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The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of
many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus
infection can be further upregulated upon interferon (IFN) stimulation as a component of
the innate immune response. In humans, Sp100 is encoded by a single gene locus, which
can produce alternatively spliced isoforms. The widely studied Sp100A, Sp100B, Sp100C
and Sp100HMG have functions associated with the transcriptional regulation of viral and
cellular chromatin, either directly through their characteristic DNA-binding domains, or
indirectly through post-translational modification (PTM) and associated protein interaction
networks. Sp100 isoforms are resident component proteins of promyelocytic leukemia-
nuclear bodies (PML-NBs), dynamic nuclear sub-structures which regulate host immune
defenses against many pathogens. In the case of human herpesviruses, multiple protein
antagonists are expressed to relieve viral DNA genome transcriptional silencing imposed
by PML-NB and Sp100-derived proteinaceous structures, thereby stimulating viral
propagation, pathogenesis, and transmission to new hosts. This review details how
different Sp100 isoforms are manipulated during herpesviruses HSV1, VZV, HCMV, EBV,
and KSHV infection, identifying gaps in our current knowledge, and highlighting future
areas of research.
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INTRODUCTION

Speckled 100 kDa protein (Sp100) was identified using autoantibodies from patients suffering from
primary biliary cirrhosis autoimmune disease (Szostecki et al., 1987; Szostecki et al., 1990). The
‘speckled’ nuclear distribution of Sp100 predominantly colocalizes with promyelocytic leukemia-
nuclear bodies (PML-NBs) (Sternsdorf et al., 1995). Scaffolded by PML (TRIM19), these dynamic
nuclear substructures regulate important cellular processes: genome stability, alternative
Abbreviations: aa, amino acid residues; ATRX, alpha-thalassemia/mental retardation X-linked; bp, base pairs; Daxx, death
domain associated protein; EBNA-LP, Epstein-Barr virus nuclear antigen-leader protein; HIRA, histone cell cycle regulator A;
HMG, high mobility group; Kbp, kilobasepairs; MORC3, microrchidia 3; SETDB1, SET domain bifurcated histone lysine
methyltransferase 1; STAT, signal transducer and activator of transcription; SUMO, small ubiquitin (Ub) modifier; UBC9, Ub
conjugating enzyme 9; UBE2I, Ub conjugating enzyme E2I; VP, viral protein; WHO, World Health Organization.
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lengthening of telomeres, epigenetic regulation of chromatin,
antiproliferation, senescence, apoptosis and antiviral immunity
(Gurrieri et al., 2004; Bernardi and Pandolfi, 2007; Scherer and
Stamminger, 2016). This range of functions is accomplished by
alternatively spliced PML isoforms (Condemine et al., 2006), and
its extensive network of protein interactions, some of which are
mediated by PML SUMO modification (Van Damme et al.,
2010). The post-translation modification (PTM) of proteins by
SUMO is common in proteins that harbor a SUMO consensus
motif (SCM) [reviewed in (Celen and Sahin, 2020)]. PML and
Sp100 have been found to be mono- and poly-SUMOylated
(Sternsdorf et al., 1997; Lang et al., 2010; Maarifi et al., 2015).
This SUMO “code” is recognized by SUMO interacting motifs
(SIMs) present in a variety of cellular proteins known to associate
with PML-NBs (Hecker et al., 2006), with SUMO-SIM
interactions playing a key role in PML-NB formation and
stability (Zhong et al., 2000; Shen et al., 2006; Bernardi and
Pandolfi, 2007).

In the following subsections, the domain composition of
Sp100 isoforms is detailed, highlighting a role as epigenetic
factor that may be independent of PML and PML-NB, and it is
especially evident upon herpesviruses infection (see below).

Protein Architecture of Sp100 Isoforms
The Sp100 gene spans nearly 130,000 bp and contains 32 exons
that can be alternately spliced into 19 variants. Of the 11 protein-
coding isoforms1, only four (Sp100A, B, C, and HMG) have been
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
routinely investigated by the scientific community. These
isoforms share the Sp100A domain architecture up to the
nuclear localization sequence (NLS) (Figure 1), in accordance
with their predominant nuclear localization. This N-terminus
comprises sequences responsible for Sp100 dimerization and
PML-NB localization (Sternsdorf et al., 1999; Negorev et al.,
2001), a destruction-box (D-box) required for Sp100
proteasomal degradation (Wang et al., 2011), a SCM
(Sternsdorf et al., 1999) and a SIM (Knipscheer et al., 2008;
Cuchet et al., 2011) in a histone protein 1 (HP1) interaction site
(Seeler et al., 1998), and a trans-activating region (TR) (Szostecki
et al., 1990; Szostecki et al., 1992; Xie et al., 1993). Whether these
features are shared with the remaining seven coding Sp100
isoforms await to be experimentally determined.

Proteomic studies have shown Sp100 to undergo extensive
PTM, including acetylation, phosphorylation, ubiquitination,
and SUMOylation (‘ProteomicsDB, Sp100’, 2014). PML-NBs
play an important role in the PTM of Sp100, as depletion of
PML significantly abrogates the SUMOylation of Sp100 (Everett
et al., 2006; Everett et al., 2008; Tavalai et al., 2011) and
potentially, other PTMs as phosphorylation (Sternsdorf et al.,
1999). The decreased abundance of these PTMs in the absence of
PML is probably due to a defect in Sp100 SUMOylation, as
depletion of the human E2 SUMO conjugating enzyme (UBC9/
UBE2I) leads to similar Sp100 migration patterns in
immunoblots (Boutell et al., 2011). It is likely, therefore, that
PML mediates, either directly or indirectly, the PTM of Sp100;
FIGURE 1 | Sp100 isoform domain composition. Sp100A/B/C/high mobility group (HMG) share domain architecture within their first 477 amino acid (aa) residues:
dimerization and promyelocytic leukemia-nuclear body (PML-NB) targeting (aa 3–152, pink), destruction-box (D-box, aa 165–168, teal); HP1 interacting region (aa
287–334, orange) encompassing a SUMO consensus motif (SCM) with Lys297 SUMO modification (K297, yellow pin) and SUMO-interacting motif (SIM, aa 323–
326, black half-moon); trans-activating region (TR, aa 333–407, cherry); autoepitopes are indicated with vertical numbers in ochre below HP1 and TR segments (see
EBV section); nuclear localization sequence (NLS, aa 440–450, purple). Sp100B/C/HMG are identical up to aa 685, which includes the high mobility group (HMG) 2
(aa 477–528, fern) and Sp100, AIRE-1, NucP41/75, DEAF-1 (SAND, aa 603-676, sand) DNA-binding domains. Sp100HMG contains two additional HMG (HMG1, aa
682–754; HMG2, aa 768–838) domains and a coiled coil (CC, aa 843–879, mint) domain. Sp100C contains a plant homeodomain (PHD, aa 696-754, green) and
bromodomain (BRD, aa 762–878, light green) domain. C-terminal domain features are described in Table 1. Numbers indicate the positions of aa with each isoform.
UniProt IDs: Sp100A, P23497-2; Sp100B, P23497-3; Sp100C, P23497-4; Sp100HMG, P23497-1. Further details on the Sp100 gene locus (ENSG00000067066)
can be found at ENSEMBL1.
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indeed, PML has been shown to have SUMO E3 ligase activity
and to regulate the SUMOylation of a number of PML-NB
proteins, including p53, MDM2, Daxx, and c-jun (Quimby
et al., 2006). SUMOylation of Sp100 stabilizes its interaction
with the C-terminal chromoshadow domain (CSD) present in
HP1 proteins (HP1a/CBX5, HP1b/CBX1 and HP1g/CBX3)
(Seeler et al., 1998), but their intermolecular details remain to
be fully defined. HP1 can dimerize through CSD domains,
creating a platform for histone methyltransferases (HMTs,
“histone writer enzymes”, Figure 2A) to tri-methylate Lys 9 of
histone H3 tails (H3K9me3) where the N-terminal chromo
domain (CD) of HP1 binds (Yamamoto and Sonoda, 2003;
Larson and Narlikar, 2018), enabling HP1 dimers to bridge
consecutive H3 di-nucleosomes (Machida et al., 2018; Kumar
and Kono, 2020) (Figure 2Bi). HP1 and histones (H2A, H2B,
H3, H4, and their respective variants), are examples of the
chromatin protein fraction; chromatin is composed of DNA
and directly or indirectly associated proteins which compact it in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
different degrees. Cellular DNA is coiled around nucleosomes
formed by histones whose protruding N-terminal tails are
subjected to dynamic PTMs (including methylation,
acetylation, phosphorylation, ubiquitination and SUMOylation,
among others) by histone “writer” and “eraser” enzymes (Figure
2A) (Bannister and Kouzarides, 2011); combinations of histone
PTMs create chromatin activating or repressive “histone codes”
that are interpreted by histone “readers” to regulate transcription
(Strahl and Allis, 2000). Such histone modifications are the basis
of epigenetics, which lead to cell-type specific and inheritable
changes in gene expression without affecting the DNA sequence.
The fact that all Sp100 isoforms (Sp100A/B/C/HMG) contain a
sequence for PML-NB localization, suggests that some of their
functions may be executed at PML-NB; for example, Sp100
crosstalk with chromatin through HP1 interaction may depend
on its SUMOylation by PML. Moreover, the impact of homo and
heterodimerization of Sp100 (Figure 2Bii) on chromatin
dynamics is yet to be defined.
A

B

C

FIGURE 2 | General epigenetic mechanisms influencing chromatin binding properties of Sp100. (A) Histone modifier enzymes sorted as “writers” (blue arrow) or
“erasers” (red arrow) that influence the acetylation (orange teardrop), methylation (gray teardrop) or phosphorylation (yellow teardrop) post-translational modification
(PTM) status of histones exemplified here through H3 tail (green line, not to scale). (B) Models for direct (SAND, HMG) and indirect (HP1, BRD, PHD) DNA binding
properties of Sp100 isoforms; (i) dimerized HP1s (orange ovals) bind HMT (gray oval) leading to histone H3K9 trimethylation (gray teardrop) of consecutive
nucleosomes (lilac). A red question mark indicates whether Sp100B/C/high mobility group (HMG) binds DNA (dark blue string) and/or HP1 as a monomer or as a
dimer; (ii) Sp100 can potentially homo- (circular back arrows) and heterodimerize (double head black arrows) depending on the isoform expression profile and
subnuclear localization. Sp100 color code refers to Figure 1 characteristic features; (iii) examples of histone readers’ regulation. H3K4me1-3 inhibits (red flat tip
arrows) the binding of Sp100C, Sp140 and HP1 to histone 3, while H3K9me3 promotes (light blue arrows) Sp100C and HP1 binding. Different kinases drive the
“phospho-switches” that influence Sp100C, Sp140 and HP1 binding to histone 3 (H3pT3/S10/T6); (iv) histone 3 tail (aa 1–31) highlighting aa and PTMs discussed in
the main text associated with the epigenetic silencing of viral DNA and reactivation from latency. (C) Viral and epigenetic factors that influence HSV1 transcription;
vertical empty arrow pointing down the H3 tail shows an example of post-translational modifications (PTMs) associated with reactivation from latency where the c-
Jun N-terminal kinase (JNK) phosphorylates the aa residues next to H3K9/27me3, known as “methyl-phospho switch”, a first step in chromatin relaxation. The
participation of Sp100 variants as histone readers in each phase remains to be clearly further detailed (black question mark).
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While the common N-terminus of Sp100 is mainly involved
in protein-protein interactions, features present in its C-terminus
directly interact with DNA and histones (Figure 1, Table 1).
Sp100B, C, and HMG contain high mobility group (HMG) and
Sp100, AIRE-1, NucP41/75, DEAF-1 (SAND) DNA-binding
domains (Guldner et al., 1999; Bottomley et al., 2001).
Mechanistically, the Sp100 SAND domain preferentially binds
to unmethylated CpG dinucleotides commonly found in foreign
DNA (Wilcox et al., 2005; Isaac et al., 2006). HMG binding to
DNA opens the minor groove while narrowing the major one,
thus bending the DNA to promote nucleosome loading and
chromatin remodeling (Thomas, 2001; Malarkey and Churchill,
2012; Lohani and Rajeswari, 2016). Sp100HMG isoform has two
additional C-terminal HMG domains (Seeler et al., 1998;
Guldner et al., 1999), but their direct participation chromatin
modification and assembly warrants additional study.
Sp100HMG is also predicted to contain a C-terminal coiled-
coil (CC) domain (Kumar et al., 2020), the presence and function
of which has yet to be investigated. Sp100C, and Sp100 variant
paralogues Sp110, Sp140, and Sp140L which cluster with Sp100
on human chromosome 2, are histone code “readers” since all
recognize specific histone tail PTMs through their plant
homeodomain (PHD) and bromodomain (BRD) tandem (Dent
et al., 1996; Mellor, 2006; Filippakopoulos and Knapp, 2012;
Saare et al., 2015; Leu et al., 2018; Zucchelli et al., 2019; Fraschilla
and Jeffrey, 2020; Jain et al., 2020). Isothermal titration
calorimetry characterization of the Sp100C PHD-BRD tandem
peptide (Sp100CPB) revealed high affinity for the H3 tails
containing the repressive PTMs H3K9me3 and unmethylated
H3K4 (H3K4me0), while the chromatin activating marks H3T6p
and H3K4me1-3 exclude Sp100CPB binding to H3 tail (Figure
2Biii) (Zhang et al., 2016). Overall, this information reveals that
Sp100C binding to chromatin can be affected by H3 PTMs.
Moreover, in cellula, the subnuclear localization of ectopically
expressed Sp100C differs from Sp100A and Sp100HMG (Seeler
et al., 2001), indicating that the C-terminal domain architecture
of each Sp100 isoform also dictates their participation in different
chromatin-related processes. Additionally, IFN treatment of
epithelial cells has shown to favor the levels of Sp100C mRNA
over the other isoforms (Negorev et al., 2009). IFNs are secreted
cytokines which activate the assembly of combinatorial STAT
complexes that bind to IFN-stimulated response element (ISRE)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
or to gamma activation site (GAS) at promoters of genes
implicated in antiviral defense, known as interferon stimulated
genes (ISGs) (Regad and Chelbi-Alix, 2001). Sp100 is an ISG since
its promoter contains an ISRE and two GASs binding sites which
grant its inducibility by type-I (IFNa, b and k) and type-II (IFNg)
IFNs in an individual and synergistic way (Grotzinger et al., 1996a;
Grotzinger et al., 1996b). Thus, exogenous stimuli can alter the
prevailing Sp100 isoform in a given cell type; the molecular details
of this shift are still unknown, but splicing driven by Sp100 circular
RNA may be involved (Deng et al., 2020).

Further Details of Sp100C in
Crosstalk With Chromatin
Other activating H3 PTMs such as mono- (H3K14/18/27ac) or
multi acetylation (H3K14/18/23ac), phosphorylations at H3T3p,
H3KS10p, or H3K9me3S10p, do not affect Sp100CPB binding to
H3 tail; since the Sp100C BRD could not bind H3Kac in vitro
either, it was indicated that the BRD molecular function is
unknown but it was critical to stabilize the Sp100C PHD fold,
given the extensive contacts seen in their crystal structure (Zhang
et al., 2016). Of note, the PHDs of other proteins, as Sp140, have
shown to facilitate BRD SUMOylation and its association with
SETDB1, a HMT of H3K9 that promotes gene silencing (Ivanov
et al., 2007; Peng and Wysocka, 2008; Garcia-Dominguez et al.,
2008; Zucchelli et al., 2019); interestingly, this PTM also weakens
the Sp140 PHD binding to H3 tail (Figure 2Biii) (Zhang et al.,
2016). Future in vivo studies may indicate if Sp100C BRD has
affinity for any H3Kac residues (Figure 2Biv), whether BRD
SUMOylation takes place and affects Sp100C binding to H3, and
if Sp100 orthologues cooperate as histone code readers.

Sp100C PHD is singular in tolerating H3T3p, since this PTM
acts as a “binary switch” on Sp140 by excluding the binding of
Sp140 PHD to H3 (Zhang et al., 2016) (Figure 2Biii). H3T3 is
phosphorylated upon DNA damage (Salzano et al., 2015) and
during prophase (Dai et al., 2005), while it is dephosphorylated
during anaphase (Dai et al., 2005). Taken together, this suggests
that Sp100C would still be bound to H3T3p during these
processes, while Sp140 is not. Moreover, it has been reviewed
that H3K4me0 and H3K9me3 represent marks to coordinate and
maintain DNA methylation memory through mitosis
(Hashimoto et al., 2010); it is tempting to speculate about the
participation of Sp100C in ensuring this process.
TABLE 1 | Alternatively spliced Sp100 C-terminal domains involved in chromatin regulation.

Domain Isoform(s) Function Reference(s)

HMG2 Sp100B/C/HMG DNA binding (see below). (Lehming et al., 1998)
SAND Sp100B/C/HMG DNA binding to unmethylated cytosines of CpGs dinucleotides. (Guldner et al., 1999; Bottomley et al., 2001;

Wilcox et al., 2005; Isaac et al., 2006)
HMG1/2 Sp100HMG Shapes an L composed of three a-helices that bind and open the

minor groove of DNA while narrowing the major one thus, bending the
DNA and allowing the assembly of nucleosome and other proteins.

(Seeler et al., 1998; Guldner et al., 1999;
Thomas, 2001; Malarkey and Churchill, 2012;
Newhart et al., 2013; Lohani and Rajeswari,
2016)

CC Sp100HMG Unknown. ELM prediction (Kumar et al., 2020)
PHD Sp100C Binds with most affinity to histone 3 unmethylated in Lys4 (H3K4me0)

but tri-methylated in Lys9 (H3K9me3).
(Zhang et al., 2016)

BRD Sp100C Unclear binding to acetylated Lys (KAc). (Filippakopoulos and Knapp, 2012; Zhang
et al., 2016)
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In post mitotic neurons, H3S10 phosphorylation detaches HP1
from H3K9me3 (Figure 2Biii) while retaining ATRX (Noh et al.,
2015), an ATP-dependent chromatin remodeller which, as Sp100C,
requires both H3K9me3 and H3K4me0 to bind H3; ATRX
cooperates with HP1 and the H3.3 chaperone Daxx to keep
telomeric and pericentromeric chromatin repressed (Eustermann
et al., 2011; Clynes et al., 2013). H3.3 is an histone variant loaded
onto chromatin independently of DNA synthesis (Tagami et al.,
2004) and then maintained by the PML-NB proteins and H3.3
chaperones Daxx/ATRX (Cabral et al., 2018). Since H3K9me3 and
H3K4me0 can be read by multiple molecules, the spatio-temporal
dynamics of Sp100C binding to H3 respective to other molecules as
Sp140, HP1 and ATRX, remains to be determined. Overall, Sp100C
PHD binds to repressive chromatin but tolerates activating
epigenetic marks, except H3K4me and H3T6p.

Collectively, Sp100A/B/C/HMG isoforms share the N-terminus
which allows their dimerization and location at PML-NB, where
they can bemodified with SUMO to interact with HP1, a chromatin
protein. The Sp100B/C/HMG SAND domain links them to
typically exogenous unmethylated DNA CpGs, but functions
assigned to additional domains have to be directly established for
Sp100 in vivo. Detailed Sp100C studies have evidenced its
predominant transcription upon IFN treatment and its in vitro
participation in chromatin compaction when H3 tails lack H3T6p
and H3K4me. Further Sp100 characterization is key to understand
its participation in cellular and viral chromatin regulation.
CLINICAL IMPORTANCE OF
HERPESVIRUSES AND MOLECULAR BASIS

Herpesviruses are a large family of double stranded DNA viruses
that cause a variety of clinically important diseases on a global
scale (Table 2). Their success lies their ability of reactivating
from a latent state of infection whereby viral DNA (vDNA)
transcription in the nucleus of terminally differentiated (nerve or
white blood) cells is not enough to generate virus progeny,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
thereby avoiding immune clearance and thus, keeping a host
chronically infected for a lifetime. Consequently, understanding
the host defenses that limit the reactivation, propagation, and
transmission of herpesviruses is of global importance.

Primary infection of herpesviruses starts with their binding to
a cell surface, followed by nucleocapsid entering the cytoplasm,
transport and attachment to the nuclear pore to release the viral
genome into the nucleus; although vDNA is ejected into the
nucleoplasm as a naked molecule, viral tegument proteins
characteristic of each virus subfamily may access the nucleus
with different efficiencies depending on the cell type infected,
influencing the subsequent events in diverse ways [reviewed by
(Full and Ensser, 2019)]. In parallel, the equilibrium of pro- and
antiviral host factors intrinsic (pre-existing) to each cell type,
ready to associate with this foreign nucleic acid and viral
tegument proteins, dictates whether the infection progresses to
lytic replication or remains latent.

When primary infection takes place in epithelial cells (e.g. in
mucosa), herpesviruses typically initiate a lytic cycle of replication
through the coordinated expression of immediate-early (IE), early
(E), and late (L) genes, which sequentially contribute to the
inactivation of host immune defenses, stimulation of viral gene
expression, vDNA replication and virion assembly, respectively
(Gruffat et al., 2016). In contrast, infection of terminally
differentiated cell types is prone to latency because herpesviruses
generally fail to establish this temporal cascade of viral gene
expression. This once perceived binary (lytic or latent) behavior
has recently been shown to bemore heterogeneous,with patterns of
viral gene expressiondependent on cell type, genome copynumber,
and degree of pre-immune stimulation prior to infection (Knipe
and Cliffe, 2008; Suzich and Cliffe, 2018). One of the intrinsic
immunity barriers herpesviruses have to counteract or exploit upon
vDNA release into the nucleus is chromatinization and epigenetic
modulation (Knipe et al., 2013). Moreover, cellular stress can affect
vDNA chromatinization, partially or fully reactivating viral
transcription programs with variable production of progeny
virions (reviewed by (Weidner-Glunde et al., 2020)). For example,
TABLE 2 | Clinical relevance of herpesviruses.

Virus Clinical manifestations and estimates (references)

Herpes simplex
virus 1 (HSV1)/
HHV1

Blindness, dermatitis, gum diseases, sores in the mouth, nose and genitals, newborn fatal encephalitis (Imbronito et al., 2008; Looker et al., 2017;
Marcocci et al., 2020). Considered causative factor of sporadic Alzheimer disease (Cairns et al., 2020). In 2016, the WHO (World Health
Organization, 2020) estimated that about 67% of the world’s population below 49 years old had HSV1 infection.

Varicella zoster virus
(VZV)/HHV3

Primary infection causes chicken pox/varicella and infectious shingles upon reactivation; during 2008–2011, VZV mortality rate in the US
population was estimated to be 0.05 per million, representing an 87% decrease in comparison to prevaccine years (Johnson and Levin, 2020).

Human
cytomegalovirus
(HCMV)/HVV5

Worldwide seroprevalence of 66%–90% (Zuhair et al., 2019). It affects transplants’ recipients (Schottstedt et al., 2010; Meesing and Razonable,
2018) and is a major cause of congenital disability in children (Davis et al., 2017; Emery and Lazzarotto, 2017).

Epstein-Barr virus
(EBV)/HVV4

Mononucleosis and derived lymphomas caused at least 142,000 deaths worldwide in 2010 (Khan and Hashim, 2014; Martinez and Krams, 2017)
and a chronic population deterioration resulting from EBV-related autoimmune diseases (Draborg et al., 2016; Balandraud and Roudier, 2018;
Trier et al., 2018).

Kaposi’s sarcoma-
associated
herpesvirus (KSHV)/
HVV8

KSHV associated tumorigenesis is responsible for around 55% mortality in South African infected children (Dow et al., 2014), and nearly 20% of
deaths in seropositive blood transfusions (Ablashi et al., 2002; Operskalski, 2012).
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neuronal stress promotes the phosphorylation of H3S10/28 at
vDNA promoters by c-Jun N-terminal kinase (JNK) (Figures
2Biv, C), allowing viral gene expression even when adjacent
H3K9/27me3 repressive marks are present (Cliffe et al., 2015).
Despite of Sp100 is unaffected by H3pS10 epigenetic switch (see
introduction), expression of further herpesviruses proteins
neutralize specific antiviral immunity factors as Sp100, triggering
periodic reactivation of viral latent pools, leading to de novo virus
replication, virus progeny production and transmission to
new hosts.
THE SPATIOTEMPORAL JOURNEY OF
SP100 AGAINST HERPESVIRUSES

This section focuses on the antiviral properties of the Sp100
variants and how they are hijacked from the outset of infection
by herpesviruses factors; Figure 3 summarizes these viral proteins
counteracting Sp100 and indirectly affecting its core network of
cellular protein partners. Since different aspects of epigenetic
modulation of herpesviruses have been characteristically studied
for each family (Knipe et al., 2013), only these known to affect
Sp100 fate are highlighted, introduced in the HSV1 section, and
subsequently referred.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Herpes Simplex Virus 1
When HSV1 infection progresses to lytic replication, parental
vDNA is not associated to typical nucleosome units but to
proteinaceous structures (Muggeridge and Fraser, 1986;
Deshmane and Fraser, 1989). This incomplete vDNA
chromatinization may result from the blocking of histone loading
into naked DNA by VP22, the most abundant tegument protein
(van Leeuwen et al., 2003). In fact, H3.3 has been observed to
accumulate juxtaposed but unincorporated to vDNA into PML-
NB, which could be the aforementioned proteinaceous structures
detected at the initial and lytic phases of infection (Conn et al.,
2013). Accordingly, PML-NB are known to act as protein depots
(Negorev and Maul, 2001), as well as to assemble onto and entrap
incoming vDNA (Alandijany et al., 2018). PML-NB entrapped
vDNA has been shown to lack H3K4me2 but to be H3.3 decorated
with H3K9me3 (Cabral et al., 2018; Cohen et al., 2018), advancing
Sp100Cpresence.Moreover, experiments studying the recruitment
of PML-NB proteins to a transgene array as a model for foreign
DNA invasion, showed that when UBC9 was depleted, neither
Daxx, PML nor H3.3 accumulated onto the array; hence, their
accumulation onto invading DNA depends on SUMOylation
(Shastrula et al., 2019), an enzymatic activity enriched at PML-
NB (see introduction). However, whether SUMOylation is also
required for Sp100 accumulation at vDNA is unclear but seems to
be isoform-specific, since Sp100 spliced variants have
commonalities but also differences (Figure 1), which may
account for their divergent spatio-temporal behavior: Sp100A has
been shown to enhance the expression of the IE infected cell
protein-0 (ICP0) promoter, while it is repressed by Sp100
isoforms containing a SAND domain (Sp100B/C/HMG), unless
this domain is mutated (Negorev et al., 2006); similarly, Daxx,
ATRX and Sp100B/C/HMG repress a CMV promoter reporter
while withdrawing Sp100A-driven chromatin decondensation
(Seeler et al., 1998; Newhart et al., 2012; Newhart et al., 2013).
Taken together, Sp100B/C/HMG cause repression of transcription
while Sp100A is activating in a mutually exclusive way.

In turn, this differential transcriptional behavior of Sp100B/C/
HMG as opposed to Sp100A is distinctly modulated by ICP0 since
when HSV1 ICP0 was included in the CMV promoter reporter,
Sp100A presence augmented at this CMV promoter reporter
independently of its SUMOylation status, Daxx or ATRX, while
Sp100B/C/HMG were degraded (Newhart et al., 2013). It is known
that challenging epithelial cells with HSV1 depletes Sp100
SUMOylated isoforms (Everett et al., 2009), as occurs when UBC9
or PML are silenced by shRNA (Everett et al., 2006). Thus, Sp100
degradation could either be a direct target of ICP0 (Perusina
Lanfranca et al., 2013), a viral E3 Ub ligase which preferentially
targets SUMOylated proteins for proteasomal degradation [(Boutell
et al., 2011), reviewed by (Boutell and Everett, 2013; Rodriguez et al.,
2020)], or occur as an indirect consequence of PMLdisposal by ICP0
(Tavalai and Stamminger, 2009). In any case, dismantling of PML-
NB by ICP0 or by PML shRNA silencing has no effect on Sp100A
(Everett et al., 2006; Everett et al., 2009), advancing that Sp100A
transactivating properties may be exploited by HSV1 (see below).

Interestingly, Sp100A SIM deletion has shown that in DICP0
HSV1 infected cells, Sp100A can prescind from its SUMOylation
FIGURE 3 | Sp100 interactors and herpesvirus counteractors. Outer circle,
herpesviruses proteins (HSV1, ICP0; VZV, ORF61p; HCMV, IE1/p72; EBV,
EBNA-LP; KSHV, LANA, and ORF75) that antagonize Sp100. Inner circle,
network of Sp100 related protein interactions likely to be disrupted during
herpesvirus infection. Clustered networks of known Sp100 interactors shaded
in blue. Interactions retrieved from BioGRID (Stark et al., 2006), minimum
experimental evidence from two independent studies.
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but requires its SIM to appear as nuclear puncta even in the absence
of PML (Cuchet et al., 2011; Cuchet-Lourenco et al., 2011); this
suggests that Sp100, as PML, may scaffold factors on its own. In
order to study the participation of Sp100 in restricting HSV1
infection, mutant viruses lacking ICP0 (DICP0) or carrying
mutations in its catalytic RING-finger domain responsible of its
E3 Ub ligase activity are routinely used to keep PML-NBs intact.
Independent or combined depletion of PML and Sp100 shows that
their effects in restricting DICP0 HSV1 are additive but partial
(Everett et al., 2006; Everett et al., 2008; Glass and Everett, 2013).
This indicates that both factors have antiviral properties on their
own,which are enhanced by their cooperation, but they donot fully
restore the DICP0 effects to WT HSV1 levels because additional
proteins participate in counteracting ICP0. Indeed, the chromatin
regulators Daxx, ATRX and MORC3 can be still recruited to
incoming viral genomes when both Sp100 and PML are silenced
(Everett et al., 2008; Lukashchuk and Everett, 2010; Cuchet et al.,
2011; Sloan et al., 2016).MORC3dimerizes to acts asATPase when
its histone recognition CW domain binds H3K4me3 (Zhang et al.,
2019), formingMORC3-NB; speculatively, the ATPase function of
MORC3 may fuel chromatin remodeling enzymes (Vignali et al.,
2000). Complementarily, silencing MORC3 by shRNA impedes
PML, Sp100 andDaxx appearing as puncta before the emergence of
replication compartments (RCs) visualized with ICP4; however,
once RCs appear, they are PML free but Sp100 is still associated to
them (Everett et al., 2006; Everett et al., 2008; Lukashchuk and
Everett, 2010;Cuchet et al., 2011; Sloanetal., 2016).This suggests that
the recruitment of PML, Sp100 and Daxx to parental HSV1 DNA is
orchestrated byMORC3 to formPML-NBs on the one hand, and on
the other hand, that a portion of Sp100 associates to ICP4 replication
centers independently of MORC3 when PML-NBs have been
dismantled by ICP0. Collectively, this indicates that the cell can
recruit energy fueling enzymes to ensure subsequent viral chromatin
remodeling but, contrary to Sp100A, they are targeted by ICP0.

HSV1 DICP0 parental genome have limited gene expression
as it remains entrapped by PML-NBs upon infection of the cell
nucleus (Everett and Murray, 2005; Alandijany et al., 2018). This
is so unless the copy numbers of HSV1 DICP0 saturate the
intrinsic defenses that PML-NB represent, escaping vDNA
entrapment and leading to its replication (Alandijany et al.,
2018; McFarlane et al., 2019). Viral replication triggers
cytokine signaling which leads to the PML and Sp100-
dependent accumulation of the H3.3 chaperone HIRA at pre-
existing PML-NB, since shRNA silencing of either PML or Sp100
abrogates HIRA accumulation at PML-NBs (Alandijany et al.,
2018; McFarlane et al., 2019). HIRA binds ISGs loci to promote
their transcriptional upregulation, further stimulating the innate
immune defenses upon HSV1 infection (Alandijany et al., 2018;
McFarlane et al., 2019); in this way, undisrupted PML-NB are
able to induce an IFN response upon HSV1 DICP0 infection.

Another HSV1 factor accessing epithelial cells nucleoplasm is
VP16, which transactivates IE genes upon recruiting coactivators
to their promoters; one of these coactivators, host cell factor-1
(HCF-1), has been reviewed to associate with H3K4 HMTs to
ensure H3K4me3 presence (Kristie et al., 2010; Vogel and Kristie,
2013). This chromatin activation mark would exclude Sp100C,
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Sp140 and HP1 from H3 (see introduction, Figure 2Biii)
however, this remains to be assessed. In contrast, HSV1 cannot
take advantage of VP16 and VP22 in neurons since these
tegument proteins dissociate from the capsid before it reaches
the nucleus (Aggarwal et al., 2012), a process favoring latency
establishment in these cells over epithelial ones. Nevertheless,
literature studying the participation of Sp100 during HSV1
latency establishment and maintenance is scarce (Everett et al.,
2007; Cohen et al., 2018), and key questions as whether neurons
depleted for Sp100 establish latency are still unanswered.

In conclusion, the chromatin repressive Sp100 SUMOylated
isoforms seem to be required to entrap parental vDNA in
cooperation with other SUMOylated chromatin-associated
factors, but they are (directly or indirectly) targeted by HSV1
ICP0 and possibly, indirectly counteracted by VP16 and VP22. In
contrast, the remaining unSUMOylated Sp100A has chromatin
activating properties and can form NB independently of PML,
which may represent a favorable environment for viral replication.
Since Sp100A domain architecture is present in most of the other
isoforms, it would be challenging to specifically target it with drugs
however, when PML-NB are dismantled by ICP0, Sp100A seems
to harbor differential PTM which may make it drug-amenable.

Varicella Zoster Virus
The above described Sp100 isoforms’ dynamics on chromatin also
apply to herpesviruses other than HSV1 however, they are affected
at a different extent by ICP0 homologs. The ICP0 VZV homolog
VICP0/ORF61p only targets Sp100 out of the PML-NB
components (Walters et al., 2010). ORF61p also harbors a RING-
finger and SIMs to function as E3Ub ligase on SUMOylated targets
however, ORF61p lacks sequences required for binding to the host
deubiquitinase USP7, which protects ICP0 from auto-
ubiquitination and proteasome-mediated degradation (Kyratsous
andSilverstein, 2009).As a result,ORF61p turnover byproteasomal
degradation is quicker than for ICP0, making ORF61p more
unstable than its HSV1 homolog (Everett et al., 2010). Therefore,
IE kinetic studies comparing ORF61p to ICP0 in an HSV1
background evidence that ORF61p incompletely substitutes for
ICP0; contrary to ICP0, ORF61p only reduces Sp100 levels without
targetingPML(Kyratsous et al., 2009).Consequently,VZV infected
cells still harbor PML-NB capable enough of sustaining an IFN
response, which further increases Sp100 and PML levels and allows
PML to SUMOylate Sp100; in agreement, late kinetic studies by
immunoblot showapredominant increase of SUMOylated Sp100A
(Kyratsous and Silverstein, 2009). At this late time point, the
corresponding immunofluorescence images of cells display a
granulated distribution of Sp100 in the nucleoplasm, concomitant
with a high abundance of ORF61p (Kyratsous and Silverstein,
2009), but point mutations on its RING domain change the
dispersed pattern to nuclear puncta, still colocalizing with Sp100
(Walters et al., 2010); the significance of this observation in the
context of VZV life cycle requires further experimental assessment.
In summary, Sp100 levels are reduced by VZV ORF61p from the
onset of infection but sinceVZVdoes not completely disrupt PML-
NBs, IFN-response can rise Sp100 protein levels, which are kept
dispersed in the nucleoplasm by ORF61p. Whether Sp100
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degradation or dispersion also facilitates initiation of VZV lytic
replication per se, remains to be investigated.

Human Cytomegalovirus
The role of immunity factors restricting HCMV infection, with
Sp100 as PML-NB component, has been reviewed elsewhere
(Rossini et al., 2012; Landolfo et al., 2016). As opposed to Sp100
merely being used as a PML-NB marker assumed to behave as
PML (Ahn and Hayward, 1997; Sourvinos et al., 2007), this
section focuses on Sp100 isoforms during HCMV infection.
After parental HCMV genomes enters the nucleus, alternative
splicing of a sole HCMV IE transcript results in two proteins:
IE1/p72 and IE2/p86 (Stenberg et al., 1985). IE1 initially co-
localizes at PML-NBs and then gradually disperses them through
the nucleoplasm (Korioth et al., 1996). More in detail, IE1 has
been shown to interact with the Sp100 N-terminal dimerization
domain, as deletion of the corresponding 3–152 aa abrogates
their association, and infection with mutant HCMV lacking IE1
does not cause loss of Sp100 (Kim et al., 2011). In turn, Sp100
depletion favors IE1 expression (Kim et al., 2011; Ashley et al.,
2017); individual depletion of PML, Sp100 or Daxx showed that
each factor was restrictive on its own (Ashley et al., 2017),
combined depletion of Sp100/PML or Sp100/Daxx further
enhanced HCMV gene expression initiation (Adler et al.,
2011), and combined depletion of all PML/Sp100/Daxx were
more permissive to HCMV infection (Ashley et al., 2017),
resembling the above discussed intrinsic immunity factor’s
dynamics against HSV1. Similarly, all PML/Sp100/Daxx
depletion also reduces the restriction of HCMV by IFNb,
visualized through IE1 presence and plaque assay upon IFNb
treatment (Ashley et al., 2017), indicating that these PML-NB
components mediate the IFN response against HCMV. IE1 co-
transfection with each Sp100 isoform was shown to reduce their
SUMOylation (Tavalai et al., 2011); this effect is especially
evident for Sp100A (Dimitropoulou et al., 2010; Tavalai et al.,
2011), but unSUMOylated Sp100A levels also decrease at later
times post HCMV infection (Tavalai et al., 2011). Even more, IE1
gets SUMOylated while driving the deSUMOylation of Sp100
and PML (Muller and Dejean, 1999). PML function as E3 SUMO
ligase onto IE1 has been evidenced since PML RING domain
mutants fail to SUMOylate IE1 (Reuter et al., 2017); this further
supports the possibility of PML directly SUMOylating Sp100,
indicating that part of the antiviral effect of Sp100 depends on
PML. Overall, Sp100 disruption by HCMV IE1 seems to affect all
isoforms, although at slower kinetics than HSV1 ICP0.

Furthermore, the promoter of the IE1/2 transcript, the major
immediate early promoter (MIEP) has been shown to be repressed
by histone deacetylase 3 (HDAC3) and HP1 in peripheral blood
monocytes (Murphy et al., 2002), where HCMV establishes
latency; this suggests that sustained histone deacetylation may
allow histone methyltransferases (HMTs) to lockMIEP chromatin
in a repressive state characteristic of a latent state of infection.
However, the participation of Sp100 in latency establishment has
been excluded using THP-1 derived macrophages partially
depleted for either Sp100, Daxx or PML; intriguingly, partial
Daxx depletion was enough to increase Sp100A levels similarly
to undifferentiated THP-1 monocytes, especially unSUMOylated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Sp100A ones, while PML had no effect on Sp100 levels
(Wagenknecht et al., 2015), contrasting with previous reports. A
more robust cellular KO background may consolidate or rule out
the implication of Sp100 isoforms and additional factors in
HCMV latency establishment and cell identity.

Epstein–Barr Virus
Twentyyears ago itwas stated that latentEBVepisomesare tethered
to cell chromosomes away from PML-NB (Bell et al., 2000),
contrasting with the later observation of the IE EBV protein
EBNA-LP colocalizing with Sp100 at PML-NB in EBV
immortalized lymphoblastoid cell lines (Ling et al., 2005). Using
transfection assays, EBNA-LP was shown to disperse Sp100 from
PML-NB by interacting with the Sp100 PML-NB targeting domain
(Ling et al., 2005); dispersion by either EBNA-LP or by deleting the
Sp100 PML-NB targeting domain, dissociates Sp100 away from
PML-NB allowing the viral oncoprotein EBNA2 to act as a
transcriptional activator, even in the absence of EBNA-LP (Ling
et al., 2005). Interestingly, for this process to occur, the Sp100 HP1
interacting domain was required to be intact, but not the SCM
embedded on it, since K297R modified Sp100A still activates
EBNA2 even upon IFNb pretreatment (Ling et al., 2005; Echendu
andLing, 2008).Hence, high resolutionmicroscopy studies looking
at whether Sp100 isoforms associate at some point of the viral cycle
with EBV episomes await to be accomplished. Moreover, whether
Sp100 SIM, which is also embedded in its HP1 interacting domain,
is also required for the effectiveEBVsubversionof innate immunity,
which culminates in lytic reactivation remains to be addressed.
Thus, EBV EBNA-LP is equivalent to HSV1 ICP0 in the sense of
dispersing proteins fromPML-NBand opens newquestions as how
different herpesvirus co-infections may affect each other’s lytic
replication upon reactivation. In fact, EBNA-LP increases HSV1
DICP0 replication, depletes Sp100 SUMOylated isoforms and
causes a Sp100 mobility shift (Lu et al., 2016) characteristic of
lack of localization at PML-NB. To sum up, EBNA-LP selectively
binds to the PML-NB targeting domain of Sp100 abrogating its
PML-NB localization, but details of the fate of specific Sp100
isoforms are unknown.

The significance of the above described Sp100 overexpression
studies establishes parallelisms to clinical pathological cases of Sp100
overexpression and nucleoplasm delocalization whichmay favor the
chance of generating Sp100 autoantibodies by molecular mimicry.
EBV has been linked to PML-NB associated autoimmune diseases
since two viral proteins share autoepitopes with Sp100 [aa 296–311
and aa 332–351 in ochre, Figure 1; (Xie and Snyder, 1995)]. These
epitopes partly coincide with the ones described for 20-30% of
patient’s sera with biliary cirrhosis [aa 303–308 and aa 339–347 in
ochre,Figure1; (Bluthner et al., 1999)]. SuchSp100 antigenic regions
flank its SIM and fall along the HP1 interacting region and in its TR.
Consequently, it can be envisaged that autoantibodies against SIM,
HP1 or TR Sp100 regions may sterically impede the interaction of
Sp100 SIMwith SUMO conjugated to other proteins, the interaction
between HP1 proteins and Sp100, and the Sp100 trans-activating
capabilities, respectively. Knowing Sp100-derived autoepitopes
creates a chance for pharmacological intervention tailored to
different Sp100 regions to counteract the EBV targeting of Sp100 at
molecular and humoral levels.
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Kaposi’s Sarcoma-Associated Herpesvirus
KSHV research comprising Sp100 is mostly related to the
establishment of latency, which depends on translating the latency
associated nuclear antigen (LANA) (Campbell and Izumiya, 2012),
as well as reactivation, which occurs when the tegument protein
ORF75 disperses Sp100 from PML-NB (Full et al., 2014). During
primary infection, ORF75 has no effect on Sp100 and PML; these
PML-NB components restrict KSHV, as their individual silencing
allow viral proteins expression (Full et al., 2014). As a result of
KSHV infection there is an IFN-mediated increase of Sp100 levels
however, the viral encoded E3 SUMO ligase LANA converts the
Sp100 soluble pool residing in the nucleoplasm and cellular
chromatin into an insoluble one by inducing Sp100 SUMOylation
and storage into the insoluble nuclear matrix, presumably
corresponding to PML-NB or to another fraction (Gunther et al.,
2014). Sp100 insolubilization allows the parental vDNA to establish
latency and eventually reactivate by acquiring the H3K27me3
repressive mark (Gunther and Grundhoff, 2010), characteristic of
facultative chromatin, which was shown to be favored by silencing
Sp100 (Gunther et al., 2014). The Sp100 insolubilization by LANA
seems to be unique of KSHV as other g-herpesviruses as EBV
maintain Sp100 soluble during latency (Gunther et al., 2014);
nevertheless, similar analysis of the insoluble fractions for other
herpesviruses are sparse across the literature. Collectively,
undisrupted PML-NB allow IFN induction upon KSHV infection,
increasing Sp100 levels but maintaining them in an insoluble form
by LANA-mediated SUMOylation; this is concomitant with the
acquisition of the repressive H3K27me3 mark, characteristic of
latency, by parental vDNA.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Herpesviruses attain a latent state of infectionwith periodic complete
or incomplete reactivation which cause an underestimated quality of
life deterioration. Since there is no cure, understanding how the
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cocktail of Sp100 isoforms are counteracted in each cell type as
intrinsic and innate immunity factors by herpesviral proteins may
help in its development. Recapitulating, the Sp100B/C/HMG
isoforms, and likely other Sp-family members, may sense invading
vDNA and coordinate the assembly of H3 and chromatin repressive
marks at PML-NB SUMOylation and epigenetic hubs. However,
herpesviruses can directly counteract the Sp100 role in viral
epigenetics, as well as indirectly by dismantling PML-NB; HSV1
and HCMV IE proteins disrupt PML-NB, while VZV, EBV and
KSHV IE proteins selectively target Sp100 thus, PML-NB can still
induce an IFN responsewhich leads to vDNA repression, promoting
latencyestablishment.Muchremains tobediscoveredconcerning the
molecular details leading to latency and the intermediate steps
leading to reactivation. This review has highlighted the need to
better understand cell-specific dynamics of Sp100 isoforms,
characterize further ones, as well as their individual features
interplaying with other chromatin factors, framing areas for
pharmacological exploration.
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