
Frontiers in Cellular and Infection Microbiolo

Edited by:
Francesca Romana Ponziani,

Hepatology Fondazione Policlinico
Universitario Agostino Gemelli

IRCCS, Italy

Reviewed by:
Saroj Khatiwada,

University of New South Wales,
Australia

Mehmet Doganay,
Lokman Hekim University, Turkey

*Correspondence:
Elisavet Stavropoulou

elisabeth.stavropoulou@gmail.com

Specialty section:
This article was submitted to

Microbiome in
Health and Disease,

a section of the journal
Frontiers in Cellular

and Infection Microbiology

Received: 19 October 2020
Accepted: 11 December 2020
Published: 28 January 2021

Citation:
Stavropoulou E, Kantartzi K,
Tsigalou C, Konstantinidis T,

Voidarou C, Konstantinidis T and
Bezirtzoglou E (2021) Unraveling the

Interconnection Patterns Across
Lung Microbiome, Respiratory

Diseases, and COVID-19.
Front. Cell. Infect. Microbiol. 10:619075.

doi: 10.3389/fcimb.2020.619075

REVIEW
published: 28 January 2021

doi: 10.3389/fcimb.2020.619075
Unraveling the Interconnection
Patterns Across Lung Microbiome,
Respiratory Diseases, and COVID-19
Elisavet Stavropoulou1,2*, Konstantia Kantartzi 3, Christina Tsigalou4,
Theocharis Konstantinidis4, Chrissoula Voidarou5, Theodoros Konstantinidis6

and Eugenia Bezirtzoglou6

1 CHUV (Centre HospitalierUniversitaire Vaudois), Lausanne, Switzerland, 2 Department of Infectious Diseases, Central
Institute, Valais Hospital, Sion, Switzerland, 3 Nephrology Clinic, Department of Medicine, Democritus University of Thrace,
Alexandroupolis, Greece, 4 Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace,
Alexandroupolis, Greece, 5 Department of Public Health P.U., Arta, Greece, 6 Laboratory of Hygiene and Environmental
Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece

Albeit the lungs were thought to be sterile, recent scientific data reported a microbial
microbiota in the lungs of healthy individuals. Apparently, new developments in
technological approachesincluding genome sequencing methodologies contributed in
the identification of the microbiota and shed light on the role of the gut and lung
microbiomes in the development of respiratory diseases. Moreover, knowledge of the
human microbiome in health may act as a tool for evaluating characteristic shifts in the
case of disease. This review paper discusses the development of respiratory disease
linked to the intestinal dysbiosis which influences the lung immunity and microbiome. The
gastrointestinal–lung dialogue provides interesting aspects in the pathogenesis of the
respiratory diseases. Lastly, we were further interested on the role of this interconnection
in the progression and physiopathology of newly emergedCOVID-19.

Keywords: lung microbiome, lung-gut axis, lung in health and disease, lung, microbiota, COVID-19, SARS-CoV-2,
lung immunity
INTRODUCTION

The function and structure of the microbial communities are determined by complex microbial
interconnections and network patterns of unique microbiomes. The microbiome is a community of
microorganisms colonizing a particular micro-environment in or out of the human body.
Additionally, they participate actively in the metabolism and establish potent positive or negative
interactions and relationships such as synergism, commensalism, parasitism, antagonism, and other
which could explain to some extent the genetic diversity of microbial populations. Yet, following
mutations or selective pressure functional microbial genes alter their functionality in the
environment (Cordero and Polz, 2014), and via adaptive genes can increase colonizing ability
(Hughes et al., 2008). Meanwhile, it was shown that phylogenetically close taxa were more
frequently found in the same microenvironment (Chaffron et al., 2010).
gy | www.frontiersin.org January 2021 | Volume 10 | Article 6190751

https://www.frontiersin.org/articles/10.3389/fcimb.2020.619075/full
https://www.frontiersin.org/articles/10.3389/fcimb.2020.619075/full
https://www.frontiersin.org/articles/10.3389/fcimb.2020.619075/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:elisabeth.stavropoulou@gmail.com
https://doi.org/10.3389/fcimb.2020.619075
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2020.619075
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2020.619075&domain=pdf&date_stamp=2021-01-28


Stavropoulou et al. The Gut-Lung Axis
Without any doubt, unraveling and exploring the involved
microbial patterns and getting a better knowledge of the
microbiota profile should clarify the role of the microbiome in
health and disease and should lead to the development of more
effective or even alternative therapeutic strategies. Outbreaks of
various diseases seem to be more common, aggressive, and
dangerous during the last years due to the changing
environment and the climate warming. New pathogenic
bacteria appeared and more than 60% of them originated from
animals. Moreover, changes in land and agriculture practices and
deforestation alter the environment. Mosquitoes, ticks, and other
vector-borne insects are in a rise in the ‘previously’ mild climate
European countries due to the shifting climate patterns which
lead species to change their habitats. “Forgotten diseases” such as
yaws and anthrax showed an emergence. For example, the Nipah
virus causing severe encephalitis crossed the species border and
passed from animal farms to humans in Malaysia in 1999 (Ang
et al., 2018). On the other hand, calamitous rainfalls following
climate shifts skyrocket rodent population and an outbreak of
pulmonary syndrome caused by Hantavirus emerged in Panama
in 1999 (Bayard et al., 2004). It is believed that more than 3,200
coronaviruses species are found in animal reservoirs such as bats
and birds awaiting the favorable time to cross the species level
and then pass to the humans (Shuman, 2010). Coronaviruses
present a large range of disease states extending from simple flu-
like illness and gastrointestinal disease to a severe acute
respiratory syndrome (SARS). The novel coronavirus has
spread rapidly to multiple countries and has been declared a
pandemic by the World Health Organization showing the
‘terrifying awake of the nature’ over human civilization and
politics (WHO). The most common symptoms of COVID-19
disease comprise mild fever, dry cough, fatigue, anosmia, sore
throat, and diarrhea (Ferreira-Santos et al., 2020). However,
there are an important number of disease carriers that silently
spread the disease. Lung infection observed following SARS-
CoV-2 virus invasion could finally lead to death, and the main
complications include pneumonia, acute respiratory failure,
acute respiratory distress syndrome, acute kidney damage
complicated with acute liver damage and septic shock (Huang
et al., 2020).

As stated, the COVID-19 infection caused specifically a
broad spectrum of severe respiratory diseases and uncertainly
the lung microbiome may play an important role to the
development of the disease (Yuki et al., 2020). Data used for
the present review were identified by a Medline database of
systematic reviews and peer-review articles published in
English since 1997. However, most articles concerning the
main developed concept were recent publications. Articles
that were consulted are included in the list of references if
they presented an original approach. The main keywords used
were: Gut, Lung, Microbiome, Lung microbiome, Gut–Lung
axis, Lung in Health and Disease. Internet sites of paramount
interest based mostly on the above keywords were identified
such as WHO, NIH, Wiley on line library, Science Direct.
Finally, important references mentioned in the selected articles
were also explored and taken into account.
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The subject of this review is divided by subheadings in order
to focus in the different questions and thus to provide a concise
and precise description of the current knowledge.
THE LUNG MICROBIOME IN HEALTH

In order to improve understanding of the microbial flora
involved in human health and disease, scientists proceeded to
the characterization of the microbial communities of healthy
individuals, across different body sites on the human body:
nasal passages, oral cavity, skin, gastrointestinal tract, and
urogenital tract. New technologies and specifically the 16S
rRNA sequencing was applied to identify the complexity of
microbial communities in the human body (NIH Human
Microbiome Project - Home). The metagenomics Whole
Genome Shotgun (WGS) sequencing brought to light the
complexity of the human pathways and functions in relation to
the human microbiome.

As known the most studied microbiome is the gut microbiome.
Little was known on the lung microbiome which was considered
as sterile in multiple studies and textbooks going back often
without citations (Cox et al., 2019). The human newborn is
deprived of bacteria before birth. The establishment of normal
microflora is a continuous and complex pattern which initiates at
delivery and goes on through consecutive stages under the
influence of external and inner factors (Adlerberth, 2009;
Bezirtzoglou and Stavropoulou, 2011; Arumugam et al., 2011).
During vaginal delivery, bacteria of maternal origin colonize the
newborn oral cavity (Lif Holgerson et al., 2011). Certainly, oral
bacteria enrich and shape the lung microbiome (Segal et al., 2016).
It was observed that in healthy people, bacterial DNA of several
oral bacterial species, such as Prevotella and Veillonella was found
in the lower respiratory tract owing to the topographical
continuity (Charlson et al., 2011) as the oropharynx and the
tracheobronchial tree are adjacent and continuous to the oral
cavity (Mammen et al., 2000). Moreover, the exposure pattern
during the neonatal period influence the microbial colonization
and species variation (Bezirtzoglou, 1997; Rutayisire et al., 2016).
The dominant genus found in lung are Prevotella, Veillonella,
Streptococcus (Dickson et al., 2016a), Pseudomonas, Fusobacteria
and rarely Haemophilus and Neisseria (Beck et al., 2012). These
genera are easily colonizing the oxygen rich, damp ciliated mucosa
of the larynx and the tracheobronchial tree in continuity to the
oral purlieu. Yet, due to the air passage, mucus is continuously
enriched with microorganisms. However, the respiratory mucus
embedded with lipid-rich surfactants showed bacteriostatic effects
against several bacteria and also it seems that there is an eternal
fight between bacteria and alveolar macrophages in the lung (Wu
et al., 2003).

In terms of phylum, varied phylogenetically microbial
populations were found: Proteobacteria, Firmicutes,
Fusobacteria, Actinobacteria and Bacteroidetes (Charlson et al.,
2011; Moffatt and Cookson, 2017). Concerning the mycobiome
in hea l th ind iv idua l s , Eremo the r iums ine caudum,
Vanderwaltozymapolyspora, and Systenostrema alba of the
January 2021 | Volume 10 | Article 619075
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Saccharomycetaceae family as well as several terrestrial
microsporidia were isolated (Nguyen et al.).

Thus assuming, it is generally accepted actually that there is a
lung microbiome in balance with different factors such as
microbial penetration and expulsion from the airways and
even growth of colonizing bacteria adapted to the local
conditions and environment (Dickson et al., 2014).
LUNG IMMUNITY

The lungs are exposed to multiple hazards on a daily base.
Virtually, the lung cells play a role in assessing whether they will
respond or not. Originally, the upper respiratory tract role is
dedicated to preventing entry of noxious particles. When sizeable
particles deposit in the nasopharynx and tonsillar regions, they
are cleared mechanically by coughing or sneezing. Besides this,
the remaining non-eliminated particles are expelled smoothly via
rhythmic movements of microscopic cilia to the upper airways
(Beutler, 2004).

Antimicrobial peptides (AMPs) LL37 are expressed in the
epithelial cells of the upper respiratory tract. AMPs are known to
possess an antimicrobial activity against microorganisms either
by direct binding to the bacterial surface or binding following
microbial opsonization to be recognized by innate immune cells
(Wang, 2014). The alveoli are tiny air sacs distributing oxygen
within the body. They are located at the terminal branches of the
lungs where most of the gaseous exchange occurs. Immune cells
are poorly represented in the alveoli, and they are mainly
consisting of alveolar macrophages (AMs) which provide the
primary phagocytic activity against microorganisms without
triggering inflammatory responses (Martin, 2000; Martin and
Frevert, 2005).

Except for the upper airspaces part, the lung immune system
is presented by the intraepithelial lymphoid tissue of lungs
(ILTL). The immune response of ILTL in all stages is
orchestrated by dendritic cells (DCs). Furthermore, the triad of
DCs, lung microbiome and AM are actively participating in the
bacterial recognition. T cells (predominantly cytotoxic), B
lymphocytes, neutrophils, and rarely mast cells are observed in
ILTL (Freeman and Curtis, 2017).

As known, epithelial cells are also involved in lung immunity
by secretion of chemokines, cytokines, and antimicrobial
compounds (Lacy, 2015). During dysbiosis, AM phagocytes
adhere to the opsonins in order to facilitate phagocytosis as
opsonized encapsulated bacteria should be ingested with more
difficulty (Gordon and Rice, 1988; Arango Duque and
Descoteaux, 2014; Murray and Stow, 2014). Additionally,
immature DCs migrate into tiny airways, where after activation
by AM, promote a pro-inflammatory microenvironment
(Kawamura et al., 2005; van Rijt et al., 2011; Shaykhiev and
Crystal, 2013).

Neutrophils and macrophages are involved in the innate
immunity as first line of non-specific defense against
pathogens. Their role is to engulf and destroy the pathogenic
bacteria. Neutrophils’ recruitment and activation are observed in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
response to inflammation status. However, macrophages exhibit
decreased phagocytosis in the large lung airways during the
progression of chronic obstructive pulmonary disease (COPD)
(Bu et al., 2020). Dropping of the phagocytic capacity of
macrophages impair the lung function and produce a chronic
inflammation status (Bu et al., 2020).

At the same time, in the small airways macrophages demonstrate
high pro-inflammatory potential (Shapiro, 1999; Bu et al., 2020)
(Figure 1). Moreover, Natural killer T (NKT) cells, eosinophils, and
mast cells are incriminated to have a complementary function in the
inflammatory process of small and mediate alveolar tissue that leads
to chronic airway inflammation (O’byrne and Postma, 1999).
Likewise, activated neutrophils are able to release Neutrophil
Extracellular Traps (NETs) which promote a proteolytic
microenvironment through enhanced expression of IL-17
resulting in the fibrotic repair of small airways (Bosch and
Ramos-Casals, 2014; Chrysanthopoulou et al., 2014).

Epithelial cells seems to play a crucial role in the initiation of
the immune response as they recognize viral antigens through
cytoplasmic Pattern Recognition Receptors PRR stimulation, for
instance Toll like receptors (TLRs) and intracellular sensors,
including Retinoic acid-Inducible Gene-I-like receptors(RIG-I-
like receptors) (Xiang and Fan, 2010; Whitsett and Alenghat,
2015). As a result, coupling induces a signaling avalanche
effecting in the upregulation of type I and III interferons and
initiating the inflammatory response and the differentiation of
adaptive immunity involved cells (Xiang and Fan, 2010; Whitsett
and Alenghat, 2015). Alveolar macrophages and DCs contribute
to the secretion of the cytokines and chemokines (Kolli et al.,
2014). Finally, PRR coupling and cytokine secretion induce DC
maturation and adaptive immune response (Kranzer
et al., 2004).

The adaptive immunity response is specific to the pathogen
by clonal expansion of T and B lymphocytes and consists of a
second line defense (Adams et al., 2020). This effect is highly
specific and long maintained by memory T cells. Affinity
maturation is expressed on TCRs found on T lymphocytes
leading to a more specific antigen binding capacity (Zhu
et al., 2015).

T lymphocytes carry the CD4 or CD8 receptors (Gao et al.,
2020). The CD4+ T cells are known as T helper (Th) cells due to
their capacity via cytokine production to stimulate immune cells
(Zhu et al., 2015). Yet, the CD4 regulatory T cells (Tregs) are able
to regulate immune feedback. Particularly, Tregs via the
production of IL-10 suppress T cell differentiation (Ding et al.,
2012). The CD8 T cell receptors are known as cytotoxic T cells
due to their ability to produce molecules and cytokines
(Altmann, 2018). This occurs in the lymph nodes of lung
parenchyma, bronchioles, and trachea. CD4 T cells are divided
in subsets following the secreted cytokines [T helper type 1 (Th1)
cells and T helper type 2 (Th2) cells] which showed different
functions (Gao et al., 2020). These cytokine production ends to a
consistent local host protective response. However, thereafter
most CD4+ T cells die (necrosis, apoptosis), and few CD+ cells
are present as memory cells in the host (Maly and
Schirmer, 2015).
January 2021 | Volume 10 | Article 619075
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Concerning the B cells’ specific response which is taking place
in lymphoid tissues such as lymph nodes, mucosa-associated
lymphoid tissue of broches and nose, it seems to promote IgA
(Ladjemi et al., 2015). Affinity maturation is not usually expressed
as B cells are short-lived (Zhu et al., 2015). The basic
differentiation process of B cell is dependent on T cells and
outcomes in the high-affinity antibody cells and memory B cells
(Schuurman and Quesniaux, 1999; Zhu et al., 2015). Specifically,
mature DCs fitting out viral antigens translocate to lymphoid
tissues (Tang et al., 2010). These antigens are recognized, and
differentiation proliferation processes are initiated (Tang et al.,
2010). Specifically, antigen recognition is achieved through the
CD4+ Th cells presented by the B cell viamajor histocompatibility
complex class II and alternate Immunoglobulins isotype classes
(IgM to IgG and IgA) (Couture et al., 2019). At this stage of the
process, several B cells participate in the Germinal Center (GC)
followed by hyper-mutation and affinity maturation (Anderson
et al., 2009; Zhu et al., 2015). In this vein, affinity maturation is
stimulated by CD4+ follicular helper T cells (TFH cells) (Zhu et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
2015). TFH cells possess a pool of markers, such as chemokine
receptor CXCR5, ICOS, CD28, PD-1, CD40L, and SAP as well as
their driven specifying transcription factor Bcl-6 (Suh, 2015). TFH
cells are found in GCs and DCs, and this permits their strait
relation to B cells (Chen et al., 2012; Couture et al., 2019). TFH
cells’ signals induce ulterior selective differentiation of B cells to
low-affinity suboptimal clones (Chen et al., 2012; Suh, 2015). As
stated TFH cells express multiple markers, shift immunoglobulins
isotype classes to IgA thus stimulating Bcl-6 expression in B cells,
and resulting in the memory generation (Suh, 2015; Zhu et al.,
2015). Those TFH cells are responsible for a durable protective
antibody response and in this way should be of paramount
importance in the vaccines design (Suh, 2015; Zhu et al., 2015).
Therefore, the cells TFHs role are not fully investigated. Recent
research investigates novel ways as the microRNA cluster miR-17–
92, for TFHs’ function, differentiation and migration to B cells
(Masopust and Schenkel, 2013; Chiu and Openshaw, 2015).
Moreover, it seems that microRNA cluster miR-17–92
inactivation impedes their functional role and the production of
FIGURE 1 | The existence of lung microbiota plays a critical role in lung homeostasis. In human’s lungs the bacterial load is increased from neonates to adulthood
and contain Proteobacteria, Firmicutes, Fusobacteria, Bacteroidetes, and Actinobacteria bacterial phyla. Lung microbiota, in the same manner as gut microbiota, can
promote the polarization of naïve T cells in the lungs from Th2 to Th1 to protect against asthma and allergy. Moreover, microbiota promote the differentiation of
alveolar macrophages, inhibit the exaggerated inflammatory response, and promote protection against pathogens. The lung microbiome dysbiosis leads to dendritic
cells activation and antigen presentation. Immune cells respond to microbial colonization through the pattern recognition receptors (PRRs). Activated cells migrate
into the tissue, produce series of cytokines such as IL-1b and IL-8, and release Neutrophil Extracellular Traps (NETs), which contribute to local inflammatory
response. Moreover, alterations in cytokines, especially IL 17(NETs or Th17 inducted), promote pathologic fibrotic remodeling (PMNs, polymorphonuclear leukocytes;
DC, Dendritic cells; IL, Interleukins; CF, cystic fibrosis; CORD, Chronic obstructive pulmonary disease).
January 2021 | Volume 10 | Article 619075
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high affinity antibodies (Sakai et al., 2017). Without any doubt,
investigation of T cell-specific expression of the microRNA cluster
miR-17–92 and its importance on TFHs functional role should be
promising in the development of effective vaccines (Baumjohann
et al., 2013; Skinner et al., 2014).
THE GUT–LUNG MICROBIOME AXIS

The gut–lung axis (GLA) consists of a bidirectional
communication between the two organs (Enaud et al., 2020).
Modulation of the intestinal microbiota may cause lung disease.
Gut microbes are recognized by the cells of the immune host by
inducing the production of cytokines. After lung inflammation,
the bloodstream is invaded by metabolites, immune signals,
bacteria, and bacterial products that interact between the lungs
and the intestine. In fact, the gut–lung axis concept implicates
not only host–microbe interactions but also microbe–microbe
interactions (Enaud et al., 2020). From an aspect, the gut–lung
intercommunication maintains the host homeostasis in healthy
individuals (Enaud et al., 2020).

However, most studies investigated the potential of the
bacterial microbiota (bacteriobiota); it is of note that there is a
fungal microbiota (mycobiota) that remains less studied
(Nguyen et al.) as well as a viral component microbiota
(virobiota). Viruses seem to be involved frequently in the
development of multiple respiratory diseases (Mitchell and
Glanville, 2018), and this is the case of the recent pandemic
COVID-19 which affects mainly the respiratory system. Recent
studies report that there is another communication between
these three kingdoms (Enaud et al., 2020). Pseudomonas
aeruginosa produces volatile sulfur compounds enhancing
growth of Aspergillus fumigatus (Briard et al., 2019). There is a
reciprocal communication between Streptococcus and Candida
increasing biofi lm formation or enhancing Candida
pathogenicity (Diaz et al., 2012).

While the prevalent bacterial phyla are identical in lung and gut
microbiomes, at the species level they are different. It is stated that a
balanced intestinal microbiota is crucial for our health as gut
microbiota possess an enormous metabolic profile that determines
host health (McAleer and Kolls, 2018). Recent studies disclose the
association of gut microbiota dysbiosis with multiple disease states
(McAleer and Kolls, 2018). The GLA axis consists of a continuous
interconnection between gut and lung that allows passage of gut
microbial metabolites, endotoxins, cytokines, and hormones
through the bloodstream to the lung. However, when lung
inflammation occurs, changes in the gut microbiota are observed
(Dumas et al., 2018) proving the bidirectional status. Without any
doubt, understanding the impact of the gut microbiota on remote
organs and systems is of accrued interest. However, it is not clarified
yet if it is involved in the etiology or development of the lung disease
(Zhang et al., 2020).

As known, antibiotics given in early life cause alterations of the
gut communities and predispose to the development of allergy
(Russell et al., 2012). The approach of germ-free animals is of high
interest as they are bacteriologically sterile. Germ-free mice are
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
extremely susceptible to acute lung infections caused by
Pseudomonas aeruginosa, Streptococcus pneumoniae, and
Klebsiella pneumoniae (Brown et al., 2017). In this vein, there is
evidence that the gut microbiota amplifies the respiratory system
defense potential via the granulocyte-macrophage colony-
stimulating factor (GM-CSF) signaling (Brown et al., 2017)
achieving pathogenic bacteria leveling and elimination through
extracellular signal-regulated kinase signaling by alveolar
macrophages (Brown et al., 2017). Finally, the intestinal
microbiota via interleukin-17A induces increased pulmonary
GM-CSF production in response to infection (Brown et al., 2017).

Nucleotide-binding oligomerization domain-like receptors
(NOD-like receptors; NLRs) are known to be involved in the
microbiota signals to regulate neutrophil functions (Clarke et al.,
2010), inflammatory responses (Hergott et al., 2016) and
hematopoiesis (Iwamura et al., 2017). The role of the gut
microbiota and the receptor Nod2 in enhancing the mucosal
adjuvant activity of Cholera Toxin (CT) was stated (Kim et al.,
2016) in germ-free animals. Staphylococcus sciuri has proven to
possess high Nod2-stimulatory activity. Thus, Staphylococcus
sciuri mono-associated to germ-free mice produces a powerful
Cholera Toxin (CT) activity (Kim et al., 2016).

As stated, NLR pattern recognition receptors can regulate
inflammatory response (Hergott et al., 2016; Brown et al., 2017).
Notably, the authors found the Nod2-activating recipients of the
gut microbiota to adjust the antibacterial immunity of the lung
and immune homeostasis (Brown et al., 2017). M. tuberculosis is
the agent of tuberculosis (TB). Recent studies in patients with
tuberculosis showed a gut microbiota with predominance of
butyrate and propionate-producing bacteria such as
Faecalibacterium, Phascolarctobacterium, Eubacterium and
Roseburia (Hu et al., 2019a), while a decrease of short-chain
fatty acid (SCFA)-producing bacteria was effective (Saitou et al.,
2018).Moreover, in the intestine of tuberculosis patients a
decrease in amino-acids and vitamins biosynthesis is observed
(Saitou et al., 2018).

Prevotella and Lachnospira were detected in low levels in
tuberculosis patients (Luo et al., 2017). However, patients
undertaken tuberculosis treatment showed important shifts in
their gut microbiota as Bacteroides fragilis and Bacteroides
OTU230 numbers were found in increased levels, while the
phylum Firmicutes and genus Clostridiales were considerably
reduced (Hu et al., 2019b). Lastly, Helicobacter pylori was found
to protect lung from M. tuberculosis infection (Schuijt et al.,
2016; Tarashi et al., 2018).

The gut microbiota has also an impact upon Streptococcus
pneumoniae lung infection (Henriques-Normark and
Tuomanen, 2013). Recently, the interconnection between lung
and Staphylocosccus aureus lung infection was investigated in
mast cell-deficient mice. Gut dysbiosis and higher bacterial lung
burden were found. Moreover, mast cells’ presence into the lung
rebuilts the host protection against S. aureus and gut dysbiosis
(Liu et al., 2019).

Respiratory viral infections seem to be influenced by the
microbiota balance. Influenzae virus (IV) and respiratory
syncytial virus (RSV) in animals showed a decrease in the
January 2021 | Volume 10 | Article 619075
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phylum Firmicutes while Bacteroidetes were increased (Groves
et al., 2018). Pneumocystis pneumonia infection in mice without
CD4+ T cell modifies significantly the gut microbiota
community (Samuelson et al., 2016).

Gut associated bacteria may enter the lungs across the bowel
wall via a process called translocation (Mielcarek et al., 2011;
Mukherjee and Hanidziar, 2018). The process seems to be
enhanced by gut and alveolar permeability (Yacobi et al.,
2010). Gut permeability is known to occur during acute
intestinal conditions and sepsis (Vaishnavi, 2013). Permeability
of the alveoli is observed in Acute Respiratory Distress Syndrome
(ARDS) as a result of direct or indirect epithelial injury
(Cardinal-Fernández et al., 2017). Critically ill patients’ present
increased intestinal and alveolar permeability due eventually to
the increased gut–lung translocation (Assimakopoulos et al.,
2018). Authors reported (Xu et al., 2019) an interconnection
between dysbiosis in critically ill patients and the risk of ARDS
development. This interconnection of the gut and lung has been
shown in both animal and human studies as discussed (Barcik
et al., 2020). Gut-associated lymphoid tissue (GALT) and
Inducible bronchus-associated lymphoid tissue (iBALT) seem
to have similar morphology and function which is the immune
response regulation (Barcik et al., 2020). Their main functions
comprise the production and secretion of IgA at the mucosal
tissues and cell T helper (Th) and cytotoxic (Tc) responses
(Cesta, 2006).

The concept of this interconnection is stated on the fact that
shifts in the intestinal microbiome influence lung disease burden
and vice versa. Studies state the significance of the immune
system maturation in early life (Sokolowska et al., 2018). It is also
stated that childhood exposure to microorganisms, the so called
hygiene hypothesis protects against allergy and disease
(Stiemsma et al., 2015). In humans, histamine produced by
intestinal bacteria showed important immunoregulatory
functions (Smolinska et al., 2014). It is of note that the local
immune reaction produced in GALT and iBALT lymphoid
tissues can induce systemic immune responses, withal the
mucosal immunity might act as a whole for producing
immune response (Cesta, 2006). Epithelial cells are involved in
lung immunity by secretion of chemokines, cytokines, and
antimicrobial compounds (Whitsett and Alenghat, 2015)
leading to modification of the immune response at distal sites
(Budden et al., 2017). Yet, intestinal immune cells migrate via the
mesenteric lymph system and blood to the lung where they have
enhanced functions (Stubbington et al., 2017). The authors
observed increase of the gut bacterial population following
stimulation of the mouse lungs with lipopolysaccharide (LPS)
(Anand and Mande, 2018). Short Chain Fatty acids (SCFAs)
produced by the intestinal microbiome following dietary fiber
fermentation by bacteria support immunity function as they
effect as signaling molecules on resident antigen-presenting cells
to attenuate the inflammatory response in the lungs (Anand and
Mande, 2018; Cait, 2018).

They can be found in other sites circulating in the blood and
thus they showed inhibitory effects on pro-inflammatory
responses in the lungs (Stubbington et al., 2017). Moreover,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
liver appears to impede the innate immune response produced
by SCFA ligation to G protein receptors or even by repressing the
mevalonate pathway through HMGCoA reductase (Young and
Hopkins, 2017). High amounts of SCFAs such as butyrate and
propionate in children intestinal microbiota are less likely to
develop lung pathologies (Roduit and on behalf of the
PASTURE/EFRAIM study group, 2019) . L ikewise ,
administration of SCFAs in animals enhance the transcription
factor FOXP3 by inhibiting deacetylation of histone, thus bracing
T regulatory cells (Tregs) and production of IL-10 (Arpaia et al.,
2013). Similarly, studies mentioned that intestinal metabolites
such as oxylipins and biogenic amines have pro-inflammatory
and anti-inflammatory potential (Ávila-Román et al., 2016).

Segmented filamentous bacteria (SFBs) in the gut microbiome
of animals and humans are participating in the immune
regulation (Yin et al. , 2013; Hedblom et al. , 2018).
Specifically, SFBs regulate CD4+ T-cell polarization into the
Th17 pathway involved in lung fungal infections response
(McAleer et al., 2016; Bradley et al., 2017). Recent studies
highlight the role of the gut innate lymphoid cells to be
associated to the lungs tissue repair following inflammatory
signals upon IL-25 (Liu et al., 2018).

Administration of the probiotic Bifidobacterium lactisHN019
(Gill et al., 2001) is correlated to the elevated number of
mononuclear leukocytes as well as to an increased phagocytic
and lytic activity (Gill et al., 2001). Reversely, in a global study
(COPDMAP study) scientists reported that respiratory
infections impact upon the intestinal microbiome mediated by
Th17 cells (Wang and on behalf of COPDMAP study, 2017).
Recently, it is shown that this bidirectional dialogue is not only of
concern to the bacterial potential but it is related to fungal one as
well (Li X. et al., 2020). The role of resident intestinal
macrophages in airway inflammation and fungal dysbiosis is
highlighted (Leonardi et al., 2018).

Considering the above, there is an evidence of bidirectional
interconnection. Without any doubt gut microbiota holds a key
role to regulate host homeostasis and promote resistance to
respiratory infections (Brown et al., 2017). However, it is
mainly thought to be associated with the PRR basal activity,
specific ligands of the microbiota and intestinal dysbiosis (Chu
and Mazmanian, 2013); there is a long way for clarifying the
involved mechanisms and pathways.
THE LUNG MICROBIOME IN DISEASES

Each one of us has our own unique microbiota as multiple factors
such as diet, environment, ethnicity, hormonal status, hygienic
habits which are crucial determinants to its composition
(Bezirtzoglou, 1997). When microbial populations are
disturbed, a negative impact called dysbiosis is produced.
Similarly, higher abundance and species variation are observed
in chronic disease states of the respiratory tract. Moreover, there
is a shift in microbial populations. It is reported that several fungi
associated with the intestinal dysbiosis could enhance the
severity of asthma as intestine and lung communicate and
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work in tandem (Turturice et al., 2017). The study was carried
out based on cytokine markers of inflammation (IFN-g, IL-17F,
TNF-a and MIP-1b and G-CSF) which were increased.
Furthermore, the patient microbiome was diversified, and
species such as Actinomyces ondontolyticus, Actinomyces oral
taxon 180, Neisseria meningitidis, and Streptococcus pneumoniae
were dominant (Mortaz et al., 2013). It must not also be
neglected that antibiotic overuse or misuse could disrupt the
microbiota balance (Bezirtzoglou et al., 2008).

Proteobacteria including genus of Haemophilus, Neisseria,
Pseudomonas, Rickettsia and Moraxella species were
pronounced in asthma and associated usually with the
uncontrolled asthma. Surprisingly, Firmicutes with the genus
Lactobacillus were isolated in several asthmatic patients (Park
et al., 2014) as well as the genus Clostridium in children with
airway allergies (Chiu et al., 2019). Serum and sputum
inflammatory cytokines may be used as markers between
bronchial asthma and chronic obstructive pulmonary disease
(COPD) (Bai et al., 2019). IL-4, IL-5, IL-9, and IL-13 were
shown in increasing levels in COPD, patients while in asthmatic
recipients, the levels of TNF-a, IL-1b and IL-6 were found
considerably increased (Bai et al., 2019). Asthma seems also to
be related with particular phenotypes (Kuruvilla et al., 2019). In
elderly asthmatic patients serum IL-33 and IL-31 levels were
found lower, and this may contribute to less Th2 phenotype and
asthma severity (Ulambayar et al., 2018). Bronchoalveolar lavage
(BAL) fluids in asthmatic recipients showed elevated levels of IL-
1RA, IL-1a, IL-1b, IL-2Ra, IL-5, IL-6, IL-7, IL-8, G-CSF, GROa
(CXCL1), MIP-1b (CCL4), MIG (CXCL9), RANTES (CCL5) and
TRAIL, eosinophils and neutrophils (Hosoki et al., 2015). Overall,
neutrophils and IL-8 in BAL fluids seem to be the unique
inflammatory markers to distinguish between controlled and
uncontrolled asthma and disease severity (Hosoki et al., 2015).

Over-presented in asthmatic individuals was Malassezia genus
(Nguyen et al.; Delhaes et al., 2012; van Woerden et al., 2013).
Aspergillus penicillium and Cladosporium were also abundant in
asthmatic cases (van Woerden et al., 2013). Several environmental
Basidomycota species such as Psathyrella candolleana,
Grifolasordulenta, and Termitomycesclypeatus were revealed
from asthmatic individuals (Nguyen et al.).

We stated the importance of the newborn colonization
(Bezirtzoglou and Stavropoulou, 2011). It is emphasized that
early gut colonization by beneficial organisms such as
Lactobacilli and Bifidobacteria is protecting us against different
types of diseases (Ismail et al., 2016; Salminen et al., 2016). Early
and elevated colonization by the bacterial genus of Clostridium,
Bacteroides fragilis, Streptococcus and fungal populations of
Saccharomyces and Pichia kudriavzenii predispose to asthmatic
conditions (Nguyen et al.), as well as low amounts of the
beneficial Bifidobacterium (Nguyen et al.; Ismail et al., 2016).

Gut bacterial burden is under the control of multiple factors,
such as nutrition, environment, hormonal status, ageing
(Turnbaugh et al., 2007), and are referred as gut microbiome.
The gut microbiome is composed of trillions of bacteria and
plays an important role in health and disease (Turnbaugh et al.,
2007). The notion that the lung is sterile is abandoned
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(Huffnagle, 2015) as new molecular techniques gave evidence
of bacterial populations in the lung (Huffnagle, 2015). However,
bacterial concentration in the lung is shown humble compared to
the gut communities (Hilty et al., 2010). Nevertheless, this
cannot be generalized to the fungi kingdom as commensal
fungi showed a protective effect on both local and systemic
immunity due to their fungal wall mannans (Abt and Artis,
2013). As known sepsis is a potentially life-threatening state as a
response to an infection due to chemicals produced into the
blood against an infection. There is evidence in animals and
humans that intestinal microbiota provide bacteria to the lung as
abundance of Bacteroides observed in the lung following sepsis
(Dickson et al., 2016b).

Shifts in microbial profile and decrease in the lung microbiota
diversity is observed in chronic obstructive pulmonary disease
(COPD) (Huang et al., 2010). The 16S rRNA PhyloChip analysis
makes known that more than 1,200 bacterial taxa belonging to
140 distinct families were detected in the airways (Huang et al.,
2010). The phylum Proteobacteria including families of
Pseudomonadaceae, Enterobacteriaceae, and Helicobacteraceae
was predominant (Wang et al., 2016). In intubated patients.
Haemophilus influenzae and Pseudomonas aeruginosa were also
found in COPD exacerbations (Huang et al., 2010). Moreover,
rise in intestinal permeability and release of adrenal hormone
metabolites were linked to short or long term mortality in COPD
patients (Zurfluh et al., 2018).

A decrease in the lung microbiota diversity is observed in cystic
fibrosis patients (Cox et al., 2010). Diversification was more
pronounced in younger individuals than older ones with cystic
fibrosis. Bacterial populations involved are members
of Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae and
Enterobacteriaceae (Cox et al., 2010). The genus Streptococcus,
Prevotella, Rothia, Veillonella, Acintomyces, Neisseria,
Haemophilus, Gemellaare were isolated in cystic fibrosis during
exacerbations in pediatric patients (Worlitzsch et al., 2009).
However, Pseudomonas aeruginosa and Staphylococcus aureus are
incriminated in most cystic fibrosis cases (Worlitzsch et al., 2009).
Streptococcus, Prevotella, Rothia, Veillonella, Acinetomyces,
Pseudomonas are more frequently involved in cystic fibrosis
adult cases (Delhaes et al., 2012). Over-presented in cystic fibrosis
were Aspergillus penicillium, Aspergillus fumigatus, Malassezia,
Candida albicans and Candida parapsilosis (van Woerden et al.,
2013). Cladosporium cladosporiodes has been isolated in
immunocompromised patients and Malassezia pachydermatitis
was also found in immunocompromised hosts and in atopic
dermatitis (Nguyen et al.). Aspergillus fumigatus was associated
with corticoid treatment (Fraczek et al., 2019). The authors stated a
shift in bacterial and fungal population dominated by
Proteobacteria phylum which includes many Gram-negative
bacteria (Dickson et al., 2016b).
THE LUNG AND COVID-19

Our specific interest is aroused by the novel beta-coronavirus
SARS-CoV-2 affecting seriously the respiratory system and
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causing an acute respiratory disease known as COVID-19. SARS-
CoV-2 has recently taken over our attention due to the COVID-
19 pandemic because of its contagiousness as well as unexpected
mortality rates. SARS-CoV-2 belongs to the Coronaviridae
which is a family of enveloped, positive-sense, single-stranded
RNA (+ssRNA) viruses. SARS-CoV-2 contains four basic
structural glycoproteins: spike (S), membrane (M), envelope
(E), and nucleocapsid (N) (de Wit et al., 2016).

As little is known about the infection process of this novel
virus, we turned our particular attention to this pathogen. As of
November 2020, the number of COVID-19 confirmed cases
exceeded 64 millions of cases with more than 1,500,000 deaths.
The large majority of diseased seems to develop a mild disease or
even being asymptomatic as they mount a suitable immune
response. Nevertheless, several patients develop severe clinical
images, and this is linked to the insufficient response of their
immune system and underlying pathologies. In fact, the
mechanisms involved in the progression of the disease remains
yet obscure.

As stated previously, SARS-CoV-2 contains four structural
glycoproteins. Among them the envelop glycoprotein E, the
nucleocapsid protein N, and the membrane glycoprotein M are
responsible for viral assemblage and binding to the host cells
(Li, 2012).

The human angiotensin converting enzyme 2 (ACE2) was
identified as the receptor for SARS-CoV-2 virus which permits
access to the endocytic uptake (Petersen et al., 2020). This
enzyme is expressed on the human lungs’ epithelium and
catalyzes the conversion of angiotensin II (Letko et al., 2020;
Ou et al., 2020). ACE 2 can be found in a wide variety of human
tissues, such as kidney, intestine, heart, thyroid, adipose tissue
and testis where viremia could happened in case of
contamination (Li M. et al., 2020). Neurological symptoms are
also reported due to CNS affection (Abboud et al., 2020).

The role of the spike glycoprotein S acts in connection with
angiotensin. Specifically, this glycoprotein is cleaved (Anand
et al., 2020) by a cellular derived protease into two
glucoproteins S1 and S2. The glycoprotein S1 binds to the
angiotensin, while S2 is activated by the host TMPRSS2
(Transmembrane Serine Protease) resulting in a membrane
fusion which permits the virion to enter the host cells via
receptor-mediated endocytosis (Petersen et al., 2020). In
contrast to the majority of coronaviruses, SARS-CoV-2
expresses a furin-like protease. It is believed that this furin-like
protease may contribute to the widened cell tropism and
enhanced transmissibility of the virus (Shapiro et al., 1997).
Moreover, it was shown that a Two-Pore Channel (TPC2) is
crucial for the entry of SARS-CoV-2 into host cells (Ou et al.,
2020). The Two-Pore Channels (TPCs) are entry channels into
the endo-lysosomal system. In fact, the intracellular messenger
nicotinic acid adenine dinucleotide phosphate (NAADP)
mobilizes calcium from acidic organelles through two-pore
channels (Calcraft et al., 2009). Moreover, the authors
demonstrated that S-protein via the Transmembrane Serine
Protease 2 (TMPRSS2) facilitates SARS-CoV-2 entry into host
cells (Baughn et al., 2020; Hoffmann et al., 2020).
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Following attachment to the ACE 2 receptor, there is
membrane and viral fusion with the aid of glucoprotein S as
stated previously (Petersen et al., 2020) which permits SARS-
CoV-2 virus entry into the cells (Masters, 2006). After the
virus enters the host cells, viral material is replicated by the aid
of RNA polymerase, and another viral RNA released enzymes
(Ratia et al., 2006). As known viral genome encodes the
replicases PP1a and PP1ab which are cleaved by the 3CLPro
(3C-Like Protease)and the PLPro (Parpain-Like Protease) into
16 nonstructural proteins as RNA dependent RNA polymerases
(RdRp) shaping the replication complex (Ratia et al., 2006).
During genome translation coronavirus replication induces
ribosome frameshifting (Masters, 2006) before reassembly,
encapsulation and exocytosis of the mature virions out of the
host cell able to infect new host cells.

SARS-CoV-2 as an antigen exposed to the host Antigen
Presenting Cells (APCs) produces releasing of inflammatory
mediator cytokines such as interleukin-1 (IL-1), interleukin-6
(IL-6), CXCL-10 and tumor necrosis factor alpha (TNF-alpha).
These cytokines are producing an excessive pro-inflammatory
response called cytokine storm to the host which damages lung
epithelium (Sanghai and Tranmer, 2020). Moreover, pathogens
induce a pro-inflammatory response in epithelial cells by
activating the transcription Nuclear Factor-kB (NF-kB) which
regulates innate and adaptive immune functions, inflammation,
and cell proliferation (Liu et al., 2017). It is of note that SARS-
CoV-2 is a cytopathic virus which damages directly the alveolar
epithelium in the lungs and induces epithelial cell death. This
damage may occur to multiple organs causing a multi-organ
failure of the host (Xu D. et al., 2020).

As it is known the expression of Pattern Recognition
Receptors (PRRs) is enhanced in the lung cells during
inflammation. As a response, macrophages, monocytes, and
neutrophils increase levels of PAMPs (Pathogen-Associated
Molecular patterns) and DAMPs (Danger-Associated
Molecular Patterns) (Mogensen, 2009). PAMPs are nucleic
acids or glycoproteins recognized by PRRs and expressing
cytokines and other co-stimulatory components against the
pathogenic virus which activate as well then antigen presenting
cells and the specific adaptive immunity (Mogensen, 2009).
DAMPs are found intracellularly and participates in the
activation of the inflammasome as well as the conversion of
proIL-1 to activeIL-1 (Law et al., 2009). Notably, the TLRs (Toll
Like Receptors) membrane glycoproteins are the most known
PRRs (Law et al., 2009).

On the other side, traditional biomarkers of acute infection
such as C-Reactive Protein, ferritin, neutrophils, and leucocytes
must be considered. Recent evidence stated that neutrophils and
complement are involved in a maladaptive immune response as
complement interacts with the platelet/neutrophil extracellular
traps (NETs)/thrombin axis which leads to enhanced
inflammation, ombotic microangiopathies and high mortality
(Skendros et al., 2020). Similarly, the unbalance of the immune
system due to the excessive cytokines releasing in response to
SARS-CoV-2 invasion leads to an abnormal hypercoagulation
with thrombotic events (Jose and Manuel, 2020).
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Researchers argued the importance of the gut microbiota in
relation to the development of immunity against SARS-CoV-2
and the recovery impact (Xu K. et al., 2020). Intestinal dysbiosis,
with a decrease in the beneficial probiotic microbiota, is observed
in subjects with COVID-19 (Xu K. et al., 2020).

As stated previously, the gut microbiome impact upon
Influenzae virus (IV) and Respiratory Syncytial Virus (RSV)
(Groves et al., 2018). Shifts in gut microbiome of COVID-19
patients were effectively (Zuo et al., 2020) characterized by
depletion of the beneficial microbiota and accrued levels of
opportunistic pathogens. Putrefactive bacteria such as several
Clostridium species (C. ramosum, C.hathewayi) and Coprobacillus
were present in abundance and correlated to the disease severity
(Zuo et al., 2020). In contrast, the beneficial commensals
Faecalibacterium prausnitzii, Eubacterium ventriosum Roseburia,
Lachnospiraceae, Alistipes onderdonkii and Bacteroides ovatus were
found in low levels in COVID-19 patients (Zuo et al., 2020). Patients
fecal specimens showed an inverse correlation between SARS-CoV-
2 levels and the presence of Bacteroides sp which are involved in
downregulation expression of the angiotensin-converting enzyme 2
(ACE2) (Zuo et al., 2020). ACE-2 receptors are the entry point into
cells for SARS-CoV-2. It is of note that they are expressed in few
distinct anatomical seats comprising the gut and the lungs.

The authors stated the accrued levels of Streptococcus in
patients’ fecal microbiota to be correlated with infection risk
by opportunistic pathogenic bacteria (Khatiwada and Subedi,
2020), such as Rothia, Veillonella, and Actinomyces (Khatiwada
and Subedi, 2020).Moreover, opportunistic fungal pathogens
such as Candida albicans, Candida auris, and Aspergillus flavus
are detected in patients’ microbiome (Khatiwada and Subedi,
2020). The authors stated the value of the gut microbiota in
COVID-19 patients as a dynamic diagnostic biomarker and
therapeutic tool (Gu et al., 2020).

Other studies of bronchoalveolar lavage fluid, lung post-
mortem biopsies and gut microbiota from COVID-19 patients
showed important shifts in the gut microbiota balance as a mixed
bacterial/fungal infection occurred (Fan et al., 2020).

Increased lung loading with gut bacteria seems to be a predictive
marker to the acute respiratory distress syndrome (ARDS) malefic
consequences as dysbiosis is taking place dysregulating the immune
response and leading to inflammation (Yang et al., 2020). The
composition of the gut microbiome may be used as a predictive tool
of the disease development and infection severity (Chu and
Mazmanian, 2013). Based on the above, scientists developed a
proteomic risk score’ (PRS) acting as a predictive tool using
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machine learning algorithms. Putrefactive bacteria such as
Ruminococcus and Clostridium spp were found under dysbiosis in
high numbers while beneficial probiotic bacteria such as
Lactobacillus and Bifidobacterium were absent (Gou et al., 2020).
CONCLUSIONS AND REMARKS

Further research focusing on the intestinal–respiratory
microbiome interconnection is likely to reveal important aspects
into the dynamics of the microbiomes. Getting an in-depth
understanding on the role of intestinal dysbiosis may elucidate
the pathogenesis of different diseases. Notably, it is crucial to bring
more light in the interconnecting reciprocal dialogue between the
lung and the gut as its microbial kingdom keeps a significant
impact in this interconnection which needs further investigation.
Without any doubt, new technologies including high-throughput
and genome sequencing methodologies will enrich our knowledge
about the role of the gut and lung microbiomes in the
development of the respiratory diseases. Getting knowledge of
the involved physio-pathological mechanisms will help the
medical community to find solutions for the treatment of
COVID-19 (Stavropoulou and Bezirtzoglou, 2020).

Medicines inactivating the enzymes involved in these
mechanisms should be promising as potential antiviral
treatments (Sze et al., 2014). Moreover, considering the role and
the importance of the microbiota dynamics and homeostasis, the
probiotic approach in the treatment of the respiratory disease
seems to keep an important impact as prophylactic or therapeutic
agents, especially when the failure of antibiotics occurs.

At this end, we conclude that more basic and clinical studies
should be done in order to clarify the role of the physio-
pathological mechanisms and human organs and systems
dialogues in health and disease.
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