PfRh5, Clag3.1, and PfRhopH2 also localized correctly to the
rhoptry in the transgenic parasites. Therefore, their findings
were inconsistent with the proposed rhoptry bulb-specific
protein escorter role of PfRAMA (Hallee et al., 2018b).
Furthermore, although the knockdown parasites showed that
some RON proteins—PfRON2, PfRON3, and PfRON4—were
diminished in mature schizonts, the rhoptry neck proteins
PfRON12 and Rh2b were normally localized in the rhoptry
(Sherling et al., 2019). While PfRON3 is now known as a
rhoptry body protein (Ito et al., 2011) (Figure 3C), they
suggested that the mislocalization of the above RON proteins
may be due to abnormal rhoptry neck biogenesis. In this study we
identified by immunoprecipitation an interaction of PfRON3 with
PfRAMA_FL but not with PfRAMA_p60 (Figures 3D, E). We also
showed their colocalization when stained with anti-PfRAMA_FL
TABLE 1 | LC-MS/MS analysis of immunoaffinity-purified proteins with each monoclonal antibody from Plasmodium falciparum schizont lysates.

mAbs Protein MW (kDa) %a PlasmoDB ID Peptide sequences identifiedb Scorec

4F6 PfRAP2 46.7 43 PF3D7_0501600 52LSMWVYFIYNHFSSADELIK71//314QFDYALFHKTYSIPNLK330 996
PfRAP1 90.0 41 PF3D7_1410400 181SASVAGIVGADEEAPPAPKNTLTPLEELYPTNVNLFNYKYSLNNMEENIN 1420

ILKNEGDLVAQKEEFEYDENMEK253//712MKTDMLSLQNEESK725

1C2 PfRhopH2 162.6 27 PF3D7_0929400 52YLYMDEYLSEGDKATFEK69//1193LFVTEGTLEYLLLDK1207 1792
Clag9 160.4 9 PF3D7_0935800 35SILDNDELYNSLSNLENLLLQTLEQDELK63//1259ENVVQEVQEDK1269 317
PfRhopH3 104.8 21 PF3D7_0905400 111EYEEPFVNPVMK122//824TTDNTYKEMEELEEAEGTSNLK845 622

4E6 PfRhopH3 104.8 36 PF3D7_0905400 52GNGPDAGSFLDFVDEPEQFYWFVEHFLSVK81//793STSAASTSDEISGSEGPS 1063
TESTSTGNQGEDKTTDNTYKEMEELEEAEGTSNLK845

Clag3.1 167.2 20 PF3D7_0302500 78LILESLEKDK87//1390MNEADSADSDDEKDSDTPDDELMISR1415 992
Clag3.2 167.5 15 PF3D7_0302200 37NENANVNTPENLNK LLNEYDNIEQLK62// 858

964TMFAAFQMLFSTMLSNNVDNLDK986

Clag9 160.4 12 PF3D7_0935800 35SILDNDELYNSLSNLENLLLQTLEQDELKIPIMK68//1244EGAYEEAMVSR1254 483
1G5 PfRAMA 103.6 11 PF3D7_0707300 589YLDDLIDEEQTIKDAVK605//735INDELLTDQGPNEDTLLENNNK756 401

PfRON3 263.0 3 PF3D7_1252100 374NLGTGFFDFSNSLFK388//1558FLADSNIPSIPYQGFSVR1575 156
January 2021 | Volume 10 | Article
aPercent peptide coverage (%) is shown for each protein. All regions covered by identified peptides are shown in red text in Supplementary Table 1. bRepresentative two peptide
sequences with higher scores among all the identified peptides are shown. The number represents the position at the N- and C-terminus of each peptide (“//”). cScore is a sum of the
scores of all the identified peptides. Each peptide score is −10 × Log10(P), where P is the probability that the observed match is a random event. Peptide scores greater than 27 indicate
identity or extensive homology (P < 0.05). RAP, rhoptry-associated protein; RhopH, high-molecular mass rhoptry protein complex; Clag, cytoadherence-linked asexual gene; RAMA,
rhoptry-associated membrane antigen; RON, rhoptry neck protein.
605367

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Ito et al. Novel Merozoite Rhoptry Protein Complex
FIGURE 3 | (A) Specificity of anti-PfRAMA antibodies by western blot analyses. Proteins from schizont-rich parasites were extracted and separated by 12.5% SDS-
PAGE under non-reducing (NR) or reducing (R) conditions. Using either anti-PfRAMA_FL, anti-PfRAMA_N, or anti-PfRAMA_p60 antibodies obtained from rabbits
(Rab) and mice (Mo), a band of approximately 170 kDa (arrow) was detected as a signal of PfRAMA_FL and a 60-kDa band (arrowhead) was detected as a signal of
PfRAMA_p60. (B) PfRAMA localization by IEM is shown. A representative image out of eight independent sections is shown of a merozoite in a schizont-infected
erythrocyte probed with rabbit anti-PfRAMA_p60 antibody and subsequently with a secondary antibody conjugated with gold particles. The black dots indicate
signals from gold particles localized in the rhoptry bulb. R, rhoptry. (C) PfRON3 localization shown by IEM. A representative image out of 16 independent sections is
shown of a merozoite in a schizont-infected erythrocyte probed with rabbit anti-PfRON3_2 antibody and subsequently with a secondary antibody conjugated with
gold particles. The black dots indicate signals from gold particles localized in the rhoptry bulb. R, rhoptry. Bars = 500 nm. (D) PfRAMA_FL interacts with PfRON3.
NP-40 extracts of schizont-rich parasites (Lysate) were immunoprecipitated (IP) with rabbit sera against PfRON3 (anti-PfRON3_2), PfRAMA (anti-PfRAMA_FL), or
PfAMA1 (anti-PfAMA1), then stained with mouse antisera (WB) against PfRAMA_FL. This panel is a representative result of two independent experiments.
(E) PfRAMA_FL but not PfRAMA_p60 interacts with PfRON3. NP-40 extracts of schizont-rich parasites (Lysate) were immunoprecipitated (IP) with rabbit sera against
PfRON3 (anti-PfRON3_2), PfRAMA (anti-PfRAMA_p60), or PfRAMA (anti-PfRAMA_FL), then stained with mouse antisera (WB) against PfRON3_2. M, molecular
weight marker. This panel is a representative result of two independent experiments. (F) Co-localization of PfRON3 and PfRAMA. Immature early schizont (ES) or
mature late schizont (LS) stage parasites were dual-labeled with rabbit antibodies against PfRON3_2 and mouse antibodies against PfRAMA_FL. Nuclei were
visualized with DAPI in merged images shown in the right most panels. DIC, differential interference contrast microscopy. Merge, the image created by merging the
IFA and nuclear-staining images. Bars represent 5 mm. (G) Co-localization of PfRON3 and PfRAMA. Immature early schizont (ES) or mature late schizont (LS) stage
parasites were dual-labeled with rabbit antibodies against PfRON3_2 and mouse antibodies against PfRAMA_N. Nuclei were visualized with DAPI in merged images
shown in the right most panels. DIC, differential interference contrast microscopy. Merge, the image created by merging the IFA and nuclear-staining images. Bars
represent 5 mm.
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and PfRON3 antibodies but not with anti-PfRAMA_N antibodies
in the mature schizont stage (Figures 3F, G). These results suggest
that the association between PfRAMA and PfRON3 occurs in the
immature schizont stage, and thereafter the two proteins dissociate
when the N-terminal region of PfRAMA (downstream from the
PfRAMA_N region) is proteolytically degraded in the mature
schizont (Smythe et al., 1988; Topolska et al., 2004). In addition,
we previously reported that PfRON3 interacts with PfRON2 and
PfRON4, but not with PfAMA1 (Ito et al., 2011), suggesting that
a portion of PfRON3 is involved in the formation of a RON
complex (PfRON2, 3, and 4), but not in the moving junction
complex (PfRON2, 4, 5, and PfAMA1) (Ito et al., 2011). Taken
together, the absence of PfRAMA affects the trafficking of its
associated RONs, and this could potentially explain the abnormal
rhoptry neck biogenesis as observed by Sherling et al., (2019).

To predict the PfRON3 associating region in PfRAMA, the
PfRAMA knockdown parasite generated by Sherling et al.,
(2019) provided us with useful information. The knockdown
parasite with abnormal PfRON3 trafficking resulted in
expression of the N-terminal 220 residues of the protein but
lacking the C-terminal region spanning aa V315–S840. This C-
terminal 526-residue protein was previously shown to interact
with both PfRAP1 and PfSortilin (Topolska et al., 2004; Richard
et al., 2009; Hallee et al., 2018a; Hallee et al., 2018b). Additional
evidence is that our anti-PfRAMA_p60 (K482 to F758) antibodies
failed to immunoprecipitate PfRON3 (Figure 3E). Taken
together, the PfRAMA residues spanning aa Q221-E481 may be
important for the trafficking of PfRON3 to the rhoptries. Further
investigation will be required as to whether PfRAMA and
PfRON3 interact directly or indirectly, such as by using a
surface plasmon resonance approach with recombinant proteins.
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